
Business Processes Modelling
MPB (6 cfu, 295AA)

Roberto Bruni
http://www.di.unipi.it/~bruni

21 - Event-driven process chains

1

http://www.di.unipi.it/~bruni

Object

2

We overview EPC and the main
challenges that arise when analysing

them with Petri nets

Ch.4.3, 6 of Business Process Management: Concepts, Languages, Architectures

Petri Net Transformations for Business Processes – A Survey 53

Legend

Start u V

XOR

V

f

t

e

m

l

V

XOR

XOR

XOR

Finish
image

Create
thumbnail

Evaluate

Send
image

Send link

Image
sent

Link sent

redo

Image too big

Image small enough

thumbnail failed

finish failed

XOR

XOR

V

V V

VXOR-split –
Exclusive choice

XOR-join –
Simple merge

AND-split –
Parallel split

OR-split –
Multi-choice

AND-join –
Synchronization

OR-join –
Gen. Sync. Merge

Simple flow – Sequence

function functionevent

Start event End event

Fig. 4. The example process as an EPC

Three types of EPC objects can be used to model the control-flow aspect
of a process: functions, events, and connectors. In a natural way, these types
correspond to the BPMN activities, events, and gateways. However, EPCs do
not allow for exceptions, and it supports only a limited set of connectors, which
is shown by Fig. 4. Apart from the full set of connectors, this figure also shows an
the example process as an EPC, and it relates the object types to the workflow
patterns explained in Section 2.2.

4.2 Transformation Challenges

A main challenge in EPCs is the semantics of the constructs that support the
‘Simple Merge’ and ‘General Synchronizing Merge’ patterns, viz. the XOR-join
connector and the OR-join connector. Everybody agrees that the XOR-join con-
nector should be enabled if one of its inputs is enabled, but this agreement is
lacking in case more than one inputs is enabled. Some say that the XOR-join
should be executed for every single enabled input, while others say that the
connector should block if multiple inputs are enabled. An even bigger problem
is the OR-join connector, for which a definitive semantics has lead to exten-
sive discussions in literature and to different solutions, all of which fail for some
EPCs [17,18,19]. As a result, not everybody will agree on a given mapping, as
not everyone will agree with the semantics used by it.

Furthermore, an EPC allows for multiple start events and multiple final
events, but not all combinations of these events are possible. Although the pro-
cess designer might know the possible combinations, an EPC does not contain
this information.

Event-driven Process Chain

3

An Event-driven Process Chain (EPC)
is a flow-chart that can be used:

to configure an Enterprise Resource Planning implementation
to drive the modelling, analysis, redesign of business process

Informal notation: simple, intuitive and easy-to-understand

EPC represents domain concepts and processes
(neither their formal aspects nor their technical realization)

EPC Markup Language (EPML): XML interchange format

EPC origin

4

early 1990’s: EPC method originally developed
as part of a holistic modelling approach called

ARIS framework
(Architecture of Integrated Information Systems)

by Wilhelm-August Scheer

EPC Diagrams

5

Why do we need
diagrams?

6

Graphical languages communicate concepts

Careful selection of symbols
shapes, colors, arrows

(the alphabet is necessary for communication)

Greatest common denominator of the people involved

Intuitive meaning
(verbal description, no math involved)

EPC informally

7

An EPC is a graph of events and functions

It provides some logical connectors that allow
alternative and parallel execution of processes

(AND, XOR, OR)

EPC ingredients
at a glance

8

Events

9

Any EPC diagram must start / end with event(s)

Graphical representation: hexagons

Passive elements used to describe
under which circumstances a process (or a function) works

or which state a process (or a function) results in
(like pre- / post-conditions)

Functions

10

Any EPC diagram may involve several functions

Graphical representation: rounded rectangles

Active elements used to describe
the tasks or activities of a business process

Functions can be refined to other EPC diagrams

Logical connectors

11

Any EPC diagram may involve several connectors

Graphical representation: circles (or also octagons)

Elements used to describe
the logical relationships between split/join branches

∧ ∨XAND ORXOR

Control flow

12

Any EPC diagram may involve several connections

Graphical representation: dashed arrows

Control flow is used to connect
events with functions and connectors
by expressing causal dependencies

EPC diagrams

13

EPC elements can be combined in a fairly free manner
(possibly including cycles)

The graph is weakly connected (e.g., no isolated nodes)

Events have at most one incoming and one outgoing arc
There must be at least one start event and one end event

Events have at least one incident arc

Functions have exactly one incoming and one outgoing arc

Connectors have either one incoming arc and multiple outgoing arcs
or viceversa (multiple incoming arcs and one outgoing arc)

Logical connectors:
splits and joins

14

Splits

AND
XOR
OR

AND
XOR
OR

Joins

EPC: Example

15

∧

∨

X

AND

XOR

OR

=

=

=

EPC Diagrams: guidelines

16

Other constraints are sometimes imposed

Unique start / end event

No direct flow between two events
No direct flow between two functions

No event is followed by a decision node
(i.e. (X)OR-split)

EPC guidelines: Example

17

multiple end events

direct flow between
functions

Problem with guidelines

18

From empirical studies:
guidelines are too restrictive and people ignore them

(otherwise diagrams would get unnecessarily complicated,
more difficult to read and understand)

Solution:
It is safe to drop most constraints

(implicit dummy nodes might always be added later, if needed)

EPC: repairing multiple
start events

19

A start event is an event with no incoming arc

Any start event
invokes a new instance of the process template

What if multiple start events occur?
Many instances are started!

Start events are mutually exclusive

EPC: repairing multiple
start events

20

Start1 Start2

XOR

assume an
implicit

XOR split
is present

Start1 Start2

EPC: repairing multiple
end events

21

An end event is an event with no outgoing arc

Any end event indicates completion of some activities

What if multiple end events occur?
No unanimity!

