
Methods for the specification and
verification of business processes

MPB (6 cfu, 295AA)

Roberto Bruni
http://www.di.unipi.it/~bruni

22 - Business process
modelling notation

1

http://www.di.unipi.it/~bruni

Object

2

We overview BPMN and their analysis
based on Petri nets

Ch.4.7, 5.7 of Business Process Management: Concepts, Languages, Architectures
Ch.3, 4 of Fundamental of Business Process Management. M. Dumas et al.

38 Business Process Modeling Notation, v2.0

Figure 7.8 - An example of a stand-alone Process (Orchestration) diagram

Standardisation

3

The development of BMPN is an important step in

reducing the fragmentation that existed
with myriad of process modelling tools and notations

exploiting experiences with many divergent proposals to
consolidate the best ideas

supporting the adoption of inter-operable
business process management systems

Business Process
Management Initiative

4

August 2000

The Business Process Management Initiative

was an independent organization devoted to
the development of open specifications

for the management of e-Business processes

that span multiple applications, corporate departments, and
business partners, behind the firewall and over the Internet

5

The membership of the BPMI Notation Working Group
represents a large segment of the BP modelling community

Business Process Management Initiative
More information: http://www.bpmi.org/

Copyright © 2000-2001, BPMI.org

Business Process Management Initiative
More information: http://www.bpmi.org/

Copyright © 2000-2001, BPMI.org

BMI-DTF

6

June 2005

The Business Process Management Initiative (BPMI.org)
and the Object Management Group™ (OMG™)

decided to merge their activities on
Business Process Management (BPM)

to provide thought leadership and industry standards for this
vital and growing industry.

The combined group has named itself the
Business Modeling & Integration Domain Task Force

(BMI -DTF)

BPMN Versioning

7

BPMN 1.0 approved 2006
BPMN 1.1 approved 2007
BPMN 1.2 approved 2009

BPMN 2.0 Beta 1 proposed 2009
BPMN 2.0 Beta 2 proposed 2010
BPMN 2.0 Final delivered 2011

BPMN 1.0 (2004/06)

8

Main goal:

provide a notation that is readily understandable by all
business users

from the business analysts who create initial drafts
of the processes

to the technical developers responsible for implementing
the technology that will perform those processes

to the business people who will manage those processes

Business process diagram

9

BPMN defines a standard for
Business Process Diagrams (BPD)

based on flowcharting technique
tailored to graphical models of business process operations

Four basic categories of elements:
Swimlanes

Flow objects
Artefacts

Connecting objects

Disclaim

10

Formal rigor and conciseness are not primary concerns
(over 100 symbols,

shorthands and alternative constructs are often available)

The large number of object types
and their continuous evolution

makes it hard to define mappings
and to prove their consistency under all contexts

Inconsistencies and ambiguities in BPMN standard
are present but hard to detect

11

Gateways Data

Attaching a data object with an Undirected
Association to a sequence flow indicates hand‐over

of information between the activities involved.

A Directed Association indicates information flow.

A data object can be read at the start of an

activity or written upon completion.

A Bidirected Association indicates that the data

object is modified, i.e. read and written during the

execution of an actvity.

A Data Object represents information flowing

through the process, such as business documents,

e‐mails or letters.

Events Transactions

Swimlanes

activity

Start Event: Catching an event

starts a new process instance.

Intermediate Event (catching):
The process can only continue

once an event has been caught.

Attached Intermediate Event: The

activity is aborted once an event is

caught.

Intermediate Event (throwing):
An event is thrown and the process

continues.

End Event: An event is thrown

when the end of the process is

reached.

Start EndIntermediate

Plain

Message

Timer

Error

Cancel

Compen‐

sation

Conditional

Link

Signal

Multiple

Terminate

Catching Throwing

Untyped events, typically

showing where the process

starts or ends.

Receiving and sending

messages.

Cyclic timer events, points in

time, time spans or timeouts.

Catching or throwing named

errors.

Reacting to cancelled

transactions or triggering

cancellation.

Compensation handling or

triggering compensation.

Reacting to changed business

conditions or integrating

business rules.

Signalling across different

processes. One signal thrown

can be caught multiple times.

Catching or throwing one out of

a set of events.

Off‐page connectors. Two

corresponding link events equal

a sequence flow.

Triggering the immediate

termination of a process.

Data‐based Exclusive Gateway
When splitting, it routes the sequence flow to exactly one of the outgoing

branches based on conditions. When merging, it awaits one incoming branch

to complete before triggering the outgoing flow.

Inclusive Gateway
When splitting, one or more branches are activated based on branching

conditions. When merging, it awaits all active incoming branches to

complete.

Complex Gateway
It triggers one or more branches based on complex conditions or verbal

descriptions. Use it sparingly as the semantics might not be clear.

Parallel Gateway
When used to split the sequence flow, all outgoing branches are activated

simultaneously. When merging parallel branches it waits for all incoming

branches to complete before triggering the outgoing flow.

Activities

BPMN ‐ Business Process Modeling Notation

Transaction

Activity

Compensate

Activity

Transaction

A Transaction is a set of activities that logically

belong together; it might follow a specified

transaction protocol.

Attached Intermediate Cancel Events indicate

reactions to the cancellation of a transaction.

Activities inside the transaction are compensated

upon cancellation.

Completed activities can be compensated. An

activity and the corresponding Compensate Activity

are related using an attached Intermediate
Compensation Event.

Web: bpt.hpi.uni‐potsdam.de

Oryx: oryx‐project.org

Blog: bpmn.info

BPMN Version 1.2

Business Process Technology

Prof. Dr. Mathias Weske

Authors

Gero Decker

Alexander Grosskopf

Sven Wagner‐Boysen

read

doc

write

doc

modify

doc

modify

doc
[state2]

doc
[state1]

Pool

Pool

Message Flow symbolizes

information flow across

organizational boundaries.

Message flow can be attached to

pools, activities, or message events.

The order of message exchanges

can be specified by combining

message flow and sequence flow.

P
o
o
l

P
o
o
l

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Pools and Lanes represent

responsibilities for activities in a

process. A pool or a lane can be an

organization, a role, or a system.

Lanes sub‐divide pools or other

lanes hierarchically.

Pool
Collapsed Pools hide all internals

of the contained processes.

Task

Task

~

Collapsed

Subprocess

Intermediate

Message Event

Task

Task

Task

Task

Loop

Activity

Multiple

Instances

Collapsed Pool

L
a
n
e

L
a
n
e

E
x
p
a
n
d
e
d
 P

o
o
l

L
a
n
e

L
a
n
e

Data

Object

[state1]

Data

Object

[state2]

Conditional

Start Event

Parallel

Gateway

Parallel

Gateway

Grouping

End Event

Terminate

End Event

Data‐based

Exclusive

Gateway

Embedded

Subprocess

Ad‐hoc Subprocess

Text Annotation

Data

Object

Intermediate

Timer Event

Sequence

Flow

Intermediate

Error Event

Exception

Flow

Event‐based

Exclusive

Gateway Intermediate

Message Event

Intermediate

Timer Event

Catching Throwing

Event‐based Exclusive Gateway
Is always followed by catching events or receive tasks. Sequence flow is

routed to the subsequent event/task which happens first.

Condition

Default

Flow

Multiple

Instances

Loop

Multiple Instances of the

same activity are started in

parallel or sequentially, e.g.

for each line item in an

order.

Loop Activity is iterated if a

loop condition is true. The

condition is either tested

before or after the activity

execution.

Ad‐hoc Subprocesses
contain tasks only. Each task

can be executed arbitrarily

often until a completion

condition is fulfilled.

Collapsed

Subprocess

Task
A Task is a unit of

work, the job to be

performed.

A Subprocess is a

decomposable activity.

It can be collapsed to

hide the details.

An Expanded Subprocess contains a

valid BPMN diagram.

Expanded SubprocessAd‐hoc Subprocess

~

Sequence Flow defines the

execution order of activities.

Conditional Flow has a

condition assigned that

defines whether or not the

flow is used.

Default Flow is the default

branch to be chosen if all

other conditions evaluate to

false.

End Error Event

Message Flow

Documentation

Group

Text Annotation

An arbitrary set of objects can be

defined as a Group to show that

they logically belong together.

Any object can be associated with a

Text Annotation to provide

additional documentation.

BPMN 1.0 poster

BPMN 2.0 vs 1.0

12

Updated (new markers):
Tasks/SubProcesses

 Events
Gateways
Artefacts

Added:
Choreographies
Full metamodel

XML Serialization
Diagram Interchange

BPMN Execution Semantics (verbal)

13

Activities
Conversations

Events

Gateways

Conversation Diagram

None: Untyped events,

indicate start point, state

changes or final states.

Message: Receiving and

sending messages.

Timer: Cyclic timer events,

points in time, time spans or

timeouts.

Error: Catching or throwing

named errors.

Cancel: Reacting to cancelled

transactions or triggering

cancellation.

Compensation: Handling or

triggering compensation.

Conditional: Reacting to

changed business conditions

or integrating business rules.

Signal: Signalling across differ‐

ent processes. A signal thrown

can be caught multiple times.

Multiple: Catching one out of

a set of events. Throwing all

events defined

Link: Off‐page connectors.

Two corresponding link events

equal a sequence flow.

Terminate: Triggering the

immediate termination of a

process.

Escalation: Escalating to

an higher level of

responsibility.

Parallel Multiple: Catching

all out of a set of parallel

events.

Start EndIntermediate

C
a
tc

h
in

g

T
h
ro

w
in

g

E
v
e
n
t

S
u
b
‐P

ro
c
e
ss

In
te

rr
u
p
ti

n
g

T
o
p
‐L

e
v
e
l

E
v
e
n
t

S
u
b
‐P

ro
c
e
ss

N
o
n
‐I

n
te

rr
u
p
ti

n
g

B
o
u
n
d
a
ry

In

te
rr

u
p
ti

n
g

B
o
u
n
d
a
ry

 N
o
n
‐

In
te

rr
u
p
ti

n
g

Sequence Flow

defines the execution

order of activities.

Conditional Flow

has a condition

assigned that defines

whether or not the

flow is used.

Default Flow

is the default branch

to be chosen if all

other conditions

evaluate to false.

Task

A Task is a unit of work, the job to be

performed. When marked with a symbol

it indicates a Sub‐Process, an activity that can

be refined.

Transaction

A Transaction is a set of activities that logically

belong together; it might follow a specified

transaction protocol.

Event

Sub‐Process

An Event Sub‐Process is placed into a Process or

Sub‐Process. It is activated when its start event

gets triggered and can interrupt the higher level

process context or run in parallel (non‐

interrupting) depending on the start event.

Call Activity
A Call Activity is a wrapper for a globally defined

Sub‐Process or Task that is reused in the current

process.

Task Types
Types specify the nature of

the action to be performed:

Send Task

Receive Task

User Task

Manual Task

Business Rule Task

Service Task

Script Task

Markers indicate execution

behavior of activities:

Activity Markers

Sub‐Process Marker

Loop Marker

Parallel MI Marker

Sequential MI Marker

~ Ad Hoc Marker

Compensation Marker

A Communication defines a set of

logically related message exchanges.

When marked with a symbol it

indicates a Sub‐Conversation, a

compound conversation element.

A Forked Conversation Link connects

Communications and multiple

Participants.

A Conversation Link connects

Communications and Participants.

Inclusive Gateway
When splitting, one or more

branches are activated. All

active incoming branches must

complete before merging.

Complex Gateway
Complex merging and

branching behavior that is not

captured by other gateways.

Exclusive Event‐based Gateway
(instantiate)
Each occurrence of a subsequent

event starts a new process

instance.

Parallel Event‐based Gateway
(instantiate)
The occurrence of all subsequent

events starts a new process

instance.

Pool

(collapsed)

Multi Instance Pool

(collapsed)

Communication

Sub‐Conversation

Pool

(collapsed)
Participant B

The order of message
exchanges can be

specified by combining

message flow and

sequence flow.

P
o
o
l

P
o
o
l

Pools (Participants) and Lanes
represent responsibilities for

activities in a process. A pool

or a lane can be an

organization, a role, or a

system. Lanes subdivide pools

or other lanes hierarchically.

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Message Flow

symbolizes information

flow across organizational

boundaries. Message flow

can be attached to pools,

activities, or message

events.

Data

TaskInput Out-

put

Data Store

A Data Object represents information flowing

through the process, such as business

documents, e‐mails, or letters.

A Data Store is a place where the process can

read or write data, e.g., a database or a filing

cabinet. It persists beyond the lifetime of the

process instance.

A Data Input is an external input for the

entire process. It can be read by an activity.

A Data Output is a variable available as result

of the entire process.

A Message is used to depict the contents of a

communication between two Participants.

A Collection Data Object represents a

collection of information, e.g., a list of order

items.

Pool (Collapsed)

Collaboration Diagram

P
o
o
l
(E

x
p
a
n
d
e
d
)

L
a
n
e

L
a
n
e

Choreographies

Choreography Diagram

A Choreography Task
represents an Interaction

(Message Exchange)

between two Participants.

Choreography

Task

Participant A

Participant B

A Choreography Sub‐
Process contains a refined

choreography with several

Interactions.

Multiple Participants Marker
denotes a set of

Participants of the

same kind.

Swimlanes

BPMN 2.0 ‐ Business Process Model and Notation

Collection

Ad‐hoc Sub‐Process

Task

Task

~

Message

Start Event

Message Flow

Data Object

Collapsed

Sub‐Process

Event‐based

Gateway

Escalation

End Event

Timer

Intermediate

Event

Receive Task

Attached

Intermediate

Timer Event

Link

Intermediate

Event

Manual Task

End

Event

Data

Store

Link

Intermediate

Event

Parallel

Multiple

Intermediate

Event

Text Annotation

Group

Multi Instance

Task (Parallel)

Message

End Event

Send Task

Parallel

Gateway

Exclusive

Gateway

Attached

Intermediate

Error Event

Signal

End

Event

Call Activity

Sub‐Process

Event Sub‐Process

Conditional

Start Event

Error End

Event

Start

Event

End

Event

Looped

Sub‐Process

condition

http://bpmb.de/poster

Participant A

Participant C
Participant B

Choreography

Task

Participant A

Participant B

Choreography

Task

Participant A

Participant C

Initiating

Message

Response

Message

Choreography

Task

Participant B

Participant A

When splitting, it routes the sequence flow to exactly

one of the outgoing branches. When merging, it awaits

one incoming branch to complete before triggering the

outgoing flow.

Exclusive Gateway

Is always followed by catching events or receive tasks.

Sequence flow is routed to the subsequent event/task

which happens first.

Event‐based Gateway

When used to split the sequence flow, all outgoing

branches are activated simultaneously. When merging

parallel branches it waits for all incoming branches to

complete before triggering the outgoing flow.

Parallel Gateway

Choreography

Sub‐Process

Participant A

Participant C

Participant B

BPMN 2.0 poster

14

Attività
Conversazioni

Eventi

Gateways

Diagramma di conversazione

Non definiti: punti di inizio,
cambi di stato, o stati finali.

Messaggio: invio e ricezione
di messaggi

Timer: eventi a tempo.

Errore: attiva o si occupa di
un errore.

Cancel: reagisce a delle
transazioni cancellate o causa
una cancellazione.

Compensazione: gestisce o
innesca la compensazione.

Condizionale: reagisce a
condizioni di business cambiate
o integra regole di business.

Signal: comunica con più
processi. Lo stesso segnale può
essere intercettato più volte.

Multiplo: intercetta uno tra
vari eventi. Gestisce tutti gli
eventi definiti.

Link:
Due corrispondenti link events
sono uguali ad un flusso
sequenziale.

Terminate: causa la fine
immediata di un processo.

Escalation: passa ad un livello
più alto di responsabilità.

Parallelo Multiplo: intercetta
tutti gli eventi.

Inizio FineIntermedio

C
a
tc

h
in

g

T
h
ro

w
in

g

In
te

rr
u
z
io

n
e
 d

i

so
tt

o
p
ro

c
e
ss

i

A
lt

o
 l
iv

e
ll
o

N
o
n
‐i

n
te

rr
u
z
io

n
e

d
i
so

tt
o
p
ro

c
e
ss

i

B
o
u
n
d
a
ry

In
te

rr
u
p
ti

n
g

B
o
u
n
d
a
ry

 N
o
n
‐

In
te

rr
u
p
ti

n
g

Flusso sequenziale

definisce l’ordine di
esecuzione delle
attività.

Flusso condizionale

ha una condizione
assegnata che definisce
se usare o meno il
flusso.

Flusso predefinito

è il ramo predefinito
da scegliere se tutte
le altre condizioni
vengono valutate
come false.

Task

Transazione

Sottoprocesso
basato su

eventi

Call Activity

Task di invio

Task di ricezione

Utente

Task manuale

Regole di business

Service

Script

Sottoprocesso

Loop

Esecuzione in parallelo

Esecuzione
sequenziale

~ Ad hoc

Compensazione

Una comunicazione definisce un
insieme di scambi di messaggi collegati
logicamente. Se annotati con un
simbolo indicano una
comunicazione interna ad un’altra
conversazione.

Un forked conversation link connette
le comunicazioni e molteplici
partecipanti.

Un conversation link connette le
comunicazioni ed i partecipanti.

Inclusivo

In caso di splitting, uno o più
rami sono attivati. Il flusso va
avanti solamente quando
l’esecuzione di tutti i rami è
terminata.

Complesso

Gestioni di merging e
branching che non sono
gestite da altri gateways.

Esclusivo basato su eventi

All’attivazione di ogni evento
successivo, viene avviata una
nuova istanza di processo.

Parallelo basato su eventi

All’attivazione di tutti gli eventi
successivi, viene avviata una
nuova istanza di processo.

Pool
(compresso)

Multi Instance Pool
(compresso)

Comunicazione

Sub‐Conversation

Pool
(compresso)

Participant B

L’ ordine degli scambi

di messaggi può
essere specificato
associando il flusso di
messaggi e il flusso
sequenziale.

P
o
o
l

P
o
o
l

Pools (Partecipanti) e
Lanes(corsie)

rappresentano le responsabilità
per le attività in un processo.
Esse possono essere
un’organizzazione, un ruolo o un
sistema. Le corsie suddividono
le pools o altre corsie

gerarchicamente.

C
o
rs

ia

Task

C
o
rs

ia

Task

P
o
o
l

Flusso di messaggi

rappresenta il flusso di
informazioni. Un flusso di
messagi può essere unito
a pools, attività, o eventi
di messaggi.

Data
TaskInput Out-

put

Data Store

Un Data Object rappresenta le informazioni che
attraversano l’intero processo, come ad
esempio documenti di business, e‐mails, o
lettere.

Un Data Store è un luogo dove il processo può
leggere oppure scrivere dati, ad esempio un
database. Esso si mantiene oltre la durata
dell’istanza del processo.

Un Data Input è un input esterno usato
all’interno del processo. Può essere letto da
un’attività.

Un Data Output è una variabile disponibile
come risultato di un intero processo.

Un messaggio è usato per rappresentare i
contenuti di una comunicazione tra due
partecipanti.

Un Collection Data Object rappresenta una
collezione di informazioni, come ad esempio
una lista di elementi ordinati.

Pool (compresso)

Collaboration Diagram

P
o
o
l
(e

sp
a
n
so

)

C
o
rs

ia
C
o
rs

ia

 Coreografie

Diagramma di coreografia

Un Task di coreografia

rappresenta
un’interazione(scambio di
messaggi) tra due
partecipanti.

Task di
coreografia

Partecipante A

Partecipante B

Un Processo di

coreografia contiene una
coreografia rifinita con
molte interazioni.

Il simbolo Multiple
Participants denota un
insieme di partecipanti della
stessa tipologia.

