
Methods for the specification and
verification of business processes

MPB (6 cfu, 295AA)

Roberto Bruni
http://www.di.unipi.it/~bruni

19 - Workflow modules

1

http://www.di.unipi.it/~bruni

Object

2

We study Workflow modules to model
interaction between workflows

Ch.6 of Business Process Management: Concepts, Languages, Architectures

Problem

3

Not all tasks of a workflow net are automatic:

they can be triggered manually or by a message

they can be used to trigger other tasks

How do we represent this?

4

M
. W

es
ke

: B
us

in
es

s
Pr

oc
es

s
M

an
ag

em
en

t,
©

 S
pr

in
ge

r-V
er

la
g

B
er

lin
 H

ei
de

lb
er

g
20

07

Seller

rec_reject rec_accept

reject accept

Implicit interaction
Separately developed

workflow

Some activities can
input messages

Some activities can
output messages

5

M
. W

es
ke

: B
us

in
es

s
Pr

oc
es

s
M

an
ag

em
en

t,
©

 S
pr

in
ge

r-V
er

la
g

B
er

lin
 H

ei
de

lb
er

g
20

07

Seller

?rec_reject ?rec_accept

!reject !accept

Implicit interaction
Seller can receive

(symbol ?)
recommendations

Seller can send
(symbol !)
decisions

6

M
. W

es
ke

: B
us

in
es

s
Pr

oc
es

s
M

an
ag

em
en

t,
©

 S
pr

in
ge

r-V
er

la
g

B
er

lin
 H

ei
de

lb
er

g
20

07

Seller

sa

sr

ra

rr
?rec_reject ?rec_accept

!reject !accept

Interface
Seller has an interface

for interaction

It consists of
some input places

and
some output places

7

M
. W

es
ke

: B
us

in
es

s
Pr

oc
es

s
M

an
ag

em
en

t,
©

 S
pr

in
ge

r-V
er

la
g

B
er

lin
 H

ei
de

lb
er

g
20

07

Seller

sa

sr

ra

rr
?rec_reject ?rec_accept

!reject !accept

PI

PO

sending
!

receiving
?

Interface

Problem

8

Assume the original workflow net has been
validated:

it is a sound (and maybe safe) workflow net

When we add the (places in the) interface
it is no longer a workflow net!

Workflow Modules

9

Definition: A workflow module consists of

a workflow net (P,T,F)

plus a set PI of incoming places
plus a set of incoming arcs FI ⊆ (PI x T)

plus a set PO of outgoing places
plus a set of outgoing arcs FO ⊆ (T x PO)

such that no transition is connected to both
an incoming and an outgoing place

Problem

10

Workflow modules must be capable to interact

How do we check that their interfaces match?

How do we combine them together?

Strong structural
compatibility

11

A set of workflow modules is called
strongly structural compatible

if
for every message that can be sent

there is a module who can receive it,
and

for every message that can be received
there is a module who can send it

(formats of message data are assumed to match)

Weak structural
compatibility

12

A set of workflow modules is called
weakly structural compatible

if
all messages sent by modules

can be received by other modules

more likely than a complete structural match
(workflow modules are developed separately)

13

Auctioning Service

!rec_accept
rr

ra

sr

sa

M
. W

es
ke

: B
us

in
es

s
Pr

oc
es

s
M

an
ag

em
en

t,
©

 S
pr

in
ge

r-V
er

la
g

B
er

lin
 H

ei
de

lb
er

g
20

07

!rec_reject

?accept ?reject

Seller

sa

sr

ra

rr
?rec_reject ?rec_accept

!reject !accept

PO

PI

PI

PO

sending
!

receiving
?

Interaction

Problem

14

We have added places and arcs to single nets
We have joined places of different nets

We have joined their initial markings

How do we check that the system behaves well?

What has this check to do with WF net soundness?