It is left ambiguous if they are followed by an
implicit AND/XOR/OR connector

(typically a XOR… but not necessarily so)

EPC: repairing multiple
end events

22

End1 End2

AND?
XOR?
OR?

assume an
implicit

join
is present

End1 End2

EPC: repairing alternation

23

add dummy
functions

to guarantee
alternation

EPC: repairing alternation

24

add dummy
events

to guarantee
alternation

25

XOR

add dummy nodes
to guarantee

no event be followed
by a decision node

((X)OR-split)

EPC: repairing decisions

XOR

Other ingredients:
function annotations

26

Organization unit:
determines the person or organization
responsible for a specific function
(ellipses with a vertical line)

Supporting system: technical support
(rectangles with vertical lines on its sides)

Information, material, resource object:
represents objects in the real world
e.g. input data or output data for a function
(rectangles linked to function boxes)
angles with vertical lines on its sides)

EPC Semantics

27

EPC intuitive semantics

28

A process starts when some initial event(s) occurs

The activities are executed according to the
constraints in the diagram

When the process is finished, only final events have
not been dealt with

If this is always the case, then the EPC is “correct”

EPC formal semantics?

29

Little unanimity around the EPC semantics

Rough verbal description
in the original publication by Scheer (1992)

Later, several attempts to define formal semantics
(assigning different meanings to the same EPC,

sometimes leading to paradoxes)

Discrepancies typically stem from the interpretation
of (X)OR join connectors

Sound EPC diagrams

30

We can exploit the formal semantics of nets
to give unambiguous semantics to EPC diagrams

We transform EPC diagrams to Workflow nets:
the EPC diagram is sound if its net is so

We can reuse the verification tools
to check if the net is sound

Is there a unique way to proceed? Not necessarily!

Translation of EPC
to Petri nets

31

The idea

32

From EPC to wf nets in three steps

Step 1
convert each

event
function

connector
to a net fragment

Step 2
connect

fragments
together

Step 3
enforce

unique start
unique end

Step 1

33

We replace each event, function and connector
separately with small net fragments

Step 1
events

functions
connectors

Step 2: dummy style

34

Then we connect the fragments together
(we may decide to introduce dummy places / transitions)

Step 2
dummy style

Step 2: fusion style

35

Then we connect the fragments together
(or we may decide to merge places / transitions)

Step 2
fusion style

C

A
A

B

C

B

 tA tAB tB

A B

C

Mapping EPC elements

to PN!modules

Fusion of arcs

(Case2)

Unification of

elements

(Case1)

Step 1 Step 2

 Modul combination

OR

Figure 4: Transformation of the OR-connector.

3.3.3. Step 3: Adding unique input/output places

Applying Step 1 and Step 2, an EPC is translated into a Petri net but not necessarily
into a WF-net. If the EPC contained more than one start, and/or end event, the
resulting net may have more than one start and/or sink place. There are no EPC
syntax-rules that restrict the number of start and end events. Moreover, if there
are several start events (or end events), it is not clear whether they are mutually
exclusive or parallel. Therefore, a new start place and/or a new sink place is added.
These new places are connected to the Petri net so that the places representing the
primary start events (or end events) of the EPC are initialized (cleaned up). The
connection of the new places to the primary places is not trivial and depends on
the relation of the corresponding events in the EPC.

end

end2end1

end1 end2

end1 end2

OR

c)

end2end1
end1 end2

end1 end2

AND

AND

Step3

Step1 &

 Step2

b)

Step3

start1 start2

Step1 &

 Step2

start1 start2

start1 start2

start

XOR

XOR

a)

Step3

Step1 &

 Step2

Figure 5: Step 3: Adding new start and sink places.

One way to determine the relation would be to track the paths, starting from the
different start events (end events), until they joing. The connection of the new place
gThe paths finally join. The EPC syntax rules state that: For every two elements there is a path

13

Step 3: unique start

36

XOR start

C

A
A

B

C

B

 tA tAB tB

A B

C

Mapping EPC elements

to PN!modules

Fusion of arcs

(Case2)

Unification of

elements

(Case1)

Step 1 Step 2

 Modul combination

OR

Figure 4: Transformation of the OR-connector.

3.3.3. Step 3: Adding unique input/output places

Applying Step 1 and Step 2, an EPC is translated into a Petri net but not necessarily
into a WF-net. If the EPC contained more than one start, and/or end event, the
resulting net may have more than one start and/or sink place. There are no EPC
syntax-rules that restrict the number of start and end events. Moreover, if there
are several start events (or end events), it is not clear whether they are mutually
exclusive or parallel. Therefore, a new start place and/or a new sink place is added.
These new places are connected to the Petri net so that the places representing the
primary start events (or end events) of the EPC are initialized (cleaned up). The
connection of the new places to the primary places is not trivial and depends on
the relation of the corresponding events in the EPC.

end

end2end1

end1 end2

end1 end2

OR

c)

end2end1
end1 end2

end1 end2

AND

AND

Step3

Step1 &

 Step2

b)

Step3

start1 start2

Step1 &

 Step2

start1 start2

start1 start2

start

XOR

XOR

a)

Step3

Step1 &

 Step2

Figure 5: Step 3: Adding new start and sink places.

One way to determine the relation would be to track the paths, starting from the
different start events (end events), until they joing. The connection of the new place
gThe paths finally join. The EPC syntax rules state that: For every two elements there is a path

13

C

A
A

B

C

B

 tA tAB tB

A B

C

Mapping EPC elements

to PN!modules

Fusion of arcs

(Case2)

Unification of

elements

(Case1)

Step 1 Step 2

 Modul combination

OR

Figure 4: Transformation of the OR-connector.