Swimlanes

BPMN 2.0 ‐ Business Process Model and Notation

Collection

Sottoprocesso ad hoc

Task

Task

~

Evento iniziale
di messaggio

Messaggio di flusso

Data Object

Sottoprocesso
compresso

Gateway

Escalation
Evento finale

Evento a
tempo

intermedio

Task di
ricezione

Allegato
Evento a tempo

intermedio

Link
Evento

Intermedio

Task manuale

Evento
finale

Data

Store

Evento
intermedio

Link

Evento
intermedio
Parallelo
Multiplo

Annotazioni di testo

Gruppo

Multi Instance
Task (Parallel)

Evento finale
di messaggio

Task di invio

Gateway
parallelo

Gateway
esclusivo

Evento
intermedio di

errore
allegato

Evento
Finale
di
segnala
zione

Call Activity

Sottoprocesso

Sottoprocesso basato su eventi

Evento iniziale
Condizionale

Evento finale
di errore

Evento
iniziale

Evento
finale

Looped
Sub‐Process

condizione

http://bpmb.de/poster

Partecipante A

Partecipante C

Partecipante B

Task di
coreografia

Partecipante A

Partecipante B

Task di
coreografia

Partecipante A

Partecipante C

Messagio iniziale

Messaggio di
risposta

Task di
coreografia

Partecipante B

Partecipante A

Tradotto da:

In caso di splitting, il flusso sequenziale viene diretto
esattamente verso uno dei rami in uscita. In caso di
merging, il flusso aspetta che un ramo in entrata
arrivi a termine prima di andare avanti.

Esclusivo(xor)

Questo simbolo è sempre seguito da intercettazioni di
eventi o tasks di ricezione. Il flusso sequenziale
prosegue verso il sucessivo task/evento che accade
per primo.

Basato su eventi

Quando viene usato per dividere il flusso sequenziale,
tutti i rami in uscita sono attivati simultaneamente.
Invece quando viene usato per unire rami paralleli, il
flusso aspetta il completamento di tutti i rami in
entrata prima di andare avanti.

Parallelo

Sottoprocesso di
coreografia

Partecipante A

Partecipante C

Partecipante B

Un task è un unità di lavoro, cioè il lavoro da
svolgere. Quando si annota con il simbolo
indica un sottoprocesso, cioè un’attività che
può essere perfezionata.

Una transazione è un insieme di attività che si
legano logicamente; essa potrebbe seguire uno
specifico protocollo.

Un sottoprocesso basato su eventi si trova
all'interno di un processo o sottoprocesso. Si
avvia quando il suo evento di inizio viene
attivato e può interrompere il processo di
livello superiore oppure eseguire in parallelo
(senza interruzioni) in base all'evento di
inizio.

Una call activity è un contenitore di un
sottoprocesso definito globalmente o un task
che può essere riusato nel processo attuale.

Simboli per attività

I seguenti simboli indicano il
comportamento di esecuzione delle
attività:

Tipologie di tasks

Le tipologie specificano la
natura dell’azione da eseguire

BPMN 2.0 poster (in Italian)

BPMN 2.0 (2009/11)
FAQ

15

What is BPMN?

BPMN is a graphical notation that depicts the steps
(end to end flow) in a business process.

The notation has been specifically designed
to coordinate the sequence of processes and
to coordinate the messages that flow
to coordinate between different participants
to coordinate in a related set of activities.

BPMN 2.0 (2009/11)
FAQ

16

Why is BPMN important?

The world of business processes has changed dramatically over the past few years.
Processes can be coordinated from behind, within and over organizations boundaries.
A business process now spans multiple participants and coordination can be complex.

Until BPMN, there has not been a standard modelling
technique developed that addresses these issues.
BPMN provides users with a royalty free notation.

This will benefit users in a similar manner in which UML standardised the world of
software engineering.
There will be training courses, books and a body of knowledge that users can access in
order to better implement a business process.

BPMN 2.0 (2009/11)
FAQ

17

Who is BPMN targeted at?

BPMN is targeted at a high level for business users and
at a lower level for process implementers.

The former should be able to easily read and understand a BPMN diagram.
The latter should be able to adorn a BPMN diagram with further details in order to
represent the process in a physical implementation.

BPMN is targeted at users, vendors and service providers that need to communicate
business processes in a standard manner.

BPMN 2.0 (2009/11)
FAQ

18

Will there be a major rewrite?

Not for 2 or 3 years…

(2016 and still no revision is planned)

Strong points of BPMN

19

Simplicity: A small set of basic symbols

Extensibility: many decorations available
(new ones can be added in the future)

Graphical design: intuitive

Generality: orchestration + choreography

Tool availability: exchange format

Weaknesses of BPMN

20

500 pages long (verbose) description

over 100 graphical elements

difficult to learn comprehensively:
conflicting reading of the same diagram are possible

different BPMN vendors implement the execution of
BPMN diagrams in different ways (and for different subsets)

BPMN basics:
Swimlanes

(pools, lanes)

21

Swimlanes

22

Many process modelling methodologies utilise
the concept of a swimlane as a mechanism

to organise activities into separate visual categories
in order to illustrate different capabilities or responsibilities

BPMN supports two main swimlane objects:
Pool
Lane

Pools and Lanes

23

A pool represents a participant (or role) in a process
A pool is represented as a rectangle with a name

A lane is a hierarchical sub-partition within a pool
that is used to organise and categorise activities

A lane is an inner rectangle to the pool
that extends to the entire length of the pool

Activities
Conversations

Events

Gateways

Conversation Diagram

None: Untyped events,

indicate start point, state

changes or final states.

Message: Receiving and

sending messages.

Timer: Cyclic timer events,

points in time, time spans or

timeouts.

Error: Catching or throwing

named errors.

Cancel: Reacting to cancelled

transactions or triggering

cancellation.

Compensation: Handling or

triggering compensation.

Conditional: Reacting to

changed business conditions

or integrating business rules.

Signal: Signalling across differ‐

ent processes. A signal thrown

can be caught multiple times.

Multiple: Catching one out of

a set of events. Throwing all

events defined

Link: Off‐page connectors.

Two corresponding link events

equal a sequence flow.

Terminate: Triggering the

immediate termination of a

process.

Escalation: Escalating to

an higher level of

responsibility.

Parallel Multiple: Catching

all out of a set of parallel

events.

Start EndIntermediate

C
a
tc

h
in

g

T
h
ro

w
in

g

E
v
e
n
t

S
u
b
‐P

ro
c
e
ss

In
te

rr
u
p
ti

n
g

T
o
p
‐L

e
v
e
l

E
v
e
n
t

S
u
b
‐P

ro
c
e
ss

N
o
n
‐I

n
te

rr
u
p
ti

n
g

B
o
u
n
d
a
ry

In

te
rr

u
p
ti

n
g

B
o
u
n
d
a
ry

 N
o
n
‐

In
te

rr
u
p
ti

n
g

Sequence Flow

defines the execution

order of activities.

Conditional Flow

has a condition

assigned that defines

whether or not the

flow is used.

Default Flow

is the default branch

to be chosen if all

other conditions

evaluate to false.

Task

A Task is a unit of work, the job to be

performed. When marked with a symbol

it indicates a Sub‐Process, an activity that can

be refined.

Transaction

A Transaction is a set of activities that logically

belong together; it might follow a specified

transaction protocol.

Event

Sub‐Process

An Event Sub‐Process is placed into a Process or

Sub‐Process. It is activated when its start event

gets triggered and can interrupt the higher level

process context or run in parallel (non‐

interrupting) depending on the start event.

Call Activity
A Call Activity is a wrapper for a globally defined

Sub‐Process or Task that is reused in the current

process.

Task Types
Types specify the nature of

the action to be performed:

Send Task

Receive Task

User Task

Manual Task

Business Rule Task

Service Task

Script Task

Markers indicate execution

behavior of activities:

Activity Markers

Sub‐Process Marker

Loop Marker

Parallel MI Marker

Sequential MI Marker

~ Ad Hoc Marker

Compensation Marker

A Communication defines a set of

logically related message exchanges.

When marked with a symbol it

indicates a Sub‐Conversation, a

compound conversation element.

A Forked Conversation Link connects

Communications and multiple

Participants.

A Conversation Link connects

Communications and Participants.

Inclusive Gateway
When splitting, one or more

branches are activated. All

active incoming branches must

complete before merging.

Complex Gateway
Complex merging and

branching behavior that is not

captured by other gateways.

Exclusive Event‐based Gateway
(instantiate)
Each occurrence of a subsequent

event starts a new process

instance.

Parallel Event‐based Gateway
(instantiate)
The occurrence of all subsequent

events starts a new process

instance.

Pool

(collapsed)

Multi Instance Pool

(collapsed)

Communication

Sub‐Conversation

Pool

(collapsed)
Participant B

The order of message
exchanges can be

specified by combining

message flow and

sequence flow.

P
o
o
l

P
o
o
l

Pools (Participants) and Lanes
represent responsibilities for

activities in a process. A pool

or a lane can be an

organization, a role, or a

system. Lanes subdivide pools

or other lanes hierarchically.

L
a
n
e

Task
L
a
n
e

Task

P
o
o
l

Message Flow

symbolizes information

flow across organizational

boundaries. Message flow

can be attached to pools,

activities, or message

events.

Data

TaskInput Out-

put

Data Store

A Data Object represents information flowing

through the process, such as business

documents, e‐mails, or letters.

A Data Store is a place where the process can

read or write data, e.g., a database or a filing

cabinet. It persists beyond the lifetime of the

process instance.

A Data Input is an external input for the

entire process. It can be read by an activity.

A Data Output is a variable available as result

of the entire process.

A Message is used to depict the contents of a

communication between two Participants.

A Collection Data Object represents a

collection of information, e.g., a list of order

items.

Pool (Collapsed)

Collaboration Diagram

P
o
o
l
(E

x
p
a
n
d
e
d
)

L
a
n
e

L
a
n
e

Choreographies

Choreography Diagram

A Choreography Task
represents an Interaction

(Message Exchange)

between two Participants.

Choreography

Task

Participant A

Participant B

A Choreography Sub‐
Process contains a refined

choreography with several

Interactions.

Multiple Participants Marker
denotes a set of

Participants of the

same kind.

Swimlanes

BPMN 2.0 ‐ Business Process Model and Notation

Collection

Ad‐hoc Sub‐Process

Task

Task

~

Message

Start Event

Message Flow

Data Object

Collapsed

Sub‐Process

Event‐based

Gateway

Escalation

End Event

Timer

Intermediate

Event

Receive Task

Attached

Intermediate

Timer Event

Link

Intermediate

Event

Manual Task

End

Event

Data

Store

Link

Intermediate

Event

Parallel

Multiple

Intermediate

Event

Text Annotation

Group

Multi Instance

Task (Parallel)

Message

End Event

Send Task

Parallel

Gateway

Exclusive

Gateway

Attached

Intermediate

Error Event

Signal

End

Event

Call Activity

Sub‐Process

Event Sub‐Process

Conditional

Start Event

Error End

Event

Start

Event

End

Event

Looped

Sub‐Process

condition

http://bpmb.de/poster

Participant A

Participant C
Participant B

Choreography

Task

Participant A

Participant B

Choreography

Task

Participant A

Participant C

Initiating

Message

Response

Message

Choreography

Task

Participant B

Participant A

When splitting, it routes the sequence flow to exactly

one of the outgoing branches. When merging, it awaits

one incoming branch to complete before triggering the

outgoing flow.

Exclusive Gateway

Is always followed by catching events or receive tasks.

Sequence flow is routed to the subsequent event/task

which happens first.

Event‐based Gateway

When used to split the sequence flow, all outgoing

branches are activated simultaneously. When merging

parallel branches it waits for all incoming branches to

complete before triggering the outgoing flow.

Parallel Gateway

Choreography

Sub‐Process

Participant A

Participant C

Participant B

24

Gateways Data

Attaching a data object with an Undirected
Association to a sequence flow indicates hand‐over

of information between the activities involved.

A Directed Association indicates information flow.

A data object can be read at the start of an

activity or written upon completion.

A Bidirected Association indicates that the data

object is modified, i.e. read and written during the

execution of an actvity.

A Data Object represents information flowing

through the process, such as business documents,

e‐mails or letters.

Events Transactions

Swimlanes

activity

Start Event: Catching an event

starts a new process instance.

Intermediate Event (catching):
The process can only continue

once an event has been caught.

Attached Intermediate Event: The

activity is aborted once an event is

caught.

Intermediate Event (throwing):
An event is thrown and the process

continues.

End Event: An event is thrown

when the end of the process is

reached.

Start EndIntermediate

Plain

Message

Timer

Error

Cancel

Compen‐

sation

Conditional

Link

Signal

Multiple

Terminate

Catching Throwing

Untyped events, typically

showing where the process

starts or ends.

Receiving and sending

messages.

Cyclic timer events, points in

time, time spans or timeouts.

Catching or throwing named

errors.

Reacting to cancelled

transactions or triggering

cancellation.

Compensation handling or

triggering compensation.

Reacting to changed business

conditions or integrating

business rules.

Signalling across different

processes. One signal thrown

can be caught multiple times.

Catching or throwing one out of

a set of events.

Off‐page connectors. Two

corresponding link events equal

a sequence flow.

Triggering the immediate

termination of a process.

Data‐based Exclusive Gateway
When splitting, it routes the sequence flow to exactly one of the outgoing

branches based on conditions. When merging, it awaits one incoming branch

to complete before triggering the outgoing flow.

Inclusive Gateway
When splitting, one or more branches are activated based on branching

conditions. When merging, it awaits all active incoming branches to

complete.

Complex Gateway
It triggers one or more branches based on complex conditions or verbal

descriptions. Use it sparingly as the semantics might not be clear.

Parallel Gateway
When used to split the sequence flow, all outgoing branches are activated

simultaneously. When merging parallel branches it waits for all incoming

branches to complete before triggering the outgoing flow.

Activities

BPMN ‐ Business Process Modeling Notation

Transaction

Activity

Compensate

Activity

Transaction

A Transaction is a set of activities that logically

belong together; it might follow a specified

transaction protocol.

Attached Intermediate Cancel Events indicate

reactions to the cancellation of a transaction.

Activities inside the transaction are compensated

upon cancellation.

Completed activities can be compensated. An

activity and the corresponding Compensate Activity

are related using an attached Intermediate
Compensation Event.

Web: bpt.hpi.uni‐potsdam.de

Oryx: oryx‐project.org

Blog: bpmn.info

BPMN Version 1.2

Business Process Technology

Prof. Dr. Mathias Weske

Authors

Gero Decker

Alexander Grosskopf

Sven Wagner‐Boysen

read

doc

write

doc

modify

doc

modify

doc
[state2]

doc
[state1]

Pool

Pool

Message Flow symbolizes

information flow across

organizational boundaries.

Message flow can be attached to

pools, activities, or message events.

The order of message exchanges

can be specified by combining

message flow and sequence flow.

P
o
o
l

P
o
o
l

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Pools and Lanes represent

responsibilities for activities in a

process. A pool or a lane can be an

organization, a role, or a system.

Lanes sub‐divide pools or other

lanes hierarchically.

Pool
Collapsed Pools hide all internals

of the contained processes.

Task

Task

~

Collapsed

Subprocess

Intermediate

Message Event

Task

Task

Task

Task

Loop

Activity

Multiple

Instances

Collapsed Pool

L
a
n
e

L
a
n
e

E
x
p
a
n
d
e
d
 P

o
o
l

L
a
n
e

L
a
n
e

Data

Object

[state1]

Data

Object

[state2]

Conditional

Start Event

Parallel

Gateway

Parallel

Gateway

Grouping

End Event

Terminate

End Event

Data‐based

Exclusive

Gateway

Embedded

Subprocess

Ad‐hoc Subprocess

Text Annotation

Data

Object

Intermediate

Timer Event

Sequence

Flow

Intermediate

Error Event

Exception

Flow

Event‐based

Exclusive

Gateway Intermediate

Message Event

Intermediate

Timer Event

Catching Throwing

Event‐based Exclusive Gateway
Is always followed by catching events or receive tasks. Sequence flow is

routed to the subsequent event/task which happens first.

Condition

Default

Flow

Multiple

Instances

Loop

Multiple Instances of the

same activity are started in

parallel or sequentially, e.g.

for each line item in an

order.

Loop Activity is iterated if a

loop condition is true. The

condition is either tested

before or after the activity

execution.

Ad‐hoc Subprocesses
contain tasks only. Each task

can be executed arbitrarily

often until a completion

condition is fulfilled.

Collapsed

Subprocess

Task
A Task is a unit of

work, the job to be

performed.

A Subprocess is a

decomposable activity.

It can be collapsed to

hide the details.

An Expanded Subprocess contains a

valid BPMN diagram.

Expanded SubprocessAd‐hoc Subprocess

~

Sequence Flow defines the

execution order of activities.

Conditional Flow has a

condition assigned that

defines whether or not the

flow is used.

Default Flow is the default

branch to be chosen if all

other conditions evaluate to

false.

End Error Event

Message Flow

Documentation

Group

Text Annotation

An arbitrary set of objects can be

defined as a Group to show that

they logically belong together.

Any object can be associated with a

Text Annotation to provide

additional documentation.

Events Activities

Artefacts

Graphical connecting objects

Sequence flow mechanism Compensation Association

S
ta

rt

In
te

rm
e

d
ia

te

E
n

d

Message

Timer

Error

Multiple

Link

Rule

Compensation

Cancel

Terminate

General

Event type

A message arrives from a participant and triggers the Event. This causes

process to {start, continue, end} if it was waiting for a message, or changes

the flow if exception happens. End type of message event indicates that a

message is sent to a participant at the conclusion of the process.

Event flow
Description

An event is something that »happens« during the process. These events affect the

flow of the process and usually have a cause (trigger) or an impact (result).

Examples: 'Email received', '3 o'clock', 'Warehouse empty', 'Critical error',...

An activity is a generic type of work that a company performs. An

activity can be atomic (task) or compound (process, sub-process).

Examples: 'Send a letter', 'Write a report', 'Calculate the interests',...

~

Description

Process

Collapsed

sub-process

Expanded

sub-process

Task

Transaction

A task is used to represent the

activity on the lowest abstraction

level.

More information about the

transaction and compensation

attribute can be found under

»Compensation Association«.

Looping

Ad Hoc

Compensation

Task/Subprocess special attributes

The task or sub-process is repeated.

The tasks in the sub-process can not be connected with

sequence flows at design time.

Multiple instances of task or sub-process will be created.

The symbol represents a compensation task or sub-process.

Multiple instances

Gateways
A gateway is used to split or merge multiple process

flows. Thus it will determine branching, forking,

merging and joining of paths. Examples: 'Condition true?

– yes/no', 'Choose colour? – red/green/blue',...

Gateway control types

Data based exclusive decision or

merging. Both symbols have equal

meaning. See also Conditional flow.

Event based exclusive decision only.

Data based inclusive decision or

merging.

Complex condition (a combination of

basic conditions)

Parallel forking and joining

(synchronization).

XOR
(DATA)

XOR
(EVENT)

OR

COM-

PLEX

AND

Swimlanes

P
o

o
l L
a

n
e

Pools and lanes are used to represent organizations,

roles, systems and responsibilities. Examples:

'University', 'Sales division', 'Warehouse', 'ERP system',...

A Lane is a sub-partition within a pool used to organize and

categorize activities.

A Pool represents a participant in a process. It contains a business

process and is used in B2B situations.

A Pool MUST contain 0 or 1

business process.

A Pool can contain 0 or more

lanes.

Two pools can only be connected

with message flows.

Artefacts are used to provide additional information about the process. If

required, modellers and modelling tools are free to add new artefacts.

Examples of data objects: 'A letter', 'Email message', 'XML document',

'Confirmation',...