Workflow systems

15

16

Auctioning Service

!rec_accept
rr

ra

sr

sa

M
. W

es
ke

: B
us

in
es

s
Pr

oc
es

s
M

an
ag

em
en

t,
©

 S
pr

in
ge

r-V
er

la
g

B
er

lin
 H

ei
de

lb
er

g
20

07

!rec_reject

?accept ?reject

Seller

sa

sr

ra

rr
?rec_reject ?rec_accept

!reject !accept

Workflow system

Workflow system

17

Definition: A workflow system consists of

a set of n structurally compatible workflow modules
(initial places i1,...,in, final places o1,...,on)

plus an initial place i
and a transition ti from i to i1,...,in

plus a final place o
and a transition to from o1,...,on to o

18

Auctioning Service

!rec_accept
rr

ra

sr

sa

M
. W

es
ke

: B
us

in
es

s
Pr

oc
es

s
M

an
ag

em
en

t,
©

 S
pr

in
ge

r-V
er

la
g

B
er

lin
 H

ei
de

lb
er

g
20

07

!rec_reject

?accept ?reject

Seller

sa

sr

ra

rr
?rec_reject ?rec_accept

!reject !accept

Exercise
Can the system deadlock?

19

Auctioning Service'

!rec_accept
rr

ra

sr

sa

M
. W

es
ke

: B
us

in
es

s
Pr

oc
es

s
M

an
ag

em
en

t,
©

 S
pr

in
ge

r-V
er

la
g

B
er

lin
 H

ei
de

lb
er

g
20

07

!rec_reject

?accept ?reject

Seller

sa

sr

ra

rr
?rec_reject ?rec_accept

!reject !accept

Can the system deadlock?
Exercise

20

! participation_req ? participation_req

! rec_reject! rec_accept

pr

a

r

pr

? reject? accept ! accept! reject

? rec_accept? rec_reject
rr

ra

br

ba

! reject! accept
a

r
? accept? reject

ba

br

ra

rr

! notify ? notify
n n

M
. W

es
ke

: B
us

in
es

s
Pr

oc
es

s
M

an
ag

em
en

t,
©

 S
pr

in
ge

r-V
er

la
g

B
er

lin
 H

ei
de

lb
er

g
20

07

Complete with missing arcs the following
behavioural interfaces and check their compatibility

Exercise

Exercise

21

Does My Service Have Partners? 155

a

b

c

d

(a)

e

f

g

h

a

b

c

d

(b)

e

f

g

h

(c)

Fig. 1. Two single-port open nets (a,c) and a multi-port open net (b)

N1⊕N2 of two composable open nets N1 and N2 is the net N with the following
constituents: S = S1 ∪ S2, T = T1 ∪ T2, F = F1 ∪ F2, m0 = m01 ⊕ m02,
Si = (Si1 ∪ Si2) \ (P1 ∪ P2), So = (So1 ∪ So2) \ (P1 ∪ P2), MF = {m ⊕ m′ |
m ∈ MF1, m′ ∈ MF2}, and P = (P1 ∪ P2) \ {P1, P2}. Thereby, m1 ⊕ m2 is the
marking satisfying (m1⊕m2)(s) = m1(s) for s ∈ S1, and (m1⊕m2)(s) = m2(s)
for s ∈ S2.

For the markings involved in this definition, the composition operation ⊕ is
well defined, as none of them marks interface places. If the result of multiple
composition does not depend on the order of application (up to isomorphism),
we use the notation N1 ⊕ N2 ⊕ · · · ⊕ Nk for the composition of k open nets. In
Fig. 1, open nets (a) and (c) are composable to net (b). Composition of all three
leads to a closed net.

Services are executed in composition with other services. Consequently, be-
havioral properties are only defined for closed nets, i.e. complete service chore-
ographies.

Definition 4 (Behavior). A closed net N is deadlock-free (DF) if, for every
m ∈ RN (m0) \ MF , there is a transition enabled in m. N is livelock-free (LF)
if, for all m ∈ R(m0), RN (m) ∩ MF ̸= ∅. N is quasi-live (QL) if, for all t ∈ T ,
there is an m ∈ R(m0) such that m

t−→N .

The composition of the three nets in Fig. 1 forms a closed net with properties
DF , LF , and QL. The well-known property of soundness of workflow nets [36]
closely corresponds to the properties LF and QL. Note that the composition of
responsive nets is not necessarily deadlock-free, livelock-free, or quasi-live.