3.3.3. Step 3: Adding unique input/output places

Applying Step 1 and Step 2, an EPC is translated into a Petri net but not necessarily
into a WF-net. If the EPC contained more than one start, and/or end event, the
resulting net may have more than one start and/or sink place. There are no EPC
syntax-rules that restrict the number of start and end events. Moreover, if there
are several start events (or end events), it is not clear whether they are mutually
exclusive or parallel. Therefore, a new start place and/or a new sink place is added.
These new places are connected to the Petri net so that the places representing the
primary start events (or end events) of the EPC are initialized (cleaned up). The
connection of the new places to the primary places is not trivial and depends on
the relation of the corresponding events in the EPC.

end

end2end1

end1 end2

end1 end2

OR

c)

end2end1
end1 end2

end1 end2

AND

AND

Step3

Step1 &

 Step2

b)

Step3

start1 start2

Step1 &

 Step2

start1 start2

start1 start2

start

XOR

XOR

a)

Step3

Step1 &

 Step2

Figure 5: Step 3: Adding new start and sink places.

One way to determine the relation would be to track the paths, starting from the
different start events (end events), until they joing. The connection of the new place
gThe paths finally join. The EPC syntax rules state that: For every two elements there is a path

13

Steps 1+2 Step 3
unique start

C

A
A

B

C

B

 tA tAB tB

A B

C

Mapping EPC elements

to PN!modules

Fusion of arcs

(Case2)

Unification of

elements

(Case1)

Step 1 Step 2

 Modul combination

OR

Figure 4: Transformation of the OR-connector.

3.3.3. Step 3: Adding unique input/output places

Applying Step 1 and Step 2, an EPC is translated into a Petri net but not necessarily
into a WF-net. If the EPC contained more than one start, and/or end event, the
resulting net may have more than one start and/or sink place. There are no EPC
syntax-rules that restrict the number of start and end events. Moreover, if there
are several start events (or end events), it is not clear whether they are mutually
exclusive or parallel. Therefore, a new start place and/or a new sink place is added.
These new places are connected to the Petri net so that the places representing the
primary start events (or end events) of the EPC are initialized (cleaned up). The
connection of the new places to the primary places is not trivial and depends on
the relation of the corresponding events in the EPC.

end

end2end1

end1 end2

end1 end2

OR

c)

end2end1
end1 end2

end1 end2

AND

AND

Step3

Step1 &

 Step2

b)

Step3

start1 start2

Step1 &

 Step2

start1 start2

start1 start2

start

XOR

XOR

a)

Step3

Step1 &

 Step2

Figure 5: Step 3: Adding new start and sink places.

One way to determine the relation would be to track the paths, starting from the
different start events (end events), until they joing. The connection of the new place
gThe paths finally join. The EPC syntax rules state that: For every two elements there is a path

13

Step 3: unique end

37

OR end
(sometimes XOR/AND can be preferred)

Steps 1+2 Step 3
unique end

C

A
A

B

C

B

 tA tAB tB

A B

C

Mapping EPC elements

to PN!modules

Fusion of arcs

(Case2)

Unification of

elements

(Case1)

Step 1 Step 2

 Modul combination

OR

Figure 4: Transformation of the OR-connector.

3.3.3. Step 3: Adding unique input/output places

Applying Step 1 and Step 2, an EPC is translated into a Petri net but not necessarily
into a WF-net. If the EPC contained more than one start, and/or end event, the
resulting net may have more than one start and/or sink place. There are no EPC
syntax-rules that restrict the number of start and end events. Moreover, if there
are several start events (or end events), it is not clear whether they are mutually
exclusive or parallel. Therefore, a new start place and/or a new sink place is added.
These new places are connected to the Petri net so that the places representing the
primary start events (or end events) of the EPC are initialized (cleaned up). The
connection of the new places to the primary places is not trivial and depends on
the relation of the corresponding events in the EPC.

end

end2end1

end1 end2

end1 end2

OR

c)

end2end1
end1 end2

end1 end2

AND

AND

Step3

Step1 &

 Step2

b)

Step3

start1 start2

Step1 &

 Step2

start1 start2

start1 start2

start

XOR

XOR

a)

Step3

Step1 &

 Step2

Figure 5: Step 3: Adding new start and sink places.

One way to determine the relation would be to track the paths, starting from the
different start events (end events), until they joing. The connection of the new place
gThe paths finally join. The EPC syntax rules state that: For every two elements there is a path

13

C

A
A

B

C

B

 tA tAB tB

A B

C

Mapping EPC elements

to PN!modules

Fusion of arcs

(Case2)

Unification of

elements

(Case1)

Step 1 Step 2

 Modul combination

OR

Figure 4: Transformation of the OR-connector.

3.3.3. Step 3: Adding unique input/output places

Applying Step 1 and Step 2, an EPC is translated into a Petri net but not necessarily
into a WF-net. If the EPC contained more than one start, and/or end event, the
resulting net may have more than one start and/or sink place. There are no EPC
syntax-rules that restrict the number of start and end events. Moreover, if there
are several start events (or end events), it is not clear whether they are mutually
exclusive or parallel. Therefore, a new start place and/or a new sink place is added.
These new places are connected to the Petri net so that the places representing the
primary start events (or end events) of the EPC are initialized (cleaned up). The
connection of the new places to the primary places is not trivial and depends on
the relation of the corresponding events in the EPC.

end

end2end1

end1 end2

end1 end2

OR

c)

end2end1
end1 end2

end1 end2

AND

AND

Step3

Step1 &

 Step2

b)

Step3

start1 start2

Step1 &

 Step2

start1 start2

start1 start2

start

XOR

XOR

a)

Step3

Step1 &

 Step2

Figure 5: Step 3: Adding new start and sink places.