Set of standardized artefacts

Data object

Group

Annotation

Data objects provide information about what activities are required to be

triggered and/or what they produce. They are considered as Artefacts

because they do not have any direct effect on the Sequence Flow or

Message Flow of the Process. The state of the data object should also be

set.

Grouping can be used for documentation or analysis purposes. Groups

can also be used to identify the activities of a distributed transaction that is

shown across Pools. Grouping of activities does not affect the Sequence

or Message Flow.

Text Annotations are a mechanism for a modeller to provide additional

information for the reader of a BPMN Diagram.

Normal

sequence flow

Conditional

sequence flow

Default

sequence flow

Message flow

Association

There are three ways of connecting Flow objects (Events, Activities,
Gateways) with each other or with other information – using sequence

flows, message flows or associations.

Graphical connecting objects

A Sequence Flow is used to show the order In which the activities in a

process will be performed.

A Message Flow is used to show the flow of messages between two

participants that are prepared to send and receive them. In BPMN,

two separate Pools in a Diagram can represent the two participants.
An Association (directed, non-directed) is used to associate

information with Flow Objects. Text and graphical non-Flow Objects

can be associated with Flow objects.

A Sequence Flow can have condition expressions which are evaluated

at runtime to determine whether or not the flow will be used.

For Data-Based Exclusive Decisions or Inclusive Decisions, one type

of flow is the Default condition flow. This flow will be used only if all

other outgoing conditional flows are NOT true at runtime.

Sequence Flow and Message Flow rules
Only objects that can have an incoming and/or outgoing Sequence Flow / Message

Flow are shown in the Tables Below.

Start

transaction

Successfull

transaction

Task A

Transaction boundary

Undo task A

Task B

Undo task B

Failed transaction

Transaction

exception

Handle through

other services

Wait a few minutes

Try again

Error - compensation

events cannot be

triggered

Task

Compensation activity

In case of transactions it is desired that all activities which constitute

a transaction are finished successfully. Otherwise the transaction fails

and rollback (compensation) activities occur which undo done

activities.
Normal sequence flow

Use of the sequence flow

mechanism

Use of message events and

message flows

Use of flows within lanes Use of gatewaysWrong use of flows in/between

pools
When modelling Pools, sequence flows and start/end events are

often missing, because it is wrongly presumed that message

flows substitute sequence flows. Additionally, sequence flows

are incorrectly used to connect pools.

P
o

o
l
A

Task A

P
o

o
l
B

Task D

Message

flow AD

Message

flow EB

Task B

Task E

Missing sequence flows

Task C

Task F

Missing end event

Missing start event

Model the process in each Pool independently and afterwards

define message flows between Pools.

(Wrong) Use of time events

Task A Task B

Task B ...

Delay

Exception time

(e.g. »after 2 hours«)

Here a time event Is used as

a DELAY mechanism.

Here it represents the

DURATION of a task.

...

An intermediate event

has to be used.

There are two common mistakes when using time events. First,

starting events are often used instead of intermediate events.

Second, intermediate events are often used as a delay

mechanism but modelled as an exception mechanism

(representing the duration of a task) and vice-versa (see the

right use below).

Use of tasks and events

Starting

task A

Receiving

document

X

...
Task A

finished

Document X

...

Task A
...

Normal flow

Document X

Event X

Analysts often wrongly model events and tasks. For

example: events are wrongly modelled as tasks, task states

are modelled as new tasks.

This task is redundant.

Task automatically

starts at input

sequence flow

This task is redundant.

Task A is automatically

finished at output

sequence flow.

This task is redundant.The act of receiving

a document is a task itself.

Task A Task B

Message A

Message B
A

B

Task A Task B

Message A

B

Message B

Starting and intermediate events can not be sources of

message flows.
Both examples are wrong - intermediate

message events can not produce

message flows. Events can be only

triggered by a message flow.

Wrong positioning of

message event

The Start Event indicates where a particular process will start. Intermediate

Events occur between a Start Event and an End Event. It will affect the flow

of the process, but will not start or (directly) terminate the process. The End

Event indicates where a process will end.

A specific time or cycle can be set that will trigger the start of the Process

or continue the process. Intermediate timer can be used to model the time-

based delays.

This type of event is triggered when the conditions for a rule

become true. Rules can be very useful to interrupt the loop process, for

example: 'The number of repeats = N'. Intermediate rule is used only for

exception handling.

A Link is a mechanism for connecting the end (Result) of one

Process to the start (Trigger) of another. Typically, these are

two Sub-Processes within the same parent Process. It can be used, for

example, when the working area (page) is too small – go to another page.

This type of event indicates that there are multiple ways of triggering the

Process. Only one of them will be required to {start, continue, end} the

Process.

This type of End indicates that a named Error should be generated. This

Error will be caught by an Intermediate Event within the Event Context.

This type of End indicates that all activities in the Process should be

immediately terminated. This includes all instances of Multi-Instances. The

Process is terminated without compensation or event handling.

Explanation of Poster Symbols

About the BPMN Poster

Sequence flows are not

allowed between Pools

P
o

o
l
B L
a

n
e

 A
L

a
n

e
 B

Task A

Task B Task C

P
o

o
l
A L
a

n
e

 A
L

a
n

e
 B

Task A

Task B Task C

A message flow is not

allowed within a process
A Pool can contain only one

(1) process

Lanes are often wrongly used in similar ways as Pools. They

wrongly contain more business processes or contain message

flows between different lanes.

Gateways are connected only with sequence flows. Also Avoid

potential deadlocks when using gateways.

Task A

Task B

Decision

information

from Pool X

Message flow cannot

influence the gateway

No output flow from the task

exists.

The decision must

contain at least two

output flows

When using expanded sub-processes, sequence flows should

be connected to the boundaries of sub-processes. Processes

and sub-processes should start and end properly!

Task A

Sub-process »P«

Task B Task C

A sequence flow cannot cross

the boundary of a sub-process

The process should have an

end event

The sub-process should

have a start event

Task A

Sub-process »P«

Task B Task C

Task C

A conditional flow Is not

allowed (necessary) here

Send message to

Pool X A message flow cannot be

a gateway alternative

Analysing

decision

information

Task A

Task B

Task C

Send message

to Pool X

Message to Pool X

Message

from Pool X

Exception flow

Until Loop

~

Ad Hoc –

No flow

The Sequence Flow mechanisms is divided into types: Normal flow, Exception flow,

Conditional flow, Link Events and Ad Hoc (no flow). Refer also to specific

»Workflow Patterns«.

A

A

Intermediate

link used as

GOTO

Important note, explanation

Warning or error in the BPMN model

Recommendation

Wrong model

Right (corrected) model

This poster is licensed under the Creative Commons Attribution-

Noncommercial-No Derivative Works 2.5 Slovenia License

Authors:

Gregor Polan!i! & Tomislav Rozman

Email: info@itposter.net

University of Maribor

Faculty of Electrical Engineering and Computer Science

Institute of Informatics

Poster version: 1.0.9 (4
th

June 2008)

Literature used: BPMN Specification 1.0 @ http://www.bpmi.org

http://bpmn.itposter.net

This is used for compensation handling--both setting and performing

compensation. It calls for compensation if the Event is part of a Normal

Flow. It reacts to a named compensation call when attached to the

boundary of an activity. Very useful for modelling roll-back actions within

the transaction.

This type of Event is used within a Transaction Sub-Process. This type of

Event MUST be attached to the boundary of a Sub-Process. It SHALL be

triggered if a Cancel End Event is reached within the Transaction Sub-

Process.

Workflow patterns
Normal sequence flow

Parallel split, uncontrolled flow

Multiple merge, uncontrolled flow

Exclusive choice with

decision gateway

Simple merge,

uncontrolled flow

Synchronization

(pararel join)

Parallel split,

forking gateway

Discriminator,

merging gateway

Multiple choice

Alter. 3

Alter. 1

Alter. 2

Event based decision Complex decision

(gateway)

Multiple choice, inclusive

decision gateway Synchronization merge,

merging gateway

Simple merge,

uncontrolled flow

Intermediate link

used as GOTO

No Expanded sub-process

Looped subprocess

Interrupt

loop rule

B

B ~ Collapsed adhoc sub-process

F
ro

m
:

To:

F
ro

m
:

To:

L
a

n
e[state]

Check for the latest version at: http://bpmn.itposter.net

Example of a

deadlock

Exception X

Exception X

Exception X

Performing

task A

Conditional flow

Although it is recommended that a process has an explicit start and end

event, this is not a rule. In fact start and end events can be hidden in a sub

process, if needed, or attached to the boundary of the task so as not to

interrupt the normal sequence flow between the sub-process and the rest of

the process.

Document Y

Event Y

Exception flow

Cancel - compensation events are triggered.

Cancel event can be used only with transaction.

...

...

......

... ...

...

Naming conventions

25

Process models:
a noun possibly preceded by an adjective

the label is often obtained by ``nominalizing’’ the verb
that describe the main action in the process

(e.g., claim handling, order fulfillment)

Avoid long labels
Articles are often omitted

BPMN basics:
Flow Objects

(events, activities, gateways)

26

Flow objects

27

Theory:
 fix a small set of core elements

so that modellers do not have to learn and recognise
a large number of different shapes:

Events
Activities
Gateways

Practice:
use different border styles and internal markers

to add many more information
(this way the notation is extensible)

Events

28

An event is something that “happens” during
the course of a business process

The type of an event is one among:
start, intermediate, end

An event is represented as a circle
its type depends on the style of the border

(thin, double, thick)

An event can have a cause (trigger) or an impact (result)
Internal markers denote the trigger or result

Naming conventions

29

Events:
the label should begin with a noun and
end with a verb in past participle form

to indicate something that just happened
(e.g., Invoice emitted)

the noun can be preceded by an adjective
(e.g., Urgent order sent)

Avoid long labels
Articles are often omitted

30

Gateways Data

Attaching a data object with an Undirected
Association to a sequence flow indicates hand‐over

of information between the activities involved.

A Directed Association indicates information flow.

A data object can be read at the start of an

activity or written upon completion.

A Bidirected Association indicates that the data

object is modified, i.e. read and written during the

execution of an actvity.

A Data Object represents information flowing

through the process, such as business documents,

e‐mails or letters.

Events Transactions

Swimlanes

activity

Start Event: Catching an event

starts a new process instance.

Intermediate Event (catching):
The process can only continue

once an event has been caught.

Attached Intermediate Event: The

activity is aborted once an event is

caught.

Intermediate Event (throwing):
An event is thrown and the process

continues.

End Event: An event is thrown

when the end of the process is

reached.

Start EndIntermediate

Plain

Message

Timer

Error

Cancel

Compen‐

sation

Conditional

Link

Signal

Multiple

Terminate

Catching Throwing

Untyped events, typically

showing where the process

starts or ends.

Receiving and sending

messages.

Cyclic timer events, points in

time, time spans or timeouts.

Catching or throwing named

errors.

Reacting to cancelled

transactions or triggering

cancellation.

Compensation handling or

triggering compensation.

Reacting to changed business

conditions or integrating

business rules.

Signalling across different

processes. One signal thrown

can be caught multiple times.

Catching or throwing one out of

a set of events.

Off‐page connectors. Two

corresponding link events equal

a sequence flow.

Triggering the immediate

termination of a process.

Data‐based Exclusive Gateway
When splitting, it routes the sequence flow to exactly one of the outgoing

branches based on conditions. When merging, it awaits one incoming branch

to complete before triggering the outgoing flow.

Inclusive Gateway
When splitting, one or more branches are activated based on branching

conditions. When merging, it awaits all active incoming branches to

complete.

Complex Gateway
It triggers one or more branches based on complex conditions or verbal

descriptions. Use it sparingly as the semantics might not be clear.

Parallel Gateway
When used to split the sequence flow, all outgoing branches are activated

simultaneously. When merging parallel branches it waits for all incoming

branches to complete before triggering the outgoing flow.

Activities

BPMN ‐ Business Process Modeling Notation

Transaction

Activity

Compensate

Activity

Transaction

A Transaction is a set of activities that logically

belong together; it might follow a specified

transaction protocol.

Attached Intermediate Cancel Events indicate

reactions to the cancellation of a transaction.

Activities inside the transaction are compensated

upon cancellation.

Completed activities can be compensated. An

activity and the corresponding Compensate Activity

are related using an attached Intermediate
Compensation Event.

Web: bpt.hpi.uni‐potsdam.de

Oryx: oryx‐project.org

Blog: bpmn.info

BPMN Version 1.2

Business Process Technology

Prof. Dr. Mathias Weske

Authors

Gero Decker

Alexander Grosskopf

Sven Wagner‐Boysen

read

doc

write

doc

modify

doc

modify

doc
[state2]

doc
[state1]

Pool

Pool

Message Flow symbolizes

information flow across

organizational boundaries.

Message flow can be attached to

pools, activities, or message events.

The order of message exchanges

can be specified by combining

message flow and sequence flow.

P
o
o
l

P
o
o
l

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Pools and Lanes represent

responsibilities for activities in a

process. A pool or a lane can be an

organization, a role, or a system.

Lanes sub‐divide pools or other

lanes hierarchically.

Pool
Collapsed Pools hide all internals

of the contained processes.

Task

Task

~

Collapsed

Subprocess

Intermediate

Message Event

Task

Task

Task

Task

Loop

Activity

Multiple

Instances

Collapsed Pool

L
a
n
e

L
a
n
e

E
x
p
a
n
d
e
d
 P

o
o
l

L
a
n
e

L
a
n
e

Data

Object

[state1]

Data

Object

[state2]

Conditional

Start Event

Parallel

Gateway

Parallel

Gateway

Grouping

End Event

Terminate

End Event

Data‐based

Exclusive

Gateway

Embedded

Subprocess

Ad‐hoc Subprocess

Text Annotation

Data

Object

Intermediate

Timer Event

Sequence

Flow

Intermediate

Error Event

Exception

Flow

Event‐based

Exclusive

Gateway Intermediate

Message Event

Intermediate

Timer Event

Catching Throwing

Event‐based Exclusive Gateway
Is always followed by catching events or receive tasks. Sequence flow is

routed to the subsequent event/task which happens first.

Condition

Default

Flow

Multiple

Instances

Loop

Multiple Instances of the

same activity are started in

parallel or sequentially, e.g.

for each line item in an

order.

Loop Activity is iterated if a

loop condition is true. The

condition is either tested

before or after the activity

execution.

Ad‐hoc Subprocesses
contain tasks only. Each task

can be executed arbitrarily

often until a completion

condition is fulfilled.

Collapsed

Subprocess

Task
A Task is a unit of

work, the job to be

performed.

A Subprocess is a

decomposable activity.

It can be collapsed to

hide the details.

An Expanded Subprocess contains a

valid BPMN diagram.

Expanded SubprocessAd‐hoc Subprocess

~

Sequence Flow defines the

execution order of activities.

Conditional Flow has a

condition assigned that

defines whether or not the

flow is used.

Default Flow is the default

branch to be chosen if all

other conditions evaluate to

false.

End Error Event

Message Flow

Documentation

Group

Text Annotation

An arbitrary set of objects can be

defined as a Group to show that

they logically belong together.

Any object can be associated with a

Text Annotation to provide

additional documentation.

Gateways Data

Attaching a data object with an Undirected
Association to a sequence flow indicates hand‐over

of information between the activities involved.

A Directed Association indicates information flow.

A data object can be read at the start of an

activity or written upon completion.

A Bidirected Association indicates that the data

object is modified, i.e. read and written during the

execution of an actvity.

A Data Object represents information flowing

through the process, such as business documents,

e‐mails or letters.

Events Transactions

Swimlanes

activity

Start Event: Catching an event

starts a new process instance.

Intermediate Event (catching):
The process can only continue

once an event has been caught.

Attached Intermediate Event: The

activity is aborted once an event is

caught.

Intermediate Event (throwing):
An event is thrown and the process

continues.

End Event: An event is thrown

when the end of the process is

reached.

Start EndIntermediate

Plain

Message

Timer

Error

Cancel

Compen‐

sation

Conditional

Link

Signal

Multiple

Terminate

Catching Throwing

Untyped events, typically

showing where the process

starts or ends.

Receiving and sending

messages.

Cyclic timer events, points in

time, time spans or timeouts.

Catching or throwing named

errors.

Reacting to cancelled

transactions or triggering

cancellation.

Compensation handling or

triggering compensation.

Reacting to changed business

conditions or integrating

business rules.

Signalling across different

processes. One signal thrown

can be caught multiple times.

Catching or throwing one out of

a set of events.

Off‐page connectors. Two

corresponding link events equal

a sequence flow.

Triggering the immediate

termination of a process.

Data‐based Exclusive Gateway
When splitting, it routes the sequence flow to exactly one of the outgoing

branches based on conditions. When merging, it awaits one incoming branch

to complete before triggering the outgoing flow.

Inclusive Gateway
When splitting, one or more branches are activated based on branching

conditions. When merging, it awaits all active incoming branches to

complete.

Complex Gateway
It triggers one or more branches based on complex conditions or verbal

descriptions. Use it sparingly as the semantics might not be clear.

Parallel Gateway
When used to split the sequence flow, all outgoing branches are activated

simultaneously. When merging parallel branches it waits for all incoming

branches to complete before triggering the outgoing flow.

Activities

BPMN ‐ Business Process Modeling Notation

Transaction

Activity

Compensate

Activity

Transaction

A Transaction is a set of activities that logically

belong together; it might follow a specified

transaction protocol.

Attached Intermediate Cancel Events indicate

reactions to the cancellation of a transaction.

Activities inside the transaction are compensated

upon cancellation.

Completed activities can be compensated. An

activity and the corresponding Compensate Activity

are related using an attached Intermediate
Compensation Event.

Web: bpt.hpi.uni‐potsdam.de

Oryx: oryx‐project.org

Blog: bpmn.info

BPMN Version 1.2

Business Process Technology

Prof. Dr. Mathias Weske

Authors

Gero Decker

Alexander Grosskopf

Sven Wagner‐Boysen

read

doc

write

doc

modify

doc

modify

doc
[state2]

doc
[state1]

Pool

Pool

Message Flow symbolizes

information flow across

organizational boundaries.

Message flow can be attached to

pools, activities, or message events.

The order of message exchanges

can be specified by combining

message flow and sequence flow.

P
o
o
l

P
o
o
l

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Pools and Lanes represent

responsibilities for activities in a

process. A pool or a lane can be an

organization, a role, or a system.

Lanes sub‐divide pools or other

lanes hierarchically.

Pool
Collapsed Pools hide all internals

of the contained processes.

Task

Task

~

Collapsed

Subprocess

Intermediate

Message Event

Task

Task

Task

Task

Loop

Activity

Multiple

Instances

Collapsed Pool

L
a
n
e

L
a
n
e

E
x
p
a
n
d
e
d
 P

o
o
l

L
a
n
e

L
a
n
e

Data

Object

[state1]

Data

Object

[state2]

Conditional

Start Event

Parallel

Gateway

Parallel

Gateway

Grouping

End Event

Terminate

End Event

Data‐based

Exclusive

Gateway

Embedded

Subprocess

Ad‐hoc Subprocess

Text Annotation

Data

Object

Intermediate

Timer Event

Sequence

Flow

Intermediate

Error Event

Exception

Flow

Event‐based

Exclusive

Gateway Intermediate

Message Event

Intermediate

Timer Event

Catching Throwing

Event‐based Exclusive Gateway
Is always followed by catching events or receive tasks. Sequence flow is

routed to the subsequent event/task which happens first.

Condition

Default

Flow

Multiple

Instances

Loop

Multiple Instances of the

same activity are started in

parallel or sequentially, e.g.

for each line item in an

order.

Loop Activity is iterated if a

loop condition is true. The

condition is either tested

before or after the activity

execution.