Definition 5 (Controllability, Strategy). Let X ⊆ {DF, LF, QL} and k ∈
N \ {0}. Let N be a normal, bounded, and responsive open net with |P| = j, for
some j. N is X, k-controllable if there exist normal, bounded, and responsive
single-port services N1, . . . , Nj such that N∗ = N ⊕N1⊕ · · ·⊕Nj is a closed net
holding all properties in X, and, for all markings m reachable from m∗

0 in N∗,
and all s ∈ IN , m(s) ≤ k. In this case, [N1, . . . , Nj] is called an X, k-strategy
of N . Denote StratX,k(N) the set of all X, k-strategies for a given open net N .

Check compatibility of WF modules below

Weak soundness

22

Problem

23

When checking behavioural compatibility
the soundness of the overall net
is a too restrictive requirement

Workflow modules are designed separately,
possibly reused in several systems

It is unlikely that every functionality they offer is
involved in each system

Problem

24

Definition: A workflow net is weak sound if
it satisfies “option to complete”

 and “proper completion”

(dead tasks are allowed)

Weak soundness can be checked on the RG

It guarantees deadlock freedom and proper
termination of all modules

25

Sound + Sound = ?

p1

p2

p3

M
.W

es
ke

:B
us

in
e

s
s

P
ro

ce
ss

M
an

ag
em

e
nt

,
©

S
pr

in
ge

r-
V

er
la

g
B

er
lin

H
e

id
e

lb
er

g
20

07

26

M
.W

es
ke

:B
us

in
e

s
s

P
ro

ce
ss

M
an

ag
em

e
nt

,
©

S
pr

in
ge

r-
V

er
la

g
B

er
lin

H
e

id
e

lb
er

g
20

07

Sound + Sound = not sound

27

M
.W

es
ke

:B
us

in
e

s
s

P
ro

ce
ss

M
an

ag
em

e
nt

,
©

S
pr

in
ge

r-
V

er
la

g
B

er
lin

H
e

id
e

lb
er

g
20

07

Sound + Sound = not sound

28

M
.W

es
ke

:B
us

in
e

s
s

P
ro

ce
ss

M
an

ag
em

e
nt

,
©

S
pr

in
ge

r-
V

er
la

g
B

er
lin

H
e

id
e

lb
er

g
20

07

Sound + Sound = not sound

29

M
.W

es
ke

:B
us

in
e

s
s

P
ro

ce
ss

M
an

ag
em

e
nt

,
©

S
pr

in
ge

r-
V

er
la

g
B

er
lin

H
e

id
e

lb
er

g
20

07

Sound + Sound = not sound

30

M
.W

es
ke

:B
us

in
e

s
s

P
ro

ce
ss

M
an

ag
em

e
nt

,
©

S
pr

in
ge

r-
V

er
la

g
B

er
lin

H
e

id
e

lb
er

g
20

07

Sound + Sound = not sound

31

M
.W

es
ke

:B
us

in
e

s
s

P
ro

ce
ss

M
an

ag
em

e
nt

,
©

S
pr

in
ge

r-
V

er
la

g
B

er
lin

H
e

id
e

lb
er

g
20

07

Sound + Sound = not sound

32

M
.W

es
ke

:B
us

in
e

s
s

P
ro

ce
ss

M
an

ag
em

e
nt

,
©

S
pr

in
ge

r-
V

er
la

g
B

er
lin

H
e

id
e

lb
er

g
20

07

Sound + Sound = not sound

33

M
.W

es
ke

:B
us

in
e

s
s

P
ro

ce
ss

M
an

ag
em

e
nt

,
©

S
pr

in
ge

r-
V

er
la

g
B

er
lin

H
e

id
e

lb
er

g
20

07

Sound + Sound = not sound

34

M
.W

es
ke

:B
us

in
e

s
s

P
ro

ce
ss

M
an

ag
em

e
nt

,
©

S
pr

in
ge

r-
V

er
la

g
B

er
lin

H
e

id
e

lb
er

g
20

07

Weak
Sound!

Sound + Sound = not sound

35

Exercise: Preliminaries

N0
part

contractor

order

cost_statement

specification

product

N1
part

subcontractor

36

Exercise: Check Weak
Soundness of The Assembly

order

specification

cost_statement

product

37

Exercise: Check Again After
Refactoring Contractor

order

specification

cost_statement

product

38

Exercise: Check Again After
Refactoring Both

order

specification

cost_statement

product

order

specification

cost_statement

product

39

(Contractor zoom-in)

40

(Subcontractor zoom-in)