One way to determine the relation would be to track the paths, starting from the
different start events (end events), until they joing. The connection of the new place
gThe paths finally join. The EPC syntax rules state that: For every two elements there is a path

13

Three approaches

38

We overview three different translations

n. trickiness style applicability outcome

1st easy fusion any EPC likely unsound,
(relaxed soundness)

2nd
medium,
context

dependent
(dummy)

simplified EPC
event function alternation,

no OR connectors
free-choice net

3rd
hard,

context
dependent

dummy
decorated EPC

join-split correspondence,
OR policies

accurate analysis

39

A event place

function transitionf

control flow arc

Commonalities
EPC element net fragment

First attempt
(relaxed soundness)

40

K.R. Dittrich, A. Geppert, M.C. Norrie (Eds.): CAiSE 2001, LNCS 2068, pp. 157–170, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Relaxed Soundness of Business Processes

Juliane Dehnert1,∗ and Peter Rittgen2

1 Institute of Computer Information Systems, Technical University Berlin, Germany
dehnert@cs.tu-berlin.de

2 Institute of Business Informatics, University Koblenz-Landau, Germany
rittgen@uni-koblenz.de

Abstract. Business processes play a central role in the reorganization of a
company and the (re)design of the respective information system(s). Typically
the processes are described with the help of a semiformal, graphical language
such as the Event-driven Process Chains (EPCs) by Scheer. This approach
provides a suitable medium for the communication between the participants: the
domain experts and the IT specialists. But these models leave room for
interpretation and hence ambiguities which makes them less suitable as a basis
for the design of information systems. To remedy this we suggest to transform
the EPCs into a formal representation (Petri nets) preserving the ambiguities,
i.e. all possibly intended behaviour. Now formal techniques can be used to find
out whether the possible behaviours comprise sensible behaviour. If so, we call
the net relaxed sound. By not limiting the modeler compared to previous ways
(e.g. [8], [3]) we take a pragmatic approach to correctness which only requires
that the net represents some valid behaviour. This allows us to draw conclusions
on mistakes in the original EPC and to make suggestions for its improvement
thereby enhancing both the model’s quality and its suitability for software
engineering.

1 Motivation

Business processes play a central role in the reorganization of a company and the
(re)design of the respective information system(s). Typically the processes are
described with the help of a semiformal, graphical language such as the Event-driven
Process Chains (EPCs) by Scheer [15]. Approaches of this type are suitable for the
analysis phase of an IT project where the focus is on communication: reaching an
agreement on how the process should look like between participants with totally
different backgrounds and “knowledge cultures”: CEOs, heads of department,
department staff, IT experts and so on. In this phase it is imperative that the language
used represents the greatest common denominator of the people involved. And more
than that it should leave room for interpretation: the more ways there are to interpret a
certain construct the more likely it is that an agreement is reached. The participants
might not (yet) be ready to specify the “final” behaviour in detail and decide for the
“correct” interpretation. But although this feature is desirable in the analysis phase of
IS development it constitutes a major problem in the design phase where we need an

∗ This work is supported by Deutsche Forschungsgemeinschaft (reference WE 1214-3-3a,

research group Petri Net Technology)

K.R. Dittrich, A. Geppert, M.C. Norrie (Eds.): CAiSE 2001, LNCS 2068, pp. 157–170, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Relaxed Soundness of Business Processes

Juliane Dehnert1,∗ and Peter Rittgen2

1 Institute of Computer Information Systems, Technical University Berlin, Germany
dehnert@cs.tu-berlin.de

2 Institute of Business Informatics, University Koblenz-Landau, Germany
rittgen@uni-koblenz.de

Abstract. Business processes play a central role in the reorganization of a
company and the (re)design of the respective information system(s). Typically
the processes are described with the help of a semiformal, graphical language
such as the Event-driven Process Chains (EPCs) by Scheer. This approach
provides a suitable medium for the communication between the participants: the
domain experts and the IT specialists. But these models leave room for
interpretation and hence ambiguities which makes them less suitable as a basis
for the design of information systems. To remedy this we suggest to transform
the EPCs into a formal representation (Petri nets) preserving the ambiguities,
i.e. all possibly intended behaviour. Now formal techniques can be used to find
out whether the possible behaviours comprise sensible behaviour. If so, we call
the net relaxed sound. By not limiting the modeler compared to previous ways
(e.g. [8], [3]) we take a pragmatic approach to correctness which only requires
that the net represents some valid behaviour. This allows us to draw conclusions
on mistakes in the original EPC and to make suggestions for its improvement
thereby enhancing both the model’s quality and its suitability for software
engineering.

1 Motivation

Business processes play a central role in the reorganization of a company and the
(re)design of the respective information system(s). Typically the processes are
described with the help of a semiformal, graphical language such as the Event-driven
Process Chains (EPCs) by Scheer [15]. Approaches of this type are suitable for the
analysis phase of an IT project where the focus is on communication: reaching an
agreement on how the process should look like between participants with totally
different backgrounds and “knowledge cultures”: CEOs, heads of department,
department staff, IT experts and so on. In this phase it is imperative that the language
used represents the greatest common denominator of the people involved. And more
than that it should leave room for interpretation: the more ways there are to interpret a
certain construct the more likely it is that an agreement is reached. The participants
might not (yet) be ready to specify the “final” behaviour in detail and decide for the
“correct” interpretation. But although this feature is desirable in the analysis phase of
IS development it constitutes a major problem in the design phase where we need an

∗ This work is supported by Deutsche Forschungsgemeinschaft (reference WE 1214-3-3a,

research group Petri Net Technology)

Rationale

41

EPC success is due to its simplicity

EPC diagrams lack a consistent semantics:
ambiguous and flawed process descriptions

can arise in the design phase

it is important to find out flaws as soon as possible

therefore

we need to fix a formal representation
that preserves all ambiguities

42

∧

Step 1: AND split
EPC element net fragment

43

∧

Step 1: AND join
EPC element net fragment

44

Step 1: XOR split
EPC element net fragment

XOR

45

Step 1: XOR join
EPC element net fragment

XOR

46

∨

xor
+

and

Step 1: OR split
EPC element net fragment

47

∨

Step 1: OR join
EPC element net fragment

Step 2: fusion style

48

C

A
A

B

C

B

 tA tAB tB

A B

C

Mapping EPC elements

to PN!modules

Fusion of arcs

(Case2)

Unification of

elements

(Case1)

Step 1 Step 2

 Modul combination

OR

Figure 4: Transformation of the OR-connector.