Ad‐hoc Subprocesses
contain tasks only. Each task

can be executed arbitrarily

often until a completion

condition is fulfilled.

Collapsed

Subprocess

Task
A Task is a unit of

work, the job to be

performed.

A Subprocess is a

decomposable activity.

It can be collapsed to

hide the details.

An Expanded Subprocess contains a

valid BPMN diagram.

Expanded SubprocessAd‐hoc Subprocess

~

Sequence Flow defines the

execution order of activities.

Conditional Flow has a

condition assigned that

defines whether or not the

flow is used.

Default Flow is the default

branch to be chosen if all

other conditions evaluate to

false.

End Error Event

Message Flow

Documentation

Group

Text Annotation

An arbitrary set of objects can be

defined as a Group to show that

they logically belong together.

Any object can be associated with a

Text Annotation to provide

additional documentation.

Gateways Data

Attaching a data object with an Undirected
Association to a sequence flow indicates hand‐over

of information between the activities involved.

A Directed Association indicates information flow.

A data object can be read at the start of an

activity or written upon completion.

A Bidirected Association indicates that the data

object is modified, i.e. read and written during the

execution of an actvity.

A Data Object represents information flowing

through the process, such as business documents,

e‐mails or letters.

Events Transactions

Swimlanes

activity

Start Event: Catching an event

starts a new process instance.

Intermediate Event (catching):
The process can only continue

once an event has been caught.

Attached Intermediate Event: The

activity is aborted once an event is

caught.

Intermediate Event (throwing):
An event is thrown and the process

continues.

End Event: An event is thrown

when the end of the process is

reached.

Start EndIntermediate

Plain

Message

Timer

Error

Cancel

Compen‐

sation

Conditional

Link

Signal

Multiple

Terminate

Catching Throwing

Untyped events, typically

showing where the process

starts or ends.

Receiving and sending

messages.

Cyclic timer events, points in

time, time spans or timeouts.

Catching or throwing named

errors.

Reacting to cancelled

transactions or triggering

cancellation.

Compensation handling or

triggering compensation.

Reacting to changed business

conditions or integrating

business rules.

Signalling across different

processes. One signal thrown

can be caught multiple times.

Catching or throwing one out of

a set of events.

Off‐page connectors. Two

corresponding link events equal

a sequence flow.

Triggering the immediate

termination of a process.

Data‐based Exclusive Gateway
When splitting, it routes the sequence flow to exactly one of the outgoing

branches based on conditions. When merging, it awaits one incoming branch

to complete before triggering the outgoing flow.

Inclusive Gateway
When splitting, one or more branches are activated based on branching

conditions. When merging, it awaits all active incoming branches to

complete.

Complex Gateway
It triggers one or more branches based on complex conditions or verbal

descriptions. Use it sparingly as the semantics might not be clear.

Parallel Gateway
When used to split the sequence flow, all outgoing branches are activated

simultaneously. When merging parallel branches it waits for all incoming

branches to complete before triggering the outgoing flow.

Activities

BPMN ‐ Business Process Modeling Notation

Transaction

Activity

Compensate

Activity

Transaction

A Transaction is a set of activities that logically

belong together; it might follow a specified

transaction protocol.

Attached Intermediate Cancel Events indicate

reactions to the cancellation of a transaction.

Activities inside the transaction are compensated

upon cancellation.

Completed activities can be compensated. An

activity and the corresponding Compensate Activity

are related using an attached Intermediate
Compensation Event.

Web: bpt.hpi.uni‐potsdam.de

Oryx: oryx‐project.org

Blog: bpmn.info

BPMN Version 1.2

Business Process Technology

Prof. Dr. Mathias Weske

Authors

Gero Decker

Alexander Grosskopf

Sven Wagner‐Boysen

read

doc

write

doc

modify

doc

modify

doc
[state2]

doc
[state1]

Pool

Pool

Message Flow symbolizes

information flow across

organizational boundaries.

Message flow can be attached to

pools, activities, or message events.

The order of message exchanges

can be specified by combining

message flow and sequence flow.

P
o
o
l

P
o
o
l

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Pools and Lanes represent

responsibilities for activities in a

process. A pool or a lane can be an

organization, a role, or a system.

Lanes sub‐divide pools or other

lanes hierarchically.

Pool
Collapsed Pools hide all internals

of the contained processes.

Task

Task

~

Collapsed

Subprocess

Intermediate

Message Event

Task

Task

Task

Task

Loop

Activity

Multiple

Instances

Collapsed Pool

L
a
n
e

L
a
n
e

E
x
p
a
n
d
e
d
 P

o
o
l

L
a
n
e

L
a
n
e

Data

Object

[state1]

Data

Object

[state2]

Conditional

Start Event

Parallel

Gateway

Parallel

Gateway

Grouping

End Event

Terminate

End Event

Data‐based

Exclusive

Gateway

Embedded

Subprocess

Ad‐hoc Subprocess

Text Annotation

Data

Object

Intermediate

Timer Event

Sequence

Flow

Intermediate

Error Event

Exception

Flow

Event‐based

Exclusive

Gateway Intermediate

Message Event

Intermediate

Timer Event

Catching Throwing

Event‐based Exclusive Gateway
Is always followed by catching events or receive tasks. Sequence flow is

routed to the subsequent event/task which happens first.

Condition

Default

Flow

Multiple

Instances

Loop

Multiple Instances of the

same activity are started in

parallel or sequentially, e.g.

for each line item in an

order.

Loop Activity is iterated if a

loop condition is true. The

condition is either tested

before or after the activity

execution.

Ad‐hoc Subprocesses
contain tasks only. Each task

can be executed arbitrarily

often until a completion

condition is fulfilled.

Collapsed

Subprocess

Task
A Task is a unit of

work, the job to be

performed.

A Subprocess is a

decomposable activity.

It can be collapsed to

hide the details.

An Expanded Subprocess contains a

valid BPMN diagram.

Expanded SubprocessAd‐hoc Subprocess

~

Sequence Flow defines the

execution order of activities.

Conditional Flow has a

condition assigned that

defines whether or not the

flow is used.

Default Flow is the default

branch to be chosen if all

other conditions evaluate to

false.

End Error Event

Message Flow

Documentation

Group

Text Annotation

An arbitrary set of objects can be

defined as a Group to show that

they logically belong together.

Any object can be associated with a

Text Annotation to provide

additional documentation.

Gateways Data

Attaching a data object with an Undirected
Association to a sequence flow indicates hand‐over

of information between the activities involved.

A Directed Association indicates information flow.

A data object can be read at the start of an

activity or written upon completion.

A Bidirected Association indicates that the data

object is modified, i.e. read and written during the

execution of an actvity.

A Data Object represents information flowing

through the process, such as business documents,

e‐mails or letters.

Events Transactions

Swimlanes

activity

Start Event: Catching an event

starts a new process instance.

Intermediate Event (catching):
The process can only continue

once an event has been caught.

Attached Intermediate Event: The

activity is aborted once an event is

caught.

Intermediate Event (throwing):
An event is thrown and the process

continues.

End Event: An event is thrown

when the end of the process is

reached.

Start EndIntermediate

Plain

Message

Timer

Error

Cancel

Compen‐

sation

Conditional

Link

Signal

Multiple

Terminate

Catching Throwing

Untyped events, typically

showing where the process

starts or ends.

Receiving and sending

messages.

Cyclic timer events, points in

time, time spans or timeouts.

Catching or throwing named

errors.

Reacting to cancelled

transactions or triggering

cancellation.

Compensation handling or

triggering compensation.

Reacting to changed business

conditions or integrating

business rules.

Signalling across different

processes. One signal thrown

can be caught multiple times.

Catching or throwing one out of

a set of events.

Off‐page connectors. Two

corresponding link events equal

a sequence flow.

Triggering the immediate

termination of a process.

Data‐based Exclusive Gateway
When splitting, it routes the sequence flow to exactly one of the outgoing

branches based on conditions. When merging, it awaits one incoming branch

to complete before triggering the outgoing flow.

Inclusive Gateway
When splitting, one or more branches are activated based on branching

conditions. When merging, it awaits all active incoming branches to

complete.

Complex Gateway
It triggers one or more branches based on complex conditions or verbal

descriptions. Use it sparingly as the semantics might not be clear.

Parallel Gateway
When used to split the sequence flow, all outgoing branches are activated

simultaneously. When merging parallel branches it waits for all incoming

branches to complete before triggering the outgoing flow.

Activities

BPMN ‐ Business Process Modeling Notation

Transaction

Activity

Compensate

Activity

Transaction

A Transaction is a set of activities that logically

belong together; it might follow a specified

transaction protocol.

Attached Intermediate Cancel Events indicate

reactions to the cancellation of a transaction.

Activities inside the transaction are compensated

upon cancellation.

Completed activities can be compensated. An

activity and the corresponding Compensate Activity

are related using an attached Intermediate
Compensation Event.

Web: bpt.hpi.uni‐potsdam.de

Oryx: oryx‐project.org

Blog: bpmn.info

BPMN Version 1.2

Business Process Technology

Prof. Dr. Mathias Weske

Authors

Gero Decker

Alexander Grosskopf

Sven Wagner‐Boysen

read

doc

write

doc

modify

doc

modify

doc
[state2]

doc
[state1]

Pool

Pool

Message Flow symbolizes

information flow across

organizational boundaries.

Message flow can be attached to

pools, activities, or message events.

The order of message exchanges

can be specified by combining

message flow and sequence flow.

P
o
o
l

P
o
o
l

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Pools and Lanes represent

responsibilities for activities in a

process. A pool or a lane can be an

organization, a role, or a system.

Lanes sub‐divide pools or other

lanes hierarchically.

Pool
Collapsed Pools hide all internals

of the contained processes.

Task

Task

~

Collapsed

Subprocess

Intermediate

Message Event

Task

Task

Task

Task

Loop

Activity

Multiple

Instances

Collapsed Pool

L
a
n
e

L
a
n
e

E
x
p
a
n
d
e
d
 P

o
o
l

L
a
n
e

L
a
n
e

Data

Object

[state1]

Data

Object

[state2]

Conditional

Start Event

Parallel

Gateway

Parallel

Gateway

Grouping

End Event

Terminate

End Event

Data‐based

Exclusive

Gateway

Embedded

Subprocess

Ad‐hoc Subprocess

Text Annotation

Data

Object

Intermediate

Timer Event

Sequence

Flow

Intermediate

Error Event

Exception

Flow

Event‐based

Exclusive

Gateway Intermediate

Message Event

Intermediate

Timer Event

Catching Throwing

Event‐based Exclusive Gateway
Is always followed by catching events or receive tasks. Sequence flow is

routed to the subsequent event/task which happens first.

Condition

Default

Flow

Multiple

Instances

Loop

Multiple Instances of the

same activity are started in

parallel or sequentially, e.g.

for each line item in an

order.

Loop Activity is iterated if a

loop condition is true. The

condition is either tested

before or after the activity

execution.

Ad‐hoc Subprocesses
contain tasks only. Each task

can be executed arbitrarily

often until a completion

condition is fulfilled.

Collapsed

Subprocess

Task
A Task is a unit of

work, the job to be

performed.

A Subprocess is a

decomposable activity.

It can be collapsed to

hide the details.

An Expanded Subprocess contains a

valid BPMN diagram.

Expanded SubprocessAd‐hoc Subprocess

~

Sequence Flow defines the

execution order of activities.

Conditional Flow has a

condition assigned that

defines whether or not the

flow is used.

Default Flow is the default

branch to be chosen if all

other conditions evaluate to

false.

End Error Event

Message Flow

Documentation

Group

Text Annotation

An arbitrary set of objects can be

defined as a Group to show that

they logically belong together.

Any object can be associated with a

Text Annotation to provide

additional documentation.

Activities

31

An activity is some “unit of work” (job) to be done
during the course of a business process

An activity can be
atomic (task) or compound (sub-process)

An activity is represented as a rounded box,
Suitable markers are used to indicate

the nature of the action to be performed (task type)
and the execution behaviour (activity marker)

+

Sub-processes

32

Process models tend to be too large
to be understood at once

Hiding certain parts within sub-processes
we improve readability

A sub-process is a self-contained, composite activity
that can be broken into smaller units of work

33

Gateways Data

Attaching a data object with an Undirected
Association to a sequence flow indicates hand‐over

of information between the activities involved.

A Directed Association indicates information flow.

A data object can be read at the start of an

activity or written upon completion.

A Bidirected Association indicates that the data

object is modified, i.e. read and written during the

execution of an actvity.

A Data Object represents information flowing

through the process, such as business documents,

e‐mails or letters.

Events Transactions

Swimlanes

activity

Start Event: Catching an event

starts a new process instance.

Intermediate Event (catching):
The process can only continue

once an event has been caught.

Attached Intermediate Event: The

activity is aborted once an event is

caught.

Intermediate Event (throwing):
An event is thrown and the process

continues.

End Event: An event is thrown

when the end of the process is

reached.

Start EndIntermediate

Plain

Message

Timer

Error

Cancel

Compen‐

sation

Conditional

Link

Signal

Multiple

Terminate

Catching Throwing

Untyped events, typically

showing where the process

starts or ends.

Receiving and sending

messages.

Cyclic timer events, points in

time, time spans or timeouts.

Catching or throwing named

errors.

Reacting to cancelled

transactions or triggering

cancellation.

Compensation handling or

triggering compensation.

Reacting to changed business

conditions or integrating

business rules.

Signalling across different

processes. One signal thrown

can be caught multiple times.

Catching or throwing one out of

a set of events.

Off‐page connectors. Two

corresponding link events equal

a sequence flow.

Triggering the immediate

termination of a process.

Data‐based Exclusive Gateway
When splitting, it routes the sequence flow to exactly one of the outgoing

branches based on conditions. When merging, it awaits one incoming branch

to complete before triggering the outgoing flow.

Inclusive Gateway
When splitting, one or more branches are activated based on branching

conditions. When merging, it awaits all active incoming branches to

complete.

Complex Gateway
It triggers one or more branches based on complex conditions or verbal

descriptions. Use it sparingly as the semantics might not be clear.

Parallel Gateway
When used to split the sequence flow, all outgoing branches are activated

simultaneously. When merging parallel branches it waits for all incoming

branches to complete before triggering the outgoing flow.

Activities

BPMN ‐ Business Process Modeling Notation

Transaction

Activity

Compensate

Activity

Transaction

A Transaction is a set of activities that logically

belong together; it might follow a specified

transaction protocol.

Attached Intermediate Cancel Events indicate

reactions to the cancellation of a transaction.

Activities inside the transaction are compensated

upon cancellation.

Completed activities can be compensated. An

activity and the corresponding Compensate Activity

are related using an attached Intermediate
Compensation Event.

Web: bpt.hpi.uni‐potsdam.de

Oryx: oryx‐project.org

Blog: bpmn.info

BPMN Version 1.2

Business Process Technology

Prof. Dr. Mathias Weske

Authors

Gero Decker

Alexander Grosskopf

Sven Wagner‐Boysen

read

doc

write

doc

modify

doc

modify

doc
[state2]

doc
[state1]

Pool

Pool

Message Flow symbolizes

information flow across

organizational boundaries.

Message flow can be attached to

pools, activities, or message events.

The order of message exchanges

can be specified by combining

message flow and sequence flow.

P
o
o
l

P
o
o
l

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Pools and Lanes represent

responsibilities for activities in a

process. A pool or a lane can be an

organization, a role, or a system.

Lanes sub‐divide pools or other

lanes hierarchically.

Pool
Collapsed Pools hide all internals

of the contained processes.

Task

Task

~

Collapsed

Subprocess

Intermediate

Message Event

Task

Task

Task

Task

Loop

Activity

Multiple

Instances

Collapsed Pool

L
a
n
e

L
a
n
e

E
x
p
a
n
d
e
d
 P

o
o
l

L
a
n
e

L
a
n
e

Data

Object

[state1]

Data

Object

[state2]

Conditional

Start Event

Parallel

Gateway

Parallel

Gateway

Grouping

End Event

Terminate

End Event

Data‐based

Exclusive

Gateway

Embedded

Subprocess

Ad‐hoc Subprocess

Text Annotation

Data

Object

Intermediate

Timer Event

Sequence

Flow

Intermediate

Error Event

Exception

Flow

Event‐based

Exclusive

Gateway Intermediate

Message Event

Intermediate

Timer Event

Catching Throwing

Event‐based Exclusive Gateway
Is always followed by catching events or receive tasks. Sequence flow is

routed to the subsequent event/task which happens first.

Condition

Default

Flow

Multiple

Instances

Loop

Multiple Instances of the

same activity are started in

parallel or sequentially, e.g.

for each line item in an

order.

Loop Activity is iterated if a

loop condition is true. The

condition is either tested

before or after the activity

execution.

Ad‐hoc Subprocesses
contain tasks only. Each task

can be executed arbitrarily

often until a completion

condition is fulfilled.

Collapsed

Subprocess

Task
A Task is a unit of

work, the job to be

performed.

A Subprocess is a

decomposable activity.

It can be collapsed to

hide the details.

An Expanded Subprocess contains a

valid BPMN diagram.

Expanded SubprocessAd‐hoc Subprocess

~

Sequence Flow defines the

execution order of activities.

Conditional Flow has a

condition assigned that

defines whether or not the

flow is used.

Default Flow is the default

branch to be chosen if all

other conditions evaluate to

false.

End Error Event

Message Flow

Documentation

Group

Text Annotation

An arbitrary set of objects can be

defined as a Group to show that

they logically belong together.

Any object can be associated with a

Text Annotation to provide

additional documentation.

34

Activities
Conversations

Events

Gateways

Conversation Diagram

None: Untyped events,

indicate start point, state

changes or final states.

Message: Receiving and

sending messages.

Timer: Cyclic timer events,

points in time, time spans or

timeouts.

Error: Catching or throwing

named errors.

Cancel: Reacting to cancelled

transactions or triggering

cancellation.

Compensation: Handling or

triggering compensation.

Conditional: Reacting to

changed business conditions

or integrating business rules.

Signal: Signalling across differ‐

ent processes. A signal thrown

can be caught multiple times.

Multiple: Catching one out of

a set of events. Throwing all

events defined

Link: Off‐page connectors.

Two corresponding link events

equal a sequence flow.

Terminate: Triggering the

immediate termination of a

process.

Escalation: Escalating to

an higher level of

responsibility.

Parallel Multiple: Catching

all out of a set of parallel

events.

Start EndIntermediate

C
a
tc

h
in

g

T
h
ro

w
in

g

E
v
e
n
t

S
u
b
‐P

ro
c
e
ss

In
te

rr
u
p
ti

n
g

T
o
p
‐L

e
v
e
l

E
v
e
n
t

S
u
b
‐P

ro
c
e
ss

N
o
n
‐I

n
te

rr
u
p
ti

n
g

B
o
u
n
d
a
ry

In

te
rr

u
p
ti

n
g

B
o
u
n
d
a
ry

 N
o
n
‐

In
te

rr
u
p
ti

n
g

Sequence Flow

defines the execution

order of activities.

Conditional Flow

has a condition

assigned that defines

whether or not the

flow is used.

Default Flow

is the default branch

to be chosen if all

other conditions

evaluate to false.

Task

A Task is a unit of work, the job to be

performed. When marked with a symbol

it indicates a Sub‐Process, an activity that can

be refined.

Transaction

A Transaction is a set of activities that logically

belong together; it might follow a specified

transaction protocol.

Event

Sub‐Process

An Event Sub‐Process is placed into a Process or

Sub‐Process. It is activated when its start event

gets triggered and can interrupt the higher level

process context or run in parallel (non‐

interrupting) depending on the start event.

Call Activity
A Call Activity is a wrapper for a globally defined

Sub‐Process or Task that is reused in the current

process.

Task Types
Types specify the nature of

the action to be performed:

Send Task

Receive Task

User Task

Manual Task

Business Rule Task

Service Task

Script Task

Markers indicate execution

behavior of activities:

Activity Markers

Sub‐Process Marker

Loop Marker

Parallel MI Marker

Sequential MI Marker

~ Ad Hoc Marker

Compensation Marker

A Communication defines a set of

logically related message exchanges.

When marked with a symbol it

indicates a Sub‐Conversation, a

compound conversation element.

A Forked Conversation Link connects

Communications and multiple

Participants.

A Conversation Link connects

Communications and Participants.

Inclusive Gateway
When splitting, one or more

branches are activated. All

active incoming branches must

complete before merging.

Complex Gateway
Complex merging and

branching behavior that is not

captured by other gateways.

Exclusive Event‐based Gateway
(instantiate)
Each occurrence of a subsequent

event starts a new process

instance.

Parallel Event‐based Gateway
(instantiate)
The occurrence of all subsequent

events starts a new process

instance.

Pool

(collapsed)

Multi Instance Pool

(collapsed)

Communication

Sub‐Conversation

Pool

(collapsed)
Participant B

The order of message
exchanges can be

specified by combining

message flow and

sequence flow.

P
o
o
l

P
o
o
l

Pools (Participants) and Lanes
represent responsibilities for

activities in a process. A pool

or a lane can be an

organization, a role, or a

system. Lanes subdivide pools

or other lanes hierarchically.

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Message Flow

symbolizes information

flow across organizational

boundaries. Message flow

can be attached to pools,

activities, or message

events.

Data

TaskInput Out-

put

Data Store

A Data Object represents information flowing

through the process, such as business

documents, e‐mails, or letters.

A Data Store is a place where the process can

read or write data, e.g., a database or a filing

cabinet. It persists beyond the lifetime of the

process instance.

A Data Input is an external input for the

entire process. It can be read by an activity.

A Data Output is a variable available as result

of the entire process.

A Message is used to depict the contents of a

communication between two Participants.

A Collection Data Object represents a

collection of information, e.g., a list of order

items.

Pool (Collapsed)

Collaboration Diagram

P
o
o
l
(E

x
p
a
n
d
e
d
)

L
a
n
e

L
a
n
e

Choreographies

Choreography Diagram

A Choreography Task
represents an Interaction

(Message Exchange)

between two Participants.

Choreography

Task

Participant A

Participant B

A Choreography Sub‐
Process contains a refined

choreography with several

Interactions.

Multiple Participants Marker
denotes a set of

Participants of the

same kind.

Swimlanes

BPMN 2.0 ‐ Business Process Model and Notation

Collection

Ad‐hoc Sub‐Process

Task

Task

~

Message

Start Event

Message Flow

Data Object

Collapsed

Sub‐Process

Event‐based

Gateway

Escalation

End Event

Timer

Intermediate

Event

Receive Task

Attached

Intermediate

Timer Event

Link

Intermediate

Event

Manual Task

End

Event

Data

Store

Link

Intermediate

Event

Parallel

Multiple

Intermediate

Event

Text Annotation

Group

Multi Instance

Task (Parallel)

Message

End Event

Send Task

Parallel

Gateway

Exclusive

Gateway

Attached

Intermediate

Error Event

Signal

End

Event

Call Activity

Sub‐Process

Event Sub‐Process

Conditional

Start Event

Error End

Event

Start

Event

End

Event

Looped

Sub‐Process

condition

http://bpmb.de/poster

Participant A

Participant C
Participant B

Choreography

Task

Participant A

Participant B

Choreography

Task

Participant A

Participant C

Initiating

Message

Response

Message

Choreography

Task

Participant B

Participant A

When splitting, it routes the sequence flow to exactly

one of the outgoing branches. When merging, it awaits

one incoming branch to complete before triggering the

outgoing flow.

Exclusive Gateway

Is always followed by catching events or receive tasks.

Sequence flow is routed to the subsequent event/task

which happens first.

Event‐based Gateway

When used to split the sequence flow, all outgoing

branches are activated simultaneously. When merging

parallel branches it waits for all incoming branches to

complete before triggering the outgoing flow.

Parallel Gateway

Choreography

Sub‐Process

Participant A

Participant C

Participant B

Activities
Conversations

Events

Gateways

Conversation Diagram

None: Untyped events,

indicate start point, state

changes or final states.

Message: Receiving and

sending messages.

Timer: Cyclic timer events,

points in time, time spans or

timeouts.

Error: Catching or throwing

named errors.

Cancel: Reacting to cancelled

transactions or triggering

cancellation.

Compensation: Handling or

triggering compensation.

Conditional: Reacting to

changed business conditions

or integrating business rules.

Signal: Signalling across differ‐

ent processes. A signal thrown

can be caught multiple times.

Multiple: Catching one out of

a set of events. Throwing all

events defined

Link: Off‐page connectors.

Two corresponding link events

equal a sequence flow.

Terminate: Triggering the

immediate termination of a

process.

Escalation: Escalating to

an higher level of

responsibility.

Parallel Multiple: Catching

all out of a set of parallel

events.

Start EndIntermediate

C
a
tc

h
in

g

T
h
ro

w
in

g

E
v
e
n
t

S
u
b
‐P

ro
c
e
ss

In
te

rr
u
p
ti

n
g

T
o
p
‐L

e
v
e
l

E
v
e
n
t

S
u
b
‐P

ro
c
e
ss

N
o
n
‐I

n
te

rr
u
p
ti

n
g

B
o
u
n
d
a
ry

In

te
rr

u
p
ti

n
g

B
o
u
n
d
a
ry

 N
o
n
‐

In
te

rr
u
p
ti

n
g

Sequence Flow

defines the execution

order of activities.

Conditional Flow

has a condition

assigned that defines

whether or not the

flow is used.

Default Flow

is the default branch

to be chosen if all

other conditions

evaluate to false.

Task

A Task is a unit of work, the job to be

performed. When marked with a symbol

it indicates a Sub‐Process, an activity that can

be refined.

Transaction

A Transaction is a set of activities that logically

belong together; it might follow a specified

transaction protocol.

Event

Sub‐Process

An Event Sub‐Process is placed into a Process or

Sub‐Process. It is activated when its start event

gets triggered and can interrupt the higher level

process context or run in parallel (non‐

interrupting) depending on the start event.

Call Activity
A Call Activity is a wrapper for a globally defined

Sub‐Process or Task that is reused in the current

process.

Task Types
Types specify the nature of

the action to be performed:

Send Task

Receive Task

User Task

Manual Task

Business Rule Task

Service Task

Script Task

Markers indicate execution

behavior of activities:

Activity Markers

Sub‐Process Marker

Loop Marker

Parallel MI Marker

Sequential MI Marker

~ Ad Hoc Marker

Compensation Marker

A Communication defines a set of

logically related message exchanges.

When marked with a symbol it

indicates a Sub‐Conversation, a

compound conversation element.

A Forked Conversation Link connects

Communications and multiple

Participants.

A Conversation Link connects

Communications and Participants.

Inclusive Gateway
When splitting, one or more

branches are activated. All

active incoming branches must

complete before merging.

Complex Gateway
Complex merging and

branching behavior that is not

captured by other gateways.

Exclusive Event‐based Gateway
(instantiate)
Each occurrence of a subsequent

event starts a new process

instance.

Parallel Event‐based Gateway
(instantiate)
The occurrence of all subsequent

events starts a new process

instance.

Pool

(collapsed)

Multi Instance Pool

(collapsed)

Communication

Sub‐Conversation

Pool

(collapsed)
Participant B

The order of message
exchanges can be

specified by combining

message flow and

sequence flow.
P
o
o
l

P
o
o
l

Pools (Participants) and Lanes
represent responsibilities for

activities in a process. A pool

or a lane can be an

organization, a role, or a

system. Lanes subdivide pools

or other lanes hierarchically.

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Message Flow

symbolizes information

flow across organizational

boundaries. Message flow

can be attached to pools,

activities, or message

events.

Data

TaskInput Out-

put

Data Store

A Data Object represents information flowing

through the process, such as business

documents, e‐mails, or letters.

A Data Store is a place where the process can

read or write data, e.g., a database or a filing

cabinet. It persists beyond the lifetime of the

process instance.

A Data Input is an external input for the

entire process. It can be read by an activity.

A Data Output is a variable available as result

of the entire process.

A Message is used to depict the contents of a

communication between two Participants.

A Collection Data Object represents a

collection of information, e.g., a list of order

items.

Pool (Collapsed)

Collaboration Diagram

P
o
o
l
(E

x
p
a
n
d
e
d
)

L
a
n
e

L
a
n
e

Choreographies

Choreography Diagram

A Choreography Task
represents an Interaction

(Message Exchange)

between two Participants.

Choreography

Task

Participant A

Participant B

A Choreography Sub‐
Process contains a refined

choreography with several

Interactions.

Multiple Participants Marker
denotes a set of

Participants of the

same kind.

Swimlanes

BPMN 2.0 ‐ Business Process Model and Notation

Collection

Ad‐hoc Sub‐Process

Task

Task

~

Message

Start Event

Message Flow

Data Object

Collapsed

Sub‐Process

Event‐based

Gateway

Escalation

End Event

Timer

Intermediate

Event

Receive Task

Attached

Intermediate

Timer Event

Link

Intermediate

Event

Manual Task

End

Event

Data

Store

Link

Intermediate

Event

Parallel

Multiple

Intermediate

Event

Text Annotation

Group

Multi Instance

Task (Parallel)

Message

End Event

Send Task

Parallel

Gateway

Exclusive

Gateway

Attached

Intermediate

Error Event

Signal

End

Event

Call Activity

Sub‐Process

Event Sub‐Process

Conditional

Start Event

Error End

Event

Start

Event

End

Event

Looped

Sub‐Process

condition

http://bpmb.de/poster

Participant A

Participant C
Participant B

Choreography

Task

Participant A

Participant B

Choreography

Task

Participant A

Participant C

Initiating

Message

Response

Message

Choreography

Task

Participant B

Participant A

When splitting, it routes the sequence flow to exactly

one of the outgoing branches. When merging, it awaits

one incoming branch to complete before triggering the

outgoing flow.

Exclusive Gateway

Is always followed by catching events or receive tasks.

Sequence flow is routed to the subsequent event/task

which happens first.

Event‐based Gateway

When used to split the sequence flow, all outgoing

branches are activated simultaneously. When merging

parallel branches it waits for all incoming branches to

complete before triggering the outgoing flow.

Parallel Gateway

Choreography

Sub‐Process

Participant A

Participant C

Participant B

Activity types and markers

Naming conventions

35

Activities:
verb in the imperative form followed by a noun

(e.g., Approve order)

the noun can be preceded by an adjective
(e.g., Issue driver license)

the verb may be followed by a complement
(e.g., Renew driver license via offline agencies)

Avoid long labels
Articles are often omitted

Events vs Activities

36

Events are instantaneous

Activities take time (have a duration)

37

Activities
Conversations

Events

Gateways

Conversation Diagram

None: Untyped events,

indicate start point, state

changes or final states.

Message: Receiving and

sending messages.

Timer: Cyclic timer events,

points in time, time spans or

timeouts.

Error: Catching or throwing

named errors.

Cancel: Reacting to cancelled

transactions or triggering

cancellation.

Compensation: Handling or

triggering compensation.

Conditional: Reacting to

changed business conditions

or integrating business rules.

Signal: Signalling across differ‐

ent processes. A signal thrown

can be caught multiple times.

Multiple: Catching one out of

a set of events. Throwing all

events defined

Link: Off‐page connectors.

Two corresponding link events

equal a sequence flow.

Terminate: Triggering the

immediate termination of a

process.

Escalation: Escalating to

an higher level of

responsibility.

Parallel Multiple: Catching

all out of a set of parallel

events.

Start EndIntermediate

C
a
tc

h
in

g

T
h
ro

w
in

g

E
v
e
n
t

S
u
b
‐P

ro
c
e
ss

In
te

rr
u
p
ti

n
g

T
o
p
‐L

e
v
e
l

E
v
e
n
t

S
u
b
‐P

ro
c
e
ss

N
o
n
‐I

n
te

rr
u
p
ti

n
g

B
o
u
n
d
a
ry

In

te
rr

u
p
ti

n
g

B
o
u
n
d
a
ry

 N
o
n
‐

In
te

rr
u
p
ti

n
g

Sequence Flow

defines the execution

order of activities.

Conditional Flow

has a condition

assigned that defines

whether or not the

flow is used.

Default Flow

is the default branch

to be chosen if all

other conditions

evaluate to false.

Task

A Task is a unit of work, the job to be

performed. When marked with a symbol

it indicates a Sub‐Process, an activity that can

be refined.

Transaction

A Transaction is a set of activities that logically

belong together; it might follow a specified

transaction protocol.

Event

Sub‐Process

An Event Sub‐Process is placed into a Process or

Sub‐Process. It is activated when its start event

gets triggered and can interrupt the higher level

process context or run in parallel (non‐

interrupting) depending on the start event.

Call Activity
A Call Activity is a wrapper for a globally defined

Sub‐Process or Task that is reused in the current

process.

Task Types
Types specify the nature of

the action to be performed:

Send Task

Receive Task

User Task

Manual Task

Business Rule Task

Service Task

Script Task

Markers indicate execution

behavior of activities:

Activity Markers

Sub‐Process Marker

Loop Marker

Parallel MI Marker

Sequential MI Marker

~ Ad Hoc Marker

Compensation Marker

A Communication defines a set of

logically related message exchanges.

When marked with a symbol it

indicates a Sub‐Conversation, a

compound conversation element.

A Forked Conversation Link connects

Communications and multiple

Participants.

A Conversation Link connects

Communications and Participants.

Inclusive Gateway
When splitting, one or more

branches are activated. All

active incoming branches must

complete before merging.

Complex Gateway
Complex merging and

branching behavior that is not

captured by other gateways.

Exclusive Event‐based Gateway
(instantiate)
Each occurrence of a subsequent

event starts a new process

instance.

Parallel Event‐based Gateway
(instantiate)
The occurrence of all subsequent

events starts a new process

instance.

Pool

(collapsed)

Multi Instance Pool

(collapsed)

Communication

Sub‐Conversation

Pool

(collapsed)
Participant B

The order of message
exchanges can be

specified by combining

message flow and

sequence flow.

P
o
o
l

P
o
o
l

Pools (Participants) and Lanes
represent responsibilities for

activities in a process. A pool

or a lane can be an

organization, a role, or a

system. Lanes subdivide pools

or other lanes hierarchically.

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Message Flow

symbolizes information

flow across organizational

boundaries. Message flow

can be attached to pools,

activities, or message

events.

Data

TaskInput Out-

put

Data Store

A Data Object represents information flowing

through the process, such as business

documents, e‐mails, or letters.

A Data Store is a place where the process can

read or write data, e.g., a database or a filing

cabinet. It persists beyond the lifetime of the

process instance.

A Data Input is an external input for the

entire process. It can be read by an activity.

A Data Output is a variable available as result

of the entire process.

A Message is used to depict the contents of a

communication between two Participants.

A Collection Data Object represents a

collection of information, e.g., a list of order

items.

Pool (Collapsed)

Collaboration Diagram

P
o
o
l
(E

x
p
a
n
d
e
d
)

L
a
n
e

L
a
n
e

Choreographies

Choreography Diagram

A Choreography Task
represents an Interaction

(Message Exchange)

between two Participants.

Choreography

Task

Participant A

Participant B

A Choreography Sub‐
Process contains a refined

choreography with several

Interactions.

Multiple Participants Marker
denotes a set of

Participants of the

same kind.

Swimlanes

BPMN 2.0 ‐ Business Process Model and Notation

Collection

Ad‐hoc Sub‐Process

Task

Task

~

Message

Start Event

Message Flow

Data Object

Collapsed

Sub‐Process

Event‐based

Gateway

Escalation

End Event

Timer

Intermediate

Event

Receive Task

Attached

Intermediate

Timer Event

Link

Intermediate

Event

Manual Task

End

Event

Data

Store

Link

Intermediate

Event

Parallel

Multiple

Intermediate

Event

Text Annotation

Group

Multi Instance

Task (Parallel)

Message

End Event

Send Task

Parallel

Gateway

Exclusive

Gateway

Attached

Intermediate

Error Event

Signal

End

Event

Call Activity

Sub‐Process

Event Sub‐Process

Conditional

Start Event

Error End

Event

Start

Event

End

Event

Looped

Sub‐Process

condition

http://bpmb.de/poster

Participant A

Participant C
Participant B

Choreography

Task

Participant A

Participant B

Choreography

Task

Participant A

Participant C

Initiating

Message

Response

Message

Choreography

Task

Participant B

Participant A

When splitting, it routes the sequence flow to exactly

one of the outgoing branches. When merging, it awaits

one incoming branch to complete before triggering the

outgoing flow.

Exclusive Gateway

Is always followed by catching events or receive tasks.

Sequence flow is routed to the subsequent event/task

which happens first.

Event‐based Gateway

When used to split the sequence flow, all outgoing

branches are activated simultaneously. When merging

parallel branches it waits for all incoming branches to

complete before triggering the outgoing flow.

Parallel Gateway

Choreography

Sub‐Process

Participant A

Participant C

Participant B

Gateways Data

Attaching a data object with an Undirected
Association to a sequence flow indicates hand‐over

of information between the activities involved.

A Directed Association indicates information flow.

A data object can be read at the start of an

activity or written upon completion.

A Bidirected Association indicates that the data

object is modified, i.e. read and written during the

execution of an actvity.

A Data Object represents information flowing

through the process, such as business documents,

e‐mails or letters.

Events Transactions

Swimlanes

activity

Start Event: Catching an event

starts a new process instance.

Intermediate Event (catching):
The process can only continue

once an event has been caught.

Attached Intermediate Event: The

activity is aborted once an event is

caught.

Intermediate Event (throwing):
An event is thrown and the process

continues.

End Event: An event is thrown

when the end of the process is

reached.

Start EndIntermediate

Plain

Message

Timer

Error

Cancel

Compen‐

sation

Conditional

Link

Signal

Multiple

Terminate

Catching Throwing

Untyped events, typically

showing where the process

starts or ends.

Receiving and sending

messages.

Cyclic timer events, points in

time, time spans or timeouts.

Catching or throwing named

errors.

Reacting to cancelled

transactions or triggering

cancellation.

Compensation handling or

triggering compensation.

Reacting to changed business

conditions or integrating

business rules.

Signalling across different

processes. One signal thrown

can be caught multiple times.

Catching or throwing one out of

a set of events.

Off‐page connectors. Two

corresponding link events equal

a sequence flow.

Triggering the immediate

termination of a process.

Data‐based Exclusive Gateway
When splitting, it routes the sequence flow to exactly one of the outgoing

branches based on conditions. When merging, it awaits one incoming branch

to complete before triggering the outgoing flow.

Inclusive Gateway
When splitting, one or more branches are activated based on branching

conditions. When merging, it awaits all active incoming branches to

complete.

Complex Gateway
It triggers one or more branches based on complex conditions or verbal

descriptions. Use it sparingly as the semantics might not be clear.

Parallel Gateway
When used to split the sequence flow, all outgoing branches are activated

simultaneously. When merging parallel branches it waits for all incoming

branches to complete before triggering the outgoing flow.

Activities

BPMN ‐ Business Process Modeling Notation

Transaction

Activity

Compensate

Activity

Transaction

A Transaction is a set of activities that logically

belong together; it might follow a specified

transaction protocol.

Attached Intermediate Cancel Events indicate

reactions to the cancellation of a transaction.

Activities inside the transaction are compensated

upon cancellation.

Completed activities can be compensated. An

activity and the corresponding Compensate Activity

are related using an attached Intermediate
Compensation Event.