3.3.3. Step 3: Adding unique input/output places

Applying Step 1 and Step 2, an EPC is translated into a Petri net but not necessarily
into a WF-net. If the EPC contained more than one start, and/or end event, the
resulting net may have more than one start and/or sink place. There are no EPC
syntax-rules that restrict the number of start and end events. Moreover, if there
are several start events (or end events), it is not clear whether they are mutually
exclusive or parallel. Therefore, a new start place and/or a new sink place is added.
These new places are connected to the Petri net so that the places representing the
primary start events (or end events) of the EPC are initialized (cleaned up). The
connection of the new places to the primary places is not trivial and depends on
the relation of the corresponding events in the EPC.

end

end2end1

end1 end2

end1 end2

OR

c)

end2end1
end1 end2

end1 end2

AND

AND

Step3

Step1 &

 Step2

b)

Step3

start1 start2

Step1 &

 Step2

start1 start2

start1 start2

start

XOR

XOR

a)

Step3

Step1 &

 Step2

Figure 5: Step 3: Adding new start and sink places.

One way to determine the relation would be to track the paths, starting from the
different start events (end events), until they joing. The connection of the new place
gThe paths finally join. The EPC syntax rules state that: For every two elements there is a path

13

C

A
A

B

C

B

 tA tAB tB

A B

C

Mapping EPC elements

to PN!modules

Fusion of arcs

(Case2)

Unification of

elements

(Case1)

Step 1 Step 2

 Modul combination

OR

Figure 4: Transformation of the OR-connector.

3.3.3. Step 3: Adding unique input/output places

Applying Step 1 and Step 2, an EPC is translated into a Petri net but not necessarily
into a WF-net. If the EPC contained more than one start, and/or end event, the
resulting net may have more than one start and/or sink place. There are no EPC
syntax-rules that restrict the number of start and end events. Moreover, if there
are several start events (or end events), it is not clear whether they are mutually
exclusive or parallel. Therefore, a new start place and/or a new sink place is added.
These new places are connected to the Petri net so that the places representing the
primary start events (or end events) of the EPC are initialized (cleaned up). The
connection of the new places to the primary places is not trivial and depends on
the relation of the corresponding events in the EPC.

end

end2end1

end1 end2

end1 end2

OR

c)

end2end1
end1 end2

end1 end2

AND

AND

Step3

Step1 &

 Step2

b)

Step3

start1 start2

Step1 &

 Step2

start1 start2

start1 start2

start

XOR

XOR

a)

Step3

Step1 &

 Step2

Figure 5: Step 3: Adding new start and sink places.

One way to determine the relation would be to track the paths, starting from the
different start events (end events), until they joing. The connection of the new place
gThe paths finally join. The EPC syntax rules state that: For every two elements there is a path

13

element
fusion

(case 1)

arc
fusion

(case 2)

49

Sound?

Example

Example

50

Step 1
events and
functions

51

AND split

XOR split

XOR join

AND split

OR join

Example

Step 1
connectors

52

Example

Step 2
fusion

53

Step 2
fusion

Example

54

implicit AND join (because of A2)

Step 3
unique end

Example

55

implicit AND join (because of A2)

Step 3
unique end

Example

56

Sound?

Steps
1+2+3

Example
EPC wf net

57

Soundness analysis

Not sound!

58

Soundness analysis

59

Soundness analysis

60

Soundness analysis

the right thing to do
would be to fire O1e

61

Soundness analysis

the right thing to do
would be to fire O1e

62

Soundness analysis

but O1f and O1d
are enabled as well

(OR semantics!)

63

Soundness analysis

proper completion
is not guaranteed
(N* unbounded)

64

Soundness analysis

proper completion
is not guaranteed
(N* unbounded)

65

Soundness analysis

Can we repair
the model?

66

Soundness analysis

AND join
instead of
OR join?

67

Soundness analysis

Not sound!

68

Soundness analysis

69

Soundness analysis

70

Soundness analysis

the right thing to do
would be to fire X1b

AND join
instead of
OR join?

71

Soundness analysis

the right thing to do
would be to fire X1b

AND join
instead of
OR join?

72

Soundness analysis

but X1a
is enabled as well

AND join
instead of
OR join?

73

Soundness analysis

possible deadlock!
option to complete
is not guaranteed

(N* non-live)

AND join
instead of
OR join?

74

Soundness analysis

AND join
instead of
OR join

+ ad hoc flow?we miss a
token
in O1a

75

Soundness analysis

AND join
instead of
OR join

+ ad hoc flow?

76

Soundness analysis

Sound!

77

Soundness analysis

Sound, but…
we have repaired the wf net,
not the original EPC diagram!

78

Soundness analysis

?

79

Soundness analysis

The diagram is now
more complex

and less readable
than the original one!

Are we sure that its translation
is the same sound wf net that
we have designed ad hoc?

Are we sure it is sound?

Problem

80

EPC is widely adopted
also at early stages of design

WF nets offer a useful tool

but

Soundness can be too demanding at early stages

(Un)sound behaviours

81

A sound behaviour:
we move from a start event to an end event
so that nothing blocks or remains undone

Execution paths leading to unsound behaviours
can be used to infer potential mistakes