Web: bpt.hpi.uni‐potsdam.de

Oryx: oryx‐project.org

Blog: bpmn.info

BPMN Version 1.2

Business Process Technology

Prof. Dr. Mathias Weske

Authors

Gero Decker

Alexander Grosskopf

Sven Wagner‐Boysen

read

doc

write

doc

modify

doc

modify

doc
[state2]

doc
[state1]

Pool

Pool

Message Flow symbolizes

information flow across

organizational boundaries.

Message flow can be attached to

pools, activities, or message events.

The order of message exchanges

can be specified by combining

message flow and sequence flow.

P
o
o
l

P
o
o
l

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Pools and Lanes represent

responsibilities for activities in a

process. A pool or a lane can be an

organization, a role, or a system.

Lanes sub‐divide pools or other

lanes hierarchically.

Pool
Collapsed Pools hide all internals

of the contained processes.

Task

Task

~

Collapsed

Subprocess

Intermediate

Message Event

Task

Task

Task

Task

Loop

Activity

Multiple

Instances

Collapsed Pool

L
a
n
e

L
a
n
e

E
x
p
a
n
d
e
d
 P

o
o
l

L
a
n
e

L
a
n
e

Data

Object

[state1]

Data

Object

[state2]

Conditional

Start Event

Parallel

Gateway

Parallel

Gateway

Grouping

End Event

Terminate

End Event

Data‐based

Exclusive

Gateway

Embedded

Subprocess

Ad‐hoc Subprocess

Text Annotation

Data

Object

Intermediate

Timer Event

Sequence

Flow

Intermediate

Error Event

Exception

Flow

Event‐based

Exclusive

Gateway Intermediate

Message Event

Intermediate

Timer Event

Catching Throwing

Event‐based Exclusive Gateway
Is always followed by catching events or receive tasks. Sequence flow is

routed to the subsequent event/task which happens first.

Condition

Default

Flow

Multiple

Instances

Loop

Multiple Instances of the

same activity are started in

parallel or sequentially, e.g.

for each line item in an

order.

Loop Activity is iterated if a

loop condition is true. The

condition is either tested

before or after the activity

execution.

Ad‐hoc Subprocesses
contain tasks only. Each task

can be executed arbitrarily

often until a completion

condition is fulfilled.

Collapsed

Subprocess

Task
A Task is a unit of

work, the job to be

performed.

A Subprocess is a

decomposable activity.

It can be collapsed to

hide the details.

An Expanded Subprocess contains a

valid BPMN diagram.

Expanded SubprocessAd‐hoc Subprocess

~

Sequence Flow defines the

execution order of activities.

Conditional Flow has a

condition assigned that

defines whether or not the

flow is used.

Default Flow is the default

branch to be chosen if all

other conditions evaluate to

false.

End Error Event

Message Flow

Documentation

Group

Text Annotation

An arbitrary set of objects can be

defined as a Group to show that

they logically belong together.

Any object can be associated with a

Text Annotation to provide

additional documentation.

Gateways Data

Attaching a data object with an Undirected
Association to a sequence flow indicates hand‐over

of information between the activities involved.

A Directed Association indicates information flow.

A data object can be read at the start of an

activity or written upon completion.

A Bidirected Association indicates that the data

object is modified, i.e. read and written during the

execution of an actvity.

A Data Object represents information flowing

through the process, such as business documents,

e‐mails or letters.

Events Transactions

Swimlanes

activity

Start Event: Catching an event

starts a new process instance.

Intermediate Event (catching):
The process can only continue

once an event has been caught.

Attached Intermediate Event: The

activity is aborted once an event is

caught.

Intermediate Event (throwing):
An event is thrown and the process

continues.

End Event: An event is thrown

when the end of the process is

reached.

Start EndIntermediate

Plain

Message

Timer

Error

Cancel

Compen‐

sation

Conditional

Link

Signal

Multiple

Terminate

Catching Throwing

Untyped events, typically

showing where the process

starts or ends.

Receiving and sending

messages.

Cyclic timer events, points in

time, time spans or timeouts.

Catching or throwing named

errors.

Reacting to cancelled

transactions or triggering

cancellation.

Compensation handling or

triggering compensation.

Reacting to changed business

conditions or integrating

business rules.

Signalling across different

processes. One signal thrown

can be caught multiple times.

Catching or throwing one out of

a set of events.

Off‐page connectors. Two

corresponding link events equal

a sequence flow.

Triggering the immediate

termination of a process.

Data‐based Exclusive Gateway
When splitting, it routes the sequence flow to exactly one of the outgoing

branches based on conditions. When merging, it awaits one incoming branch

to complete before triggering the outgoing flow.

Inclusive Gateway
When splitting, one or more branches are activated based on branching

conditions. When merging, it awaits all active incoming branches to

complete.

Complex Gateway
It triggers one or more branches based on complex conditions or verbal

descriptions. Use it sparingly as the semantics might not be clear.

Parallel Gateway
When used to split the sequence flow, all outgoing branches are activated

simultaneously. When merging parallel branches it waits for all incoming

branches to complete before triggering the outgoing flow.

Activities

BPMN ‐ Business Process Modeling Notation

Transaction

Activity

Compensate

Activity

Transaction

A Transaction is a set of activities that logically

belong together; it might follow a specified

transaction protocol.

Attached Intermediate Cancel Events indicate

reactions to the cancellation of a transaction.

Activities inside the transaction are compensated

upon cancellation.

Completed activities can be compensated. An

activity and the corresponding Compensate Activity

are related using an attached Intermediate
Compensation Event.

Web: bpt.hpi.uni‐potsdam.de

Oryx: oryx‐project.org

Blog: bpmn.info

BPMN Version 1.2

Business Process Technology

Prof. Dr. Mathias Weske

Authors

Gero Decker

Alexander Grosskopf

Sven Wagner‐Boysen

read

doc

write

doc

modify

doc

modify

doc
[state2]

doc
[state1]

Pool

Pool

Message Flow symbolizes

information flow across

organizational boundaries.

Message flow can be attached to

pools, activities, or message events.

The order of message exchanges

can be specified by combining

message flow and sequence flow.

P
o
o
l

P
o
o
l

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Pools and Lanes represent

responsibilities for activities in a

process. A pool or a lane can be an

organization, a role, or a system.

Lanes sub‐divide pools or other

lanes hierarchically.

Pool
Collapsed Pools hide all internals

of the contained processes.

Task

Task

~

Collapsed

Subprocess

Intermediate

Message Event

Task

Task

Task

Task

Loop

Activity

Multiple

Instances

Collapsed Pool

L
a
n
e

L
a
n
e

E
x
p
a
n
d
e
d
 P

o
o
l

L
a
n
e

L
a
n
e

Data

Object

[state1]

Data

Object

[state2]

Conditional

Start Event

Parallel

Gateway

Parallel

Gateway

Grouping

End Event

Terminate

End Event

Data‐based

Exclusive

Gateway

Embedded

Subprocess

Ad‐hoc Subprocess

Text Annotation

Data

Object

Intermediate

Timer Event

Sequence

Flow

Intermediate

Error Event

Exception

Flow

Event‐based

Exclusive

Gateway Intermediate

Message Event

Intermediate

Timer Event

Catching Throwing

Event‐based Exclusive Gateway
Is always followed by catching events or receive tasks. Sequence flow is

routed to the subsequent event/task which happens first.

Condition

Default

Flow

Multiple

Instances

Loop

Multiple Instances of the

same activity are started in

parallel or sequentially, e.g.

for each line item in an

order.

Loop Activity is iterated if a

loop condition is true. The

condition is either tested

before or after the activity

execution.

Ad‐hoc Subprocesses
contain tasks only. Each task

can be executed arbitrarily

often until a completion

condition is fulfilled.

Collapsed

Subprocess

Task
A Task is a unit of

work, the job to be

performed.

A Subprocess is a

decomposable activity.

It can be collapsed to

hide the details.

An Expanded Subprocess contains a

valid BPMN diagram.

Expanded SubprocessAd‐hoc Subprocess

~

Sequence Flow defines the

execution order of activities.

Conditional Flow has a

condition assigned that

defines whether or not the

flow is used.

Default Flow is the default

branch to be chosen if all

other conditions evaluate to

false.

End Error Event

Message Flow

Documentation

Group

Text Annotation

An arbitrary set of objects can be

defined as a Group to show that

they logically belong together.

Any object can be associated with a

Text Annotation to provide

additional documentation.

Gateways

38

A gateway is used to control the splitting and joining of
paths in the sequence flow

 (conditional, fork, wait)

A gateway is represented as a diamond shape
Suitable markers are used to indicate

the nature of behaviour control

39

Gateways Data

Attaching a data object with an Undirected
Association to a sequence flow indicates hand‐over

of information between the activities involved.

A Directed Association indicates information flow.

A data object can be read at the start of an

activity or written upon completion.

A Bidirected Association indicates that the data

object is modified, i.e. read and written during the

execution of an actvity.

A Data Object represents information flowing

through the process, such as business documents,

e‐mails or letters.

Events Transactions

Swimlanes

activity

Start Event: Catching an event

starts a new process instance.

Intermediate Event (catching):
The process can only continue

once an event has been caught.

Attached Intermediate Event: The

activity is aborted once an event is

caught.

Intermediate Event (throwing):
An event is thrown and the process

continues.

End Event: An event is thrown

when the end of the process is

reached.

Start EndIntermediate

Plain

Message

Timer

Error

Cancel

Compen‐

sation

Conditional

Link

Signal

Multiple

Terminate

Catching Throwing

Untyped events, typically

showing where the process

starts or ends.

Receiving and sending

messages.

Cyclic timer events, points in

time, time spans or timeouts.

Catching or throwing named

errors.

Reacting to cancelled

transactions or triggering

cancellation.

Compensation handling or

triggering compensation.

Reacting to changed business

conditions or integrating

business rules.

Signalling across different

processes. One signal thrown

can be caught multiple times.

Catching or throwing one out of

a set of events.

Off‐page connectors. Two

corresponding link events equal

a sequence flow.

Triggering the immediate

termination of a process.

Data‐based Exclusive Gateway
When splitting, it routes the sequence flow to exactly one of the outgoing

branches based on conditions. When merging, it awaits one incoming branch

to complete before triggering the outgoing flow.

Inclusive Gateway
When splitting, one or more branches are activated based on branching

conditions. When merging, it awaits all active incoming branches to

complete.

Complex Gateway
It triggers one or more branches based on complex conditions or verbal

descriptions. Use it sparingly as the semantics might not be clear.

Parallel Gateway
When used to split the sequence flow, all outgoing branches are activated

simultaneously. When merging parallel branches it waits for all incoming

branches to complete before triggering the outgoing flow.

Activities

BPMN ‐ Business Process Modeling Notation

Transaction

Activity

Compensate

Activity

Transaction

A Transaction is a set of activities that logically

belong together; it might follow a specified

transaction protocol.

Attached Intermediate Cancel Events indicate

reactions to the cancellation of a transaction.

Activities inside the transaction are compensated

upon cancellation.

Completed activities can be compensated. An

activity and the corresponding Compensate Activity

are related using an attached Intermediate
Compensation Event.

Web: bpt.hpi.uni‐potsdam.de

Oryx: oryx‐project.org

Blog: bpmn.info

BPMN Version 1.2

Business Process Technology

Prof. Dr. Mathias Weske

Authors

Gero Decker

Alexander Grosskopf

Sven Wagner‐Boysen

read

doc

write

doc

modify

doc

modify

doc
[state2]

doc
[state1]

Pool

Pool

Message Flow symbolizes

information flow across

organizational boundaries.

Message flow can be attached to

pools, activities, or message events.

The order of message exchanges

can be specified by combining

message flow and sequence flow.

P
o
o
l

P
o
o
l

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Pools and Lanes represent

responsibilities for activities in a

process. A pool or a lane can be an

organization, a role, or a system.

Lanes sub‐divide pools or other

lanes hierarchically.

Pool
Collapsed Pools hide all internals

of the contained processes.

Task

Task

~

Collapsed

Subprocess

Intermediate

Message Event

Task

Task

Task

Task

Loop

Activity

Multiple

Instances

Collapsed Pool

L
a
n
e

L
a
n
e

E
x
p
a
n
d
e
d
 P

o
o
l

L
a
n
e

L
a
n
e

Data

Object

[state1]

Data

Object

[state2]

Conditional

Start Event

Parallel

Gateway

Parallel

Gateway

Grouping

End Event

Terminate

End Event

Data‐based

Exclusive

Gateway

Embedded

Subprocess

Ad‐hoc Subprocess

Text Annotation

Data

Object

Intermediate

Timer Event

Sequence

Flow

Intermediate

Error Event

Exception

Flow

Event‐based

Exclusive

Gateway Intermediate

Message Event

Intermediate

Timer Event

Catching Throwing

Event‐based Exclusive Gateway
Is always followed by catching events or receive tasks. Sequence flow is

routed to the subsequent event/task which happens first.

Condition

Default

Flow

Multiple

Instances

Loop

Multiple Instances of the

same activity are started in

parallel or sequentially, e.g.

for each line item in an

order.

Loop Activity is iterated if a

loop condition is true. The

condition is either tested

before or after the activity

execution.

Ad‐hoc Subprocesses
contain tasks only. Each task

can be executed arbitrarily

often until a completion

condition is fulfilled.

Collapsed

Subprocess

Task
A Task is a unit of

work, the job to be

performed.

A Subprocess is a

decomposable activity.

It can be collapsed to

hide the details.

An Expanded Subprocess contains a

valid BPMN diagram.

Expanded SubprocessAd‐hoc Subprocess

~

Sequence Flow defines the

execution order of activities.

Conditional Flow has a

condition assigned that

defines whether or not the

flow is used.

Default Flow is the default

branch to be chosen if all

other conditions evaluate to

false.

End Error Event

Message Flow

Documentation

Group

Text Annotation

An arbitrary set of objects can be

defined as a Group to show that

they logically belong together.

Any object can be associated with a

Text Annotation to provide

additional documentation.

Gateway markers

BPMN basics:
Artefacts

(data-objects, groups, text annotations)

40

Artefacts

41

BPMN is designed to allow modellers and modelling tools
some flexibility in extending the basic notation

Any number of artefacts can be added to a diagram
as appropriate for the specific context of the

business process being modelled

BPMN includes three pre-defined types of artefacts:
Data object

Group
Text annotation

Activities
Conversations

Events

Gateways

Conversation Diagram

None: Untyped events,

indicate start point, state

changes or final states.

Message: Receiving and

sending messages.

Timer: Cyclic timer events,

points in time, time spans or

timeouts.

Error: Catching or throwing

named errors.

Cancel: Reacting to cancelled

transactions or triggering

cancellation.

Compensation: Handling or

triggering compensation.

Conditional: Reacting to

changed business conditions

or integrating business rules.

Signal: Signalling across differ‐

ent processes. A signal thrown

can be caught multiple times.

Multiple: Catching one out of

a set of events. Throwing all

events defined

Link: Off‐page connectors.

Two corresponding link events

equal a sequence flow.

Terminate: Triggering the

immediate termination of a

process.

Escalation: Escalating to

an higher level of

responsibility.

Parallel Multiple: Catching

all out of a set of parallel

events.

Start EndIntermediate

C
a
tc

h
in

g

T
h
ro

w
in

g

E
v
e
n
t

S
u
b
‐P

ro
c
e
ss

In
te

rr
u
p
ti

n
g

T
o
p
‐L

e
v
e
l

E
v
e
n
t

S
u
b
‐P

ro
c
e
ss

N
o
n
‐I

n
te

rr
u
p
ti

n
g

B
o
u
n
d
a
ry

In

te
rr

u
p
ti

n
g

B
o
u
n
d
a
ry

 N
o
n
‐

In
te

rr
u
p
ti

n
g

Sequence Flow

defines the execution

order of activities.

Conditional Flow

has a condition

assigned that defines

whether or not the

flow is used.

Default Flow

is the default branch

to be chosen if all

other conditions

evaluate to false.

Task

A Task is a unit of work, the job to be

performed. When marked with a symbol

it indicates a Sub‐Process, an activity that can

be refined.

Transaction

A Transaction is a set of activities that logically

belong together; it might follow a specified

transaction protocol.

Event

Sub‐Process

An Event Sub‐Process is placed into a Process or

Sub‐Process. It is activated when its start event

gets triggered and can interrupt the higher level

process context or run in parallel (non‐

interrupting) depending on the start event.

Call Activity
A Call Activity is a wrapper for a globally defined

Sub‐Process or Task that is reused in the current

process.

Task Types
Types specify the nature of

the action to be performed:

Send Task

Receive Task

User Task

Manual Task

Business Rule Task

Service Task

Script Task

Markers indicate execution

behavior of activities:

Activity Markers

Sub‐Process Marker

Loop Marker

Parallel MI Marker

Sequential MI Marker

~ Ad Hoc Marker

Compensation Marker

A Communication defines a set of

logically related message exchanges.

When marked with a symbol it

indicates a Sub‐Conversation, a

compound conversation element.

A Forked Conversation Link connects

Communications and multiple

Participants.

A Conversation Link connects

Communications and Participants.

Inclusive Gateway
When splitting, one or more

branches are activated. All

active incoming branches must

complete before merging.

Complex Gateway
Complex merging and

branching behavior that is not

captured by other gateways.

Exclusive Event‐based Gateway
(instantiate)
Each occurrence of a subsequent

event starts a new process

instance.

Parallel Event‐based Gateway
(instantiate)
The occurrence of all subsequent

events starts a new process

instance.

Pool

(collapsed)

Multi Instance Pool

(collapsed)

Communication

Sub‐Conversation

Pool

(collapsed)
Participant B

The order of message
exchanges can be

specified by combining

message flow and

sequence flow.

P
o
o
l

P
o
o
l

Pools (Participants) and Lanes
represent responsibilities for

activities in a process. A pool

or a lane can be an

organization, a role, or a

system. Lanes subdivide pools

or other lanes hierarchically.

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Message Flow

symbolizes information

flow across organizational

boundaries. Message flow

can be attached to pools,

activities, or message

events.

Data

TaskInput Out-

put

Data Store

A Data Object represents information flowing

through the process, such as business

documents, e‐mails, or letters.

A Data Store is a place where the process can

read or write data, e.g., a database or a filing

cabinet. It persists beyond the lifetime of the

process instance.

A Data Input is an external input for the

entire process. It can be read by an activity.

A Data Output is a variable available as result

of the entire process.

A Message is used to depict the contents of a

communication between two Participants.

A Collection Data Object represents a

collection of information, e.g., a list of order

items.

Pool (Collapsed)

Collaboration Diagram

P
o
o
l
(E

x
p
a
n
d
e
d
)

L
a
n
e

L
a
n
e

Choreographies

Choreography Diagram

A Choreography Task
represents an Interaction

(Message Exchange)

between two Participants.

Choreography

Task

Participant A

Participant B

A Choreography Sub‐
Process contains a refined

choreography with several

Interactions.

Multiple Participants Marker
denotes a set of

Participants of the

same kind.

Swimlanes

BPMN 2.0 ‐ Business Process Model and Notation

Collection

Ad‐hoc Sub‐Process

Task

Task

~

Message

Start Event

Message Flow

Data Object

Collapsed

Sub‐Process

Event‐based

Gateway

Escalation

End Event

Timer

Intermediate

Event

Receive Task

Attached

Intermediate

Timer Event

Link

Intermediate

Event

Manual Task

End

Event

Data

Store

Link

Intermediate

Event

Parallel

Multiple

Intermediate

Event

Text Annotation

Group

Multi Instance

Task (Parallel)

Message

End Event

Send Task

Parallel

Gateway

Exclusive

Gateway

Attached

Intermediate

Error Event

Signal

End

Event

Call Activity

Sub‐Process

Event Sub‐Process

Conditional

Start Event

Error End

Event

Start

Event

End

Event

Looped

Sub‐Process

condition

http://bpmb.de/poster

Participant A

Participant C
Participant B

Choreography

Task

Participant A

Participant B

Choreography

Task

Participant A

Participant C

Initiating

Message

Response

Message

Choreography

Task

Participant B

Participant A

When splitting, it routes the sequence flow to exactly

one of the outgoing branches. When merging, it awaits

one incoming branch to complete before triggering the

outgoing flow.

Exclusive Gateway

Is always followed by catching events or receive tasks.

Sequence flow is routed to the subsequent event/task

which happens first.

Event‐based Gateway

When used to split the sequence flow, all outgoing

branches are activated simultaneously. When merging

parallel branches it waits for all incoming branches to

complete before triggering the outgoing flow.

Parallel Gateway

Choreography

Sub‐Process

Participant A

Participant C

Participant B

Data object

42

A data object specifies the data that are required or
produced by an activity

A data object is often represented by the usual file icon

Activities
Conversations

Events

Gateways

Conversation Diagram

None: Untyped events,

indicate start point, state

changes or final states.

Message: Receiving and

sending messages.

Timer: Cyclic timer events,

points in time, time spans or

timeouts.

Error: Catching or throwing

named errors.

Cancel: Reacting to cancelled

transactions or triggering

cancellation.

Compensation: Handling or

triggering compensation.

Conditional: Reacting to

changed business conditions

or integrating business rules.

Signal: Signalling across differ‐

ent processes. A signal thrown

can be caught multiple times.

Multiple: Catching one out of

a set of events. Throwing all

events defined

Link: Off‐page connectors.

Two corresponding link events

equal a sequence flow.

Terminate: Triggering the

immediate termination of a

process.

Escalation: Escalating to

an higher level of

responsibility.

Parallel Multiple: Catching

all out of a set of parallel

events.

Start EndIntermediate

C
a
tc

h
in

g

T
h
ro

w
in

g

E
v
e
n
t

S
u
b
‐P

ro
c
e
ss

In
te

rr
u
p
ti

n
g

T
o
p
‐L

e
v
e
l

E
v
e
n
t

S
u
b
‐P

ro
c
e
ss

N
o
n
‐I

n
te

rr
u
p
ti

n
g

B
o
u
n
d
a
ry

In

te
rr

u
p
ti

n
g

B
o
u
n
d
a
ry

 N
o
n
‐

In
te

rr
u
p
ti

n
g

Sequence Flow

defines the execution

order of activities.

Conditional Flow

has a condition

assigned that defines

whether or not the

flow is used.

Default Flow

is the default branch

to be chosen if all

other conditions

evaluate to false.

Task

A Task is a unit of work, the job to be

performed. When marked with a symbol

it indicates a Sub‐Process, an activity that can

be refined.

Transaction

A Transaction is a set of activities that logically

belong together; it might follow a specified

transaction protocol.

Event

Sub‐Process

An Event Sub‐Process is placed into a Process or

Sub‐Process. It is activated when its start event

gets triggered and can interrupt the higher level

process context or run in parallel (non‐

interrupting) depending on the start event.

Call Activity
A Call Activity is a wrapper for a globally defined

Sub‐Process or Task that is reused in the current

process.

Task Types
Types specify the nature of

the action to be performed:

Send Task

Receive Task

User Task

Manual Task

Business Rule Task

Service Task

Script Task

Markers indicate execution

behavior of activities:

Activity Markers

Sub‐Process Marker

Loop Marker

Parallel MI Marker

Sequential MI Marker

~ Ad Hoc Marker

Compensation Marker

A Communication defines a set of

logically related message exchanges.

When marked with a symbol it

indicates a Sub‐Conversation, a

compound conversation element.

A Forked Conversation Link connects

Communications and multiple

Participants.

A Conversation Link connects

Communications and Participants.

Inclusive Gateway
When splitting, one or more

branches are activated. All

active incoming branches must

complete before merging.

Complex Gateway
Complex merging and

branching behavior that is not

captured by other gateways.

Exclusive Event‐based Gateway
(instantiate)
Each occurrence of a subsequent

event starts a new process

instance.

Parallel Event‐based Gateway
(instantiate)
The occurrence of all subsequent

events starts a new process

instance.

Pool

(collapsed)

Multi Instance Pool

(collapsed)

Communication

Sub‐Conversation

Pool

(collapsed)
Participant B

The order of message
exchanges can be

specified by combining

message flow and

sequence flow.

P
o
o
l

P
o
o
l

Pools (Participants) and Lanes
represent responsibilities for

activities in a process. A pool

or a lane can be an

organization, a role, or a

system. Lanes subdivide pools

or other lanes hierarchically.

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Message Flow

symbolizes information

flow across organizational

boundaries. Message flow

can be attached to pools,

activities, or message

events.

Data

TaskInput Out-

put

Data Store

A Data Object represents information flowing

through the process, such as business

documents, e‐mails, or letters.

A Data Store is a place where the process can

read or write data, e.g., a database or a filing

cabinet. It persists beyond the lifetime of the

process instance.

A Data Input is an external input for the

entire process. It can be read by an activity.

A Data Output is a variable available as result

of the entire process.

A Message is used to depict the contents of a

communication between two Participants.

A Collection Data Object represents a

collection of information, e.g., a list of order

items.

Pool (Collapsed)

Collaboration Diagram

P
o
o
l
(E

x
p
a
n
d
e
d
)

L
a
n
e

L
a
n
e

Choreographies

Choreography Diagram

A Choreography Task
represents an Interaction

(Message Exchange)

between two Participants.

Choreography

Task

Participant A

Participant B

A Choreography Sub‐
Process contains a refined

choreography with several

Interactions.

Multiple Participants Marker
denotes a set of

Participants of the

same kind.

Swimlanes

BPMN 2.0 ‐ Business Process Model and Notation

Collection

Ad‐hoc Sub‐Process

Task

Task

~

Message

Start Event

Message Flow

Data Object

Collapsed

Sub‐Process

Event‐based

Gateway

Escalation

End Event

Timer

Intermediate

Event

Receive Task

Attached

Intermediate

Timer Event

Link

Intermediate

Event

Manual Task

End

Event

Data

Store

Link

Intermediate

Event

Parallel

Multiple

Intermediate

Event

Text Annotation

Group

Multi Instance

Task (Parallel)

Message

End Event

Send Task

Parallel

Gateway

Exclusive

Gateway

Attached

Intermediate

Error Event

Signal

End

Event

Call Activity

Sub‐Process

Event Sub‐Process

Conditional

Start Event

Error End

Event

Start

Event

End

Event

Looped

Sub‐Process

condition

http://bpmb.de/poster

Participant A

Participant C
Participant B

Choreography

Task

Participant A

Participant B

Choreography

Task

Participant A

Participant C

Initiating

Message

Response

Message

Choreography

Task

Participant B

Participant A

When splitting, it routes the sequence flow to exactly

one of the outgoing branches. When merging, it awaits

one incoming branch to complete before triggering the

outgoing flow.

Exclusive Gateway

Is always followed by catching events or receive tasks.

Sequence flow is routed to the subsequent event/task

which happens first.

Event‐based Gateway

When used to split the sequence flow, all outgoing

branches are activated simultaneously. When merging

parallel branches it waits for all incoming branches to

complete before triggering the outgoing flow.

Parallel Gateway

Choreography

Sub‐Process

Participant A

Participant C

Participant B

Activities
Conversations

Events

Gateways

Conversation Diagram

None: Untyped events,

indicate start point, state

changes or final states.

Message: Receiving and

sending messages.

Timer: Cyclic timer events,

points in time, time spans or

timeouts.

Error: Catching or throwing

named errors.

Cancel: Reacting to cancelled

transactions or triggering

cancellation.

Compensation: Handling or

triggering compensation.

Conditional: Reacting to

changed business conditions

or integrating business rules.

Signal: Signalling across differ‐

ent processes. A signal thrown

can be caught multiple times.

Multiple: Catching one out of

a set of events. Throwing all

events defined

Link: Off‐page connectors.

Two corresponding link events

equal a sequence flow.

Terminate: Triggering the

immediate termination of a

process.

Escalation: Escalating to

an higher level of

responsibility.

Parallel Multiple: Catching

all out of a set of parallel

events.

Start EndIntermediate

C
a
tc

h
in

g

T
h
ro

w
in

g

E
v
e
n
t

S
u
b
‐P

ro
c
e
ss

In
te

rr
u
p
ti

n
g

T
o
p
‐L

e
v
e
l

E
v
e
n
t

S
u
b
‐P

ro
c
e
ss

N
o
n
‐I

n
te

rr
u
p
ti

n
g

B
o
u
n
d
a
ry

In

te
rr

u
p
ti

n
g

B
o
u
n
d
a
ry

 N
o
n
‐

In
te

rr
u
p
ti

n
g

Sequence Flow

defines the execution

order of activities.

Conditional Flow

has a condition

assigned that defines

whether or not the

flow is used.

Default Flow

is the default branch

to be chosen if all

other conditions

evaluate to false.

Task

A Task is a unit of work, the job to be

performed. When marked with a symbol

it indicates a Sub‐Process, an activity that can

be refined.

Transaction

A Transaction is a set of activities that logically

belong together; it might follow a specified

transaction protocol.

Event

Sub‐Process

An Event Sub‐Process is placed into a Process or

Sub‐Process. It is activated when its start event

gets triggered and can interrupt the higher level

process context or run in parallel (non‐

interrupting) depending on the start event.

Call Activity
A Call Activity is a wrapper for a globally defined

Sub‐Process or Task that is reused in the current

process.

Task Types
Types specify the nature of

the action to be performed:

Send Task

Receive Task

User Task

Manual Task

Business Rule Task

Service Task

Script Task

Markers indicate execution

behavior of activities:

Activity Markers

Sub‐Process Marker

Loop Marker

Parallel MI Marker

Sequential MI Marker

~ Ad Hoc Marker

Compensation Marker

A Communication defines a set of

logically related message exchanges.

When marked with a symbol it

indicates a Sub‐Conversation, a

compound conversation element.

A Forked Conversation Link connects

Communications and multiple

Participants.

A Conversation Link connects

Communications and Participants.

Inclusive Gateway
When splitting, one or more

branches are activated. All

active incoming branches must

complete before merging.

Complex Gateway
Complex merging and

branching behavior that is not

captured by other gateways.

Exclusive Event‐based Gateway
(instantiate)
Each occurrence of a subsequent

event starts a new process

instance.

Parallel Event‐based Gateway
(instantiate)
The occurrence of all subsequent

events starts a new process

instance.

Pool

(collapsed)

Multi Instance Pool

(collapsed)

Communication

Sub‐Conversation

Pool

(collapsed)
Participant B

The order of message
exchanges can be

specified by combining

message flow and

sequence flow.

P
o
o
l

P
o
o
l

Pools (Participants) and Lanes
represent responsibilities for

activities in a process. A pool

or a lane can be an

organization, a role, or a

system. Lanes subdivide pools

or other lanes hierarchically.

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Message Flow

symbolizes information

flow across organizational

boundaries. Message flow

can be attached to pools,

activities, or message

events.

Data

TaskInput Out-

put

Data Store

A Data Object represents information flowing

through the process, such as business

documents, e‐mails, or letters.

A Data Store is a place where the process can

read or write data, e.g., a database or a filing

cabinet. It persists beyond the lifetime of the

process instance.

A Data Input is an external input for the

entire process. It can be read by an activity.

A Data Output is a variable available as result

of the entire process.

A Message is used to depict the contents of a

communication between two Participants.

A Collection Data Object represents a

collection of information, e.g., a list of order

items.

Pool (Collapsed)

Collaboration Diagram

P
o
o
l
(E

x
p
a
n
d
e
d
)

L
a
n
e

L
a
n
e

Choreographies

Choreography Diagram

A Choreography Task
represents an Interaction

(Message Exchange)

between two Participants.

Choreography

Task

Participant A

Participant B

A Choreography Sub‐
Process contains a refined

choreography with several

Interactions.

Multiple Participants Marker
denotes a set of

Participants of the

same kind.

Swimlanes

BPMN 2.0 ‐ Business Process Model and Notation

Collection

Ad‐hoc Sub‐Process

Task

Task

~

Message

Start Event

Message Flow

Data Object

Collapsed

Sub‐Process

Event‐based

Gateway

Escalation

End Event

Timer

Intermediate

Event

Receive Task

Attached

Intermediate

Timer Event

Link

Intermediate

Event

Manual Task

End

Event

Data

Store

Link

Intermediate

Event

Parallel

Multiple

Intermediate

Event

Text Annotation

Group

Multi Instance

Task (Parallel)

Message

End Event

Send Task

Parallel

Gateway

Exclusive

Gateway

Attached

Intermediate

Error Event

Signal

End

Event

Call Activity

Sub‐Process

Event Sub‐Process

Conditional

Start Event

Error End

Event

Start

Event

End

Event

Looped

Sub‐Process

condition

http://bpmb.de/poster

Participant A

Participant C
Participant B

Choreography

Task

Participant A

Participant B

Choreography

Task

Participant A

Participant C

Initiating

Message

Response

Message

Choreography

Task

Participant B

Participant A

When splitting, it routes the sequence flow to exactly

one of the outgoing branches. When merging, it awaits

one incoming branch to complete before triggering the

outgoing flow.

Exclusive Gateway

Is always followed by catching events or receive tasks.

Sequence flow is routed to the subsequent event/task

which happens first.

Event‐based Gateway

When used to split the sequence flow, all outgoing

branches are activated simultaneously. When merging

parallel branches it waits for all incoming branches to

complete before triggering the outgoing flow.

Parallel Gateway

Choreography

Sub‐Process

Participant A

Participant C

Participant B

Group

43

An arbitrary set of objects can be defined as a group
to show that they logically belong together

A group is represented by rounded corner rectangles with
dashed lines

BPTrends July, 2004 Introduction to BPMN

(c) 2004 Stephen A. White. All Rights Reserved. www.bptrends.com

6

Artifacts

BPMN was designed to allow modelers and modeling tools some flexibility in extending the basic
notation and in providing the ability to add context appropriate to a specific modeling situation,
such as for a vertical market (e.g., insurance or banking). Any number of Artifacts can be added to a
diagram, as appropriate for the context of the business processes being modeled. The current
version of the BPMN specification pre-defines only three types of BPD Artifacts, which are:

Data Object

Data Objects are a mechanism to show how

data is required or produced by activities.

They are connected to activities through
Associations.

Group

A Group is represented by a rounded corner
rectangle drawn with a dashed line (see the

figure to the right). The grouping can be used
for documentation or analysis purposes, but

does not affect the Sequence Flow.

Annotation

Annotations are a mechanism for a modeler
to provide additional text information for the

reader of a BPMN Diagram (see the figure to
the right).

Modelers can create their own types of Artifacts, which add more details about how the process is
performed—quite often to show the inputs and outputs of activities in the Process. However, the
basic structure of the Process, as determined by the Activities, Gateways, and Sequence Flow, is not
changed with the addition of Artifacts in the diagram, as you can see by comparing Figure 4 and
Figure 5.

Annotation

44

Any object can be associated with a text annotation
to provide any additional information and documentation

that can be needed

A text annotation is represented as a dotted-line call-out

BPTrends July, 2004 Introduction to BPMN

(c) 2004 Stephen A. White. All Rights Reserved. www.bptrends.com

6

Artifacts

BPMN was designed to allow modelers and modeling tools some flexibility in extending the basic
notation and in providing the ability to add context appropriate to a specific modeling situation,
such as for a vertical market (e.g., insurance or banking). Any number of Artifacts can be added to a
diagram, as appropriate for the context of the business processes being modeled. The current
version of the BPMN specification pre-defines only three types of BPD Artifacts, which are:

Data Object

Data Objects are a mechanism to show how

data is required or produced by activities.

They are connected to activities through
Associations.

Group

A Group is represented by a rounded corner
rectangle drawn with a dashed line (see the

figure to the right). The grouping can be used
for documentation or analysis purposes, but

does not affect the Sequence Flow.

Annotation

Annotations are a mechanism for a modeler
to provide additional text information for the

reader of a BPMN Diagram (see the figure to
the right).

Modelers can create their own types of Artifacts, which add more details about how the process is
performed—quite often to show the inputs and outputs of activities in the Process. However, the
basic structure of the Process, as determined by the Activities, Gateways, and Sequence Flow, is not
changed with the addition of Artifacts in the diagram, as you can see by comparing Figure 4 and
Figure 5.

45

Events Activities

Artefacts

Graphical connecting objects

Sequence flow mechanism Compensation Association

S
ta

rt

In
te

rm
e

d
ia

te

E
n

d

Message

Timer

Error

Multiple

Link

Rule

Compensation

Cancel

Terminate

General

Event type

A message arrives from a participant and triggers the Event. This causes

process to {start, continue, end} if it was waiting for a message, or changes

the flow if exception happens. End type of message event indicates that a

message is sent to a participant at the conclusion of the process.

Event flow
Description

An event is something that »happens« during the process. These events affect the

flow of the process and usually have a cause (trigger) or an impact (result).

Examples: 'Email received', '3 o'clock', 'Warehouse empty', 'Critical error',...

An activity is a generic type of work that a company performs. An

activity can be atomic (task) or compound (process, sub-process).

Examples: 'Send a letter', 'Write a report', 'Calculate the interests',...

~

Description

Process

Collapsed

sub-process

Expanded

sub-process

Task

Transaction

A task is used to represent the

activity on the lowest abstraction

level.

More information about the

transaction and compensation

attribute can be found under

»Compensation Association«.

Looping

Ad Hoc

Compensation

Task/Subprocess special attributes

The task or sub-process is repeated.

The tasks in the sub-process can not be connected with

sequence flows at design time.

Multiple instances of task or sub-process will be created.

The symbol represents a compensation task or sub-process.

Multiple instances

Gateways
A gateway is used to split or merge multiple process

flows. Thus it will determine branching, forking,

merging and joining of paths. Examples: 'Condition true?

– yes/no', 'Choose colour? – red/green/blue',...

Gateway control types

Data based exclusive decision or

merging. Both symbols have equal

meaning. See also Conditional flow.

Event based exclusive decision only.

Data based inclusive decision or

merging.

Complex condition (a combination of

basic conditions)

Parallel forking and joining

(synchronization).

XOR
(DATA)

XOR
(EVENT)

OR

COM-

PLEX

AND

Swimlanes

P
o

o
l L
a

n
e

Pools and lanes are used to represent organizations,

roles, systems and responsibilities. Examples:

'University', 'Sales division', 'Warehouse', 'ERP system',...

A Lane is a sub-partition within a pool used to organize and

categorize activities.

A Pool represents a participant in a process. It contains a business

process and is used in B2B situations.

A Pool MUST contain 0 or 1

business process.

A Pool can contain 0 or more

lanes.

Two pools can only be connected

with message flows.

Artefacts are used to provide additional information about the process. If

required, modellers and modelling tools are free to add new artefacts.

Examples of data objects: 'A letter', 'Email message', 'XML document',

'Confirmation',...

Set of standardized artefacts

Data object

Group

Annotation

Data objects provide information about what activities are required to be

triggered and/or what they produce. They are considered as Artefacts

because they do not have any direct effect on the Sequence Flow or

Message Flow of the Process. The state of the data object should also be

set.

Grouping can be used for documentation or analysis purposes. Groups

can also be used to identify the activities of a distributed transaction that is

shown across Pools. Grouping of activities does not affect the Sequence

or Message Flow.

Text Annotations are a mechanism for a modeller to provide additional

information for the reader of a BPMN Diagram.