L(N) = {� | i ��! o}
<latexit sha1_base64="jdR0mJ+7v3IQVKKHtWMm1Sy24z8=">AAACJHicbVC7SgRBEJz17fk6NTQZPARNZFcETQTRxEBEwTuF2+PonWvPxpndZabXB8v9hp/gV5hqZCYGBvot7j0CXxUVVd10V0WpJse+/+4NDY+Mjo1PTJampmdm58rzCzWXZFZhVSU6secRONQUY5WJNZ6nFsFEGs+iq/2uf3aN1lESn/Jdig0D7ZguSAEXUrPsH64erckdGeYydNQ2IENDLUkyvLXUvmSwNrnJ+1ZHJmGnWa74634P8i8JBqQiBjhulj/CVqIygzErDc7VAz/lRg6WSWnslMLMYQrqCtpYL2gMBl0j7yXryJXMAScyRStJy56I3zdyMM7dmaiYNMCX7rfXFf/z6hlfbDdyitOMMVbdQ0wae4ecslRUhrJFFpmh+zlKiqUCC8xoSYJShZgVHZaKPoLf6f+S2sZ6UPCTzcru3qCZCbEklsWqCMSW2BUH4lhUhRL34lE8iWfvwXvxXr23/uiQN9hZFD/gfX4BKCakJQ==</latexit><latexit sha1_base64="jdR0mJ+7v3IQVKKHtWMm1Sy24z8=">AAACJHicbVC7SgRBEJz17fk6NTQZPARNZFcETQTRxEBEwTuF2+PonWvPxpndZabXB8v9hp/gV5hqZCYGBvot7j0CXxUVVd10V0WpJse+/+4NDY+Mjo1PTJampmdm58rzCzWXZFZhVSU6secRONQUY5WJNZ6nFsFEGs+iq/2uf3aN1lESn/Jdig0D7ZguSAEXUrPsH64erckdGeYydNQ2IENDLUkyvLXUvmSwNrnJ+1ZHJmGnWa74634P8i8JBqQiBjhulj/CVqIygzErDc7VAz/lRg6WSWnslMLMYQrqCtpYL2gMBl0j7yXryJXMAScyRStJy56I3zdyMM7dmaiYNMCX7rfXFf/z6hlfbDdyitOMMVbdQ0wae4ecslRUhrJFFpmh+zlKiqUCC8xoSYJShZgVHZaKPoLf6f+S2sZ6UPCTzcru3qCZCbEklsWqCMSW2BUH4lhUhRL34lE8iWfvwXvxXr23/uiQN9hZFD/gfX4BKCakJQ==</latexit><latexit sha1_base64="jdR0mJ+7v3IQVKKHtWMm1Sy24z8=">AAACJHicbVC7SgRBEJz17fk6NTQZPARNZFcETQTRxEBEwTuF2+PonWvPxpndZabXB8v9hp/gV5hqZCYGBvot7j0CXxUVVd10V0WpJse+/+4NDY+Mjo1PTJampmdm58rzCzWXZFZhVSU6secRONQUY5WJNZ6nFsFEGs+iq/2uf3aN1lESn/Jdig0D7ZguSAEXUrPsH64erckdGeYydNQ2IENDLUkyvLXUvmSwNrnJ+1ZHJmGnWa74634P8i8JBqQiBjhulj/CVqIygzErDc7VAz/lRg6WSWnslMLMYQrqCtpYL2gMBl0j7yXryJXMAScyRStJy56I3zdyMM7dmaiYNMCX7rfXFf/z6hlfbDdyitOMMVbdQ0wae4ecslRUhrJFFpmh+zlKiqUCC8xoSYJShZgVHZaKPoLf6f+S2sZ6UPCTzcru3qCZCbEklsWqCMSW2BUH4lhUhRL34lE8iWfvwXvxXr23/uiQN9hZFD/gfX4BKCakJQ==</latexit><latexit sha1_base64="jdR0mJ+7v3IQVKKHtWMm1Sy24z8=">AAACJHicbVC7SgRBEJz17fk6NTQZPARNZFcETQTRxEBEwTuF2+PonWvPxpndZabXB8v9hp/gV5hqZCYGBvot7j0CXxUVVd10V0WpJse+/+4NDY+Mjo1PTJampmdm58rzCzWXZFZhVSU6secRONQUY5WJNZ6nFsFEGs+iq/2uf3aN1lESn/Jdig0D7ZguSAEXUrPsH64erckdGeYydNQ2IENDLUkyvLXUvmSwNrnJ+1ZHJmGnWa74634P8i8JBqQiBjhulj/CVqIygzErDc7VAz/lRg6WSWnslMLMYQrqCtpYL2gMBl0j7yXryJXMAScyRStJy56I3zdyMM7dmaiYNMCX7rfXFf/z6hlfbDdyitOMMVbdQ0wae4ecslRUhrJFFpmh+zlKiqUCC8xoSYJShZgVHZaKPoLf6f+S2sZ6UPCTzcru3qCZCbEklsWqCMSW2BUH4lhUhRL34lE8iWfvwXvxXr23/uiQN9hZFD/gfX4BKCakJQ==</latexit>

The language of the net
collects all and only
its sound behaviours

Relaxed soundness

82

If some unsound behaviour is possible
but any transition can take part to one sound execution,

then the process is called relaxed sound

Definition: A WF net is relaxed sound if
every transition belongs to a firing sequence

that starts in state i and ends in state o
(i.e. it appears in the language of the net)

<latexit sha1_base64="A2h7XoaiEjDvOTH/SDzli5UzsQs=">AAACL3icbVDLSgNBEJz1bXxFPXoZDEK8hF1RFAQRvXgQUTBRyIbQO3bikNkHM73BsORj/AS/wquexIPi1b9wNsnBV52Kqm6qu4JESUOu++qMjU9MTk3PzBbm5hcWl4rLKzUTp1pgVcQq1tcBGFQywipJUnidaIQwUHgVdI5z/6qL2sg4uqRego0Q2pFsSQFkpWZx32/FGpTi5MuIX1Z87uOdjTXcN7IdQq6els82c6OLIhuq/TJtHrjNYsmtuAPwv8QbkRIb4bxZfPNvYpGGGJFQYEzdcxNqZKBJCoX9gp8aTEB0oI11SyMI0TSywZN9vpEaoJgnqLlUfCDi940MQmN6YWAnQ6Bb89vLxf+8ekqtvUYmoyQljEQeRFLhIMgILW17yG+kRiLIL0duKxGggQi15CCEFVNbZ8H24f3+/i+pbVW8nYp7sV06PBo1M8PW2DorM4/tskN2ws5ZlQl2zx7ZE3t2HpwX5935GI6OOaOdVfYDzucX3SOn5g==</latexit>

8t 2 T. 9� 2 L(N). ~�(t) > 0

83

Relaxed
sound?

Steps
1+2+3

Example

84

Relaxed
sound?

Steps
1+2+3

a sound executionExample

85

Relaxed
sound?

Steps
1+2+3

another sound executionExample

86

Relaxed
sound?

Steps
1+2+3

tasks involved in
some sound executionExample

87

Not
relaxed
sound

as a net!

Steps
1+2+3

one task not involved in
some sound executionExample

88

Relaxed
sound

as EPC!

Steps
1+2+3

AND split

XOR split

XOR join

AND split

OR join

all EPC nodes involved in
some sound executionExample

Relaxed soundness?

89

If the WF net is not relaxed sound there are
transitions that are not involved in sound executions

(not included in a firing sequence of L(N))

Their EPC counterparts may need improvements

Relaxed soundness can be proven only by enumeration
(of enough firing sequences of L(N))

Open problem
No equivalent characterization is known

that is more convenient to check

Second attempt
(no OR connectors)

90

Formalization and Verification
of Event-driven Process Chains
W.M.P. van der Aalst
DepartmentofMathematics and ComputingScience, EindhovenUniversity of Technology,
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands, telephone: -31 40 2474295,
e-mail: wsinwa@win.tue.nl

Abstract
For many companies, business processes have become the focal point of atten-
tion. As a result, many tools have been developed for business process engineer-
ing and the actual deployment of business processes. Typical examples of these
tools are BPR (Business Process Reengineering) tools, ERP (Enterprise Resource
Planning) systems, and WFM (Workflow Management) systems. Some of the lead-
ing products, e.g. SAP R/3 (ERP/WFM) and ARIS (BPR), use Event-driven Pro-
cess Chains (EPCs) to model business processes. Although event-driven process
chains have become a widespread process modeling technique, they suffer from a
serious drawback: neither the syntax nor the semantics of an event-driven process
chain are well defined. In this paper, this problem is tackled by mapping event-
driven process chains (without connectors of type) onto Petri nets. Petri nets
have formal semantics and provide an abundance of analysis techniques. As a re-
sult, the approach presented in this paper gives formal semantics to event-driven
process chains. Moreover, many analysis techniques become available for event-
driven process chains. To illustrate the approach, it is shown that the correctness
of an event-driven process chain can be checked in polynomial time by using Petri-
net-based analysis techniques.

Keywords: Event-driven process chains, Petri nets, workflow management, veri-
fication.

1 Introduction
As a response to increased competitive pressure in the global marketplace, enter-
prises are looking to improve the way they are running their businesses. The term
business process engineering ([27]) subsumes the set of principles, activities, and

1

Simplified EPC

91

We restrict the analysis to a sub-class of EPC diagrams

We require:

event / function alternation
(also along paths between two connectors)

(fusion not needed, dummy places/transitions not needed)

OR-connectors are not present
(avoid intrinsic problems with OR join)

Example

92

OR-connectors
are not present

Add dummy events
and functions

to force alternation

alternation
is not satisfied

Step 0

93

Example

Step 1
events and
functions

Step 1:
split/join connectors

94

The translation of logical connectors
depends on the context:

if a connector connects functions to events
we apply a certain translation

if it connects events to functions
we apply a different translation

Step 1:
split/join connectors

95

The translation of logical connectors
depends on the context:

if a connector connects transitions to places
we apply a certain translation

if it connects places to transitions
we apply a different translation

96

(event to functions)

∧

e1

f1 f2

e1

f1 f2

(functions to events)

∧

e1

f1

e2 e1

f1

e2

Step 1: AND split
EPC element net fragment

97

∧

f1 f1 e1 e1

e1 e2 e1 e2 f1 f2 f1 f2

∧

(event to functions) (functions to events)

Step 1: AND join
EPC element net fragment

98

Example

Step 1
AND

connectors

99

(event to functions)

e1

f1 f2

e1

f1 f2

(functions to events)

e1

f1

e2 e1

f1

e2

XOR XOR

Step 1: XOR split
EPC element net fragment

100

XOR

f1
f1 e1 e1

e1 e2 e1 e2 f1 f2 f1 f2

(event to functions) (functions to events)

XOR

Step 1: XOR split
EPC element net fragment

101

Example

Step 1
XOR

connectors

Overall strategy

102

connector corresponds to the places, transitions and/or arcs listed in Table 1.

In Table 1 it is assumed that connectors are only connected to functions and events,

i.e., . Although it is possible to extend Table 1 with additional rules

for connections between connectors, we use an alternative approach. Every arc

connecting two connectors is replaced by an event and a function, i.e., fake events

and functions are added to the event-driven process chain before the translation to a

Petri net. Figure 5 illustrates the approach that is used to handle arcs in .

The arc between the XOR-join (join connector of type) and the AND-join

(join connector of type) is replaced by function X and event X and three arcs.

The arc between the AND-join and the XOR-split is also replaced by a function,

an event and three arcs.

XOR

V

XOR

event A event B event C

function D function E

function X

event X

function Y

event Y

XOR

V

XOR

event A event B event C

function D function E

event C

function X

event X

event Y

function Y

function D function E

event A event B

Figure 5: Arcs between connectors are replaced by events and functions before the

event-driven process chain is mapped onto a Petri net.

Figure 6 shows the Petri net which corresponds to the event-driven process chain

shown in Figure 1. Note that the arc between the two XOR connectors is replaced

by an event and a function, and mapped onto an additional place and transition in

the Petri net. In this case there was no real need to add these additional nodes.

However, there are situations where adding events and functions is the only way

to model the control flow properly.

It is easy to see that for any event-driven process chain

satisfying the requirements in Definition 4, is a

Petri net, i.e., and .

Moreover, the Petri net is free-choice (see Definition 12).

13

(add dummy events
and functions)

(context-dependent
translation)

From any EPC we derive a free-choice net

Example

103

Sound?

Example

104

Sound?

Steps
1+2(+3)

105

Example

Not sound!

Third attempt
(decorated EPC)

106

PETER RITTGEN MODIFIED EPCS AND THEIR

FORMAL SEMANTICS

Oktober 1999

Arbeitsberichte des Instituts für Wirtschaftsinformatik Nr. 19

PETER RITTGEN MODIFIED EPCS AND THEIR

FORMAL SEMANTICS

Oktober 1999

Arbeitsberichte des Instituts für Wirtschaftsinformatik Nr. 19

Decorated EPC

107

Applicable to any EPC diagram, provided that
its designer add some information

We require:

every (X)OR join is paired with a corresponding split
(possibly of the same type)

OR-joins are decorated with a policy
(avoid OR join ambiguous behaviour)

108

Step 1: AND split
EPC element net fragment

∧

109

Step 1: XOR split
EPC element net fragment

XOR

110

∨

xor
+

and

Step 1: OR split
EPC element net fragment

111

∧

Step 1: AND join
EPC element net fragment

XOR join: intended meaning

112

XOR

if both inputs arrive,
it should block the flow

if one input arrives,
it cannot proceed unless

it is informed that
the other input will never arrive

OR join: intended meaning

113

OR

if only one input arrives,
it should release the flow

if both inputs arrive,
it should release only one output

if one input arrives,
it must wait until the other arrives or

it is guaranteed that the other will never arrive

Candidate split

114

A candidate split for a join node is any split node
whose outputs are connected to the inputs of the join

XOR

OR

XOR

XOR

s1

s2

j1

j2

s1

s1 is a candidate split for j1

s1 and s2 are candidate splits for j2

Corresponding split

115

A corresponding split for a join node
is a chosen candidate split

we choose s1 as a
corresponding split for j1

we choose s2 as a
corresponding split for j2

XOR

OR

XOR

XOR

s1

s2

j1 (s1)

j2 (s2) (we tag each join
with its corresponding split)

Matching split

116

A corresponding split for a join node is called matching
if it has the same type as the join node

s1 is a matching split for j1

s2 is not a matching split for j2

XOR

OR

XOR

XOR

s1

s2

j1 (s1)

j2 (s2)

OR join: assumption

117

If an OR join has a matching split, its semantics is
wait-for-all: wait for the completion of all activated paths

Otherwise, also other policies can be chosen:

first-come: wait for the first input and ignore the second

every-time: trigger the outgoing path on each input
(the outgoing path can be activated multiple times)

Assumption: every OR join is tagged with a policy
(some suggested to have different trapezoid symbols)

XOR join: assumption

118

If a XOR join has a matching split, the semantics is:
“it blocks if both paths are activated and
it is triggered by a unique activated path”

Any policy (wait-for-all, first-come, every-time)
contradicts the exclusivity of XOR

(a token from one path can be accepted only if we make
sure that no second token will arrive via the other path)

Assumption: every XOR join has a matching split
(the implicit start split is allowed as a valid match)

Example

119

two OR joins
but no OR split

Example

120

only one
candidate split

Example

121

two candidate
splits

Example

122

assign corresponding splits

Example

123

assign policies

wfa

fc

Assumption

124

…

Any XOR join has a corresponding matching split

…

125

XOR

...

XOR

j

s

...

matching
split

Step 1: XOR join
EPC element net fragment

(s)

Assumption

126

…

An OR join with matching split uses wfa

If an OR join has non-matching corresponding split
it is decorated with a policy (wfa, fc, et)

wfa: wait-for-all
works well with any corresponding split

…

127

...
...

∨

∨

EPC element net fragment

Step 1: OR join (wfa)

j

s

matching
split

(s)

wfa

128

...
...

∨

∧

EPC element net fragment

Step 1: OR join (wfa)

j

s

(s)

corresponding
AND split

wfa

129

...
...

∨

XOR

EPC element net fragment

Step 1: OR join (wfa)

j

s

(s)

corresponding
XOR split

wfa

Assumption

130

…

If an OR join has non-matching corresponding split
it is decorated with a policy (wfa, fc, et)

fc: first-come
works well with corresponding XOR split

…

131

...

∧

first come:
at most one token

gets through
(pending tokens may remain)

EPC element net fragment

Step 1: OR join (fc)

corresponding
AND split

...

∨
j (s)

s

fc

132

......

∨

XOR

EPC element net fragment

Step 1: OR join (fc)

j

s

(s)

corresponding
XOR split

fc

Assumption

133

…

If an OR join has non-matching corresponding split
it is decorated with a policy (wfa, fc, et)

et: every-time
works well with corresponding XOR split

…

134

...
...

∨

∧

EPC element net fragment

j

s

(s)

corresponding
AND split

Step 1: OR join (et)

every time:
any token gets through
(multiple tokens may
appear in the target)et

135

...
...

∨

EPC element net fragment

j

s

(s)

corresponding
XOR split

Step 1: OR join (et)

XOR

et

Step 2: dummy style

136

straight conversion

137

Step 2: dummy style

needs a
dummy transition

138

Step 2: dummy style

needs a
dummy place

Example

139

wfa

fc Sound?

Example

140

wfa

fc

Step 1
events and
functions wfa

fc

Example

141

wfa

fc

Step 1
splits

wfa

fc

Example

142

wfa

fc

Step 1
splits and

joins wfa

fc

Example

143

Step 2(+3)
dummy stylewfa

fc

wfa

fc

Example

144

wfa

fc

wfa

fc

Steps
1+2(+3)

Sound?

Example

145

Not sound!

EPC pros and cons

146

You may leave complete freedom,
but most diagrams will not be sound

You may constrain diagrams,
but people like flexible syntax and ignore guidelines

You may require to add decorations,
but people will be lazy or misinterpret policies

Exercise

147

Is this EPC diagram sound?
Choose one of the three techniques seen
and apply it to answer the above question