Normal

sequence flow

Conditional

sequence flow

Default

sequence flow

Message flow

Association

There are three ways of connecting Flow objects (Events, Activities,
Gateways) with each other or with other information – using sequence

flows, message flows or associations.

Graphical connecting objects

A Sequence Flow is used to show the order In which the activities in a

process will be performed.

A Message Flow is used to show the flow of messages between two

participants that are prepared to send and receive them. In BPMN,

two separate Pools in a Diagram can represent the two participants.
An Association (directed, non-directed) is used to associate

information with Flow Objects. Text and graphical non-Flow Objects

can be associated with Flow objects.

A Sequence Flow can have condition expressions which are evaluated

at runtime to determine whether or not the flow will be used.

For Data-Based Exclusive Decisions or Inclusive Decisions, one type

of flow is the Default condition flow. This flow will be used only if all

other outgoing conditional flows are NOT true at runtime.

Sequence Flow and Message Flow rules
Only objects that can have an incoming and/or outgoing Sequence Flow / Message

Flow are shown in the Tables Below.

Start

transaction

Successfull

transaction

Task A

Transaction boundary

Undo task A

Task B

Undo task B

Failed transaction

Transaction

exception

Handle through

other services

Wait a few minutes

Try again

Error - compensation

events cannot be

triggered

Task

Compensation activity

In case of transactions it is desired that all activities which constitute

a transaction are finished successfully. Otherwise the transaction fails

and rollback (compensation) activities occur which undo done

activities.
Normal sequence flow

Use of the sequence flow

mechanism

Use of message events and

message flows

Use of flows within lanes Use of gatewaysWrong use of flows in/between

pools
When modelling Pools, sequence flows and start/end events are

often missing, because it is wrongly presumed that message

flows substitute sequence flows. Additionally, sequence flows

are incorrectly used to connect pools.

P
o

o
l
A

Task A

P
o

o
l
B

Task D

Message

flow AD

Message

flow EB

Task B

Task E

Missing sequence flows

Task C

Task F

Missing end event

Missing start event

Model the process in each Pool independently and afterwards

define message flows between Pools.

(Wrong) Use of time events

Task A Task B

Task B ...

Delay

Exception time

(e.g. »after 2 hours«)

Here a time event Is used as

a DELAY mechanism.

Here it represents the

DURATION of a task.

...

An intermediate event

has to be used.

There are two common mistakes when using time events. First,

starting events are often used instead of intermediate events.

Second, intermediate events are often used as a delay

mechanism but modelled as an exception mechanism

(representing the duration of a task) and vice-versa (see the

right use below).

Use of tasks and events

Starting

task A

Receiving

document

X

...
Task A

finished

Document X

...

Task A
...

Normal flow

Document X

Event X

Analysts often wrongly model events and tasks. For

example: events are wrongly modelled as tasks, task states

are modelled as new tasks.

This task is redundant.

Task automatically

starts at input

sequence flow

This task is redundant.

Task A is automatically

finished at output

sequence flow.

This task is redundant.The act of receiving

a document is a task itself.

Task A Task B

Message A

Message B
A

B

Task A Task B

Message A

B

Message B

Starting and intermediate events can not be sources of

message flows.
Both examples are wrong - intermediate

message events can not produce

message flows. Events can be only

triggered by a message flow.

Wrong positioning of

message event

The Start Event indicates where a particular process will start. Intermediate

Events occur between a Start Event and an End Event. It will affect the flow

of the process, but will not start or (directly) terminate the process. The End

Event indicates where a process will end.

A specific time or cycle can be set that will trigger the start of the Process

or continue the process. Intermediate timer can be used to model the time-

based delays.

This type of event is triggered when the conditions for a rule

become true. Rules can be very useful to interrupt the loop process, for

example: 'The number of repeats = N'. Intermediate rule is used only for

exception handling.

A Link is a mechanism for connecting the end (Result) of one

Process to the start (Trigger) of another. Typically, these are

two Sub-Processes within the same parent Process. It can be used, for

example, when the working area (page) is too small – go to another page.

This type of event indicates that there are multiple ways of triggering the

Process. Only one of them will be required to {start, continue, end} the

Process.

This type of End indicates that a named Error should be generated. This

Error will be caught by an Intermediate Event within the Event Context.

This type of End indicates that all activities in the Process should be

immediately terminated. This includes all instances of Multi-Instances. The

Process is terminated without compensation or event handling.

Explanation of Poster Symbols

About the BPMN Poster

Sequence flows are not

allowed between Pools

P
o

o
l
B L
a

n
e

 A
L

a
n

e
 B

Task A

Task B Task C

P
o

o
l
A L
a

n
e

 A
L

a
n

e
 B

Task A

Task B Task C

A message flow is not

allowed within a process
A Pool can contain only one

(1) process

Lanes are often wrongly used in similar ways as Pools. They

wrongly contain more business processes or contain message

flows between different lanes.

Gateways are connected only with sequence flows. Also Avoid

potential deadlocks when using gateways.

Task A

Task B

Decision

information

from Pool X

Message flow cannot

influence the gateway

No output flow from the task

exists.

The decision must

contain at least two

output flows

When using expanded sub-processes, sequence flows should

be connected to the boundaries of sub-processes. Processes

and sub-processes should start and end properly!

Task A

Sub-process »P«

Task B Task C

A sequence flow cannot cross

the boundary of a sub-process

The process should have an

end event

The sub-process should

have a start event

Task A

Sub-process »P«

Task B Task C

Task C

A conditional flow Is not

allowed (necessary) here

Send message to

Pool X A message flow cannot be

a gateway alternative

Analysing

decision

information

Task A

Task B

Task C

Send message

to Pool X

Message to Pool X

Message

from Pool X

Exception flow

Until Loop

~

Ad Hoc –

No flow

The Sequence Flow mechanisms is divided into types: Normal flow, Exception flow,

Conditional flow, Link Events and Ad Hoc (no flow). Refer also to specific

»Workflow Patterns«.

A

A

Intermediate

link used as

GOTO

Important note, explanation

Warning or error in the BPMN model

Recommendation

Wrong model

Right (corrected) model

This poster is licensed under the Creative Commons Attribution-

Noncommercial-No Derivative Works 2.5 Slovenia License

Authors:

Gregor Polan!i! & Tomislav Rozman

Email: info@itposter.net

University of Maribor

Faculty of Electrical Engineering and Computer Science

Institute of Informatics

Poster version: 1.0.9 (4
th

June 2008)

Literature used: BPMN Specification 1.0 @ http://www.bpmi.org

http://bpmn.itposter.net

This is used for compensation handling--both setting and performing

compensation. It calls for compensation if the Event is part of a Normal

Flow. It reacts to a named compensation call when attached to the

boundary of an activity. Very useful for modelling roll-back actions within

the transaction.

This type of Event is used within a Transaction Sub-Process. This type of

Event MUST be attached to the boundary of a Sub-Process. It SHALL be

triggered if a Cancel End Event is reached within the Transaction Sub-

Process.

Workflow patterns
Normal sequence flow

Parallel split, uncontrolled flow

Multiple merge, uncontrolled flow

Exclusive choice with

decision gateway

Simple merge,

uncontrolled flow

Synchronization

(pararel join)

Parallel split,

forking gateway

Discriminator,

merging gateway

Multiple choice

Alter. 3

Alter. 1

Alter. 2

Event based decision Complex decision

(gateway)

Multiple choice, inclusive

decision gateway Synchronization merge,

merging gateway

Simple merge,

uncontrolled flow

Intermediate link

used as GOTO

No Expanded sub-process

Looped subprocess

Interrupt

loop rule

B

B ~ Collapsed adhoc sub-process

F
ro

m
:

To:

F
ro

m
:

To:

L
a

n
e[state]

Check for the latest version at: http://bpmn.itposter.net

Example of a

deadlock

Exception X

Exception X

Exception X

Performing

task A

Conditional flow

Although it is recommended that a process has an explicit start and end

event, this is not a rule. In fact start and end events can be hidden in a sub

process, if needed, or attached to the boundary of the task so as not to

interrupt the normal sequence flow between the sub-process and the rest of

the process.

Document Y

Event Y

Exception flow

Cancel - compensation events are triggered.

Cancel event can be used only with transaction.

...

...

......

... ...

...

BPMN basics:
Connecting objects

(sequence flow, message flow, association)

46

Connecting objects

47

The Flow objects are connected together in a diagram to
create the basic skeletal structure of a business process

Three connecting objects can be used:

Sequence flow
Message flow
Association

Sequence flow

48

A sequence flow is used to show the order
in which activities are to be performed

Note: connected objects must reside in the same pool
(but they can be in different lanes)

the term “control flow” is generally avoided in BPMN

A sequence flow is represented by
a solid line with a solid arrowhead

49

Gateways Data

Attaching a data object with an Undirected
Association to a sequence flow indicates hand‐over

of information between the activities involved.

A Directed Association indicates information flow.

A data object can be read at the start of an

activity or written upon completion.

A Bidirected Association indicates that the data

object is modified, i.e. read and written during the

execution of an actvity.

A Data Object represents information flowing

through the process, such as business documents,

e‐mails or letters.

Events Transactions

Swimlanes

activity

Start Event: Catching an event

starts a new process instance.

Intermediate Event (catching):
The process can only continue

once an event has been caught.

Attached Intermediate Event: The

activity is aborted once an event is

caught.

Intermediate Event (throwing):
An event is thrown and the process

continues.

End Event: An event is thrown

when the end of the process is

reached.

Start EndIntermediate

Plain

Message

Timer

Error

Cancel

Compen‐

sation

Conditional

Link

Signal

Multiple

Terminate

Catching Throwing

Untyped events, typically

showing where the process

starts or ends.

Receiving and sending

messages.

Cyclic timer events, points in

time, time spans or timeouts.

Catching or throwing named

errors.

Reacting to cancelled

transactions or triggering

cancellation.

Compensation handling or

triggering compensation.

Reacting to changed business

conditions or integrating

business rules.

Signalling across different

processes. One signal thrown

can be caught multiple times.

Catching or throwing one out of

a set of events.

Off‐page connectors. Two

corresponding link events equal

a sequence flow.

Triggering the immediate

termination of a process.

Data‐based Exclusive Gateway
When splitting, it routes the sequence flow to exactly one of the outgoing

branches based on conditions. When merging, it awaits one incoming branch

to complete before triggering the outgoing flow.

Inclusive Gateway
When splitting, one or more branches are activated based on branching

conditions. When merging, it awaits all active incoming branches to

complete.

Complex Gateway
It triggers one or more branches based on complex conditions or verbal

descriptions. Use it sparingly as the semantics might not be clear.

Parallel Gateway
When used to split the sequence flow, all outgoing branches are activated

simultaneously. When merging parallel branches it waits for all incoming

branches to complete before triggering the outgoing flow.

Activities

BPMN ‐ Business Process Modeling Notation

Transaction

Activity

Compensate

Activity

Transaction

A Transaction is a set of activities that logically

belong together; it might follow a specified

transaction protocol.

Attached Intermediate Cancel Events indicate

reactions to the cancellation of a transaction.

Activities inside the transaction are compensated

upon cancellation.

Completed activities can be compensated. An

activity and the corresponding Compensate Activity

are related using an attached Intermediate
Compensation Event.

Web: bpt.hpi.uni‐potsdam.de

Oryx: oryx‐project.org

Blog: bpmn.info

BPMN Version 1.2

Business Process Technology

Prof. Dr. Mathias Weske

Authors

Gero Decker

Alexander Grosskopf

Sven Wagner‐Boysen

read

doc

write

doc

modify

doc

modify

doc
[state2]

doc
[state1]

Pool

Pool

Message Flow symbolizes

information flow across

organizational boundaries.

Message flow can be attached to

pools, activities, or message events.

The order of message exchanges

can be specified by combining

message flow and sequence flow.

P
o
o
l

P
o
o
l

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Pools and Lanes represent

responsibilities for activities in a

process. A pool or a lane can be an

organization, a role, or a system.

Lanes sub‐divide pools or other

lanes hierarchically.

Pool
Collapsed Pools hide all internals

of the contained processes.

Task

Task

~

Collapsed

Subprocess

Intermediate

Message Event

Task

Task

Task

Task

Loop

Activity

Multiple

Instances

Collapsed Pool

L
a
n
e

L
a
n
e

E
x
p
a
n
d
e
d
 P

o
o
l

L
a
n
e

L
a
n
e

Data

Object

[state1]

Data

Object

[state2]

Conditional

Start Event

Parallel

Gateway

Parallel

Gateway

Grouping

End Event

Terminate

End Event

Data‐based

Exclusive

Gateway

Embedded

Subprocess

Ad‐hoc Subprocess

Text Annotation

Data

Object

Intermediate

Timer Event

Sequence

Flow

Intermediate

Error Event

Exception

Flow

Event‐based

Exclusive

Gateway Intermediate

Message Event

Intermediate

Timer Event

Catching Throwing

Event‐based Exclusive Gateway
Is always followed by catching events or receive tasks. Sequence flow is

routed to the subsequent event/task which happens first.

Condition

Default

Flow

Multiple

Instances

Loop

Multiple Instances of the

same activity are started in

parallel or sequentially, e.g.

for each line item in an

order.

Loop Activity is iterated if a

loop condition is true. The

condition is either tested

before or after the activity

execution.

Ad‐hoc Subprocesses
contain tasks only. Each task

can be executed arbitrarily

often until a completion

condition is fulfilled.

Collapsed

Subprocess

Task
A Task is a unit of

work, the job to be

performed.

A Subprocess is a

decomposable activity.

It can be collapsed to

hide the details.

An Expanded Subprocess contains a

valid BPMN diagram.

Expanded SubprocessAd‐hoc Subprocess

~

Sequence Flow defines the

execution order of activities.

Conditional Flow has a

condition assigned that

defines whether or not the

flow is used.

Default Flow is the default

branch to be chosen if all

other conditions evaluate to

false.

End Error Event

Message Flow

Documentation

Group

Text Annotation

An arbitrary set of objects can be

defined as a Group to show that

they logically belong together.

Any object can be associated with a

Text Annotation to provide

additional documentation.

read as
``otherwise’’

Message flow

50

A message flow is used to show the flow
of messages between two separate process participants

(business entities or business roles)
that send and receive them

Note: the participants reside in separate pools

A message flow is represented by
a dashed line with a open arrowheads (see above)

51

Events Activities

Artefacts

Graphical connecting objects

Sequence flow mechanism Compensation Association

S
ta

rt

In
te

rm
e

d
ia

te

E
n

d

Message

Timer

Error

Multiple

Link

Rule

Compensation

Cancel

Terminate

General

Event type

A message arrives from a participant and triggers the Event. This causes

process to {start, continue, end} if it was waiting for a message, or changes

the flow if exception happens. End type of message event indicates that a

message is sent to a participant at the conclusion of the process.

Event flow
Description

An event is something that »happens« during the process. These events affect the

flow of the process and usually have a cause (trigger) or an impact (result).

Examples: 'Email received', '3 o'clock', 'Warehouse empty', 'Critical error',...

An activity is a generic type of work that a company performs. An

activity can be atomic (task) or compound (process, sub-process).

Examples: 'Send a letter', 'Write a report', 'Calculate the interests',...

~

Description

Process

Collapsed

sub-process

Expanded

sub-process

Task

Transaction

A task is used to represent the

activity on the lowest abstraction

level.

More information about the

transaction and compensation

attribute can be found under

»Compensation Association«.

Looping

Ad Hoc

Compensation

Task/Subprocess special attributes

The task or sub-process is repeated.

The tasks in the sub-process can not be connected with

sequence flows at design time.

Multiple instances of task or sub-process will be created.

The symbol represents a compensation task or sub-process.

Multiple instances

Gateways
A gateway is used to split or merge multiple process

flows. Thus it will determine branching, forking,

merging and joining of paths. Examples: 'Condition true?

– yes/no', 'Choose colour? – red/green/blue',...

Gateway control types

Data based exclusive decision or

merging. Both symbols have equal

meaning. See also Conditional flow.

Event based exclusive decision only.

Data based inclusive decision or

merging.

Complex condition (a combination of

basic conditions)

Parallel forking and joining

(synchronization).

XOR
(DATA)

XOR
(EVENT)

OR

COM-

PLEX

AND

Swimlanes

P
o

o
l L
a

n
e

Pools and lanes are used to represent organizations,

roles, systems and responsibilities. Examples:

'University', 'Sales division', 'Warehouse', 'ERP system',...

A Lane is a sub-partition within a pool used to organize and

categorize activities.

A Pool represents a participant in a process. It contains a business

process and is used in B2B situations.

A Pool MUST contain 0 or 1

business process.

A Pool can contain 0 or more

lanes.

Two pools can only be connected

with message flows.

Artefacts are used to provide additional information about the process. If

required, modellers and modelling tools are free to add new artefacts.

Examples of data objects: 'A letter', 'Email message', 'XML document',

'Confirmation',...

Set of standardized artefacts

Data object

Group

Annotation

Data objects provide information about what activities are required to be

triggered and/or what they produce. They are considered as Artefacts

because they do not have any direct effect on the Sequence Flow or

Message Flow of the Process. The state of the data object should also be

set.

Grouping can be used for documentation or analysis purposes. Groups

can also be used to identify the activities of a distributed transaction that is

shown across Pools. Grouping of activities does not affect the Sequence

or Message Flow.

Text Annotations are a mechanism for a modeller to provide additional

information for the reader of a BPMN Diagram.

Normal

sequence flow

Conditional

sequence flow

Default

sequence flow

Message flow

Association

There are three ways of connecting Flow objects (Events, Activities,
Gateways) with each other or with other information – using sequence

flows, message flows or associations.

Graphical connecting objects

A Sequence Flow is used to show the order In which the activities in a

process will be performed.

A Message Flow is used to show the flow of messages between two

participants that are prepared to send and receive them. In BPMN,

two separate Pools in a Diagram can represent the two participants.
An Association (directed, non-directed) is used to associate

information with Flow Objects. Text and graphical non-Flow Objects

can be associated with Flow objects.

A Sequence Flow can have condition expressions which are evaluated

at runtime to determine whether or not the flow will be used.

For Data-Based Exclusive Decisions or Inclusive Decisions, one type

of flow is the Default condition flow. This flow will be used only if all

other outgoing conditional flows are NOT true at runtime.

Sequence Flow and Message Flow rules
Only objects that can have an incoming and/or outgoing Sequence Flow / Message

Flow are shown in the Tables Below.

Start

transaction

Successfull

transaction

Task A

Transaction boundary

Undo task A

Task B

Undo task B

Failed transaction

Transaction

exception

Handle through

other services

Wait a few minutes

Try again

Error - compensation

events cannot be

triggered

Task

Compensation activity

In case of transactions it is desired that all activities which constitute

a transaction are finished successfully. Otherwise the transaction fails

and rollback (compensation) activities occur which undo done

activities.
Normal sequence flow

Use of the sequence flow

mechanism

Use of message events and

message flows

Use of flows within lanes Use of gatewaysWrong use of flows in/between

pools
When modelling Pools, sequence flows and start/end events are

often missing, because it is wrongly presumed that message

flows substitute sequence flows. Additionally, sequence flows

are incorrectly used to connect pools.

P
o

o
l
A

Task A

P
o

o
l
B

Task D

Message

flow AD

Message

flow EB

Task B

Task E

Missing sequence flows

Task C

Task F

Missing end event

Missing start event

Model the process in each Pool independently and afterwards

define message flows between Pools.

(Wrong) Use of time events

Task A Task B

Task B ...

Delay

Exception time

(e.g. »after 2 hours«)

Here a time event Is used as

a DELAY mechanism.

Here it represents the

DURATION of a task.

...

An intermediate event

has to be used.

There are two common mistakes when using time events. First,

starting events are often used instead of intermediate events.

Second, intermediate events are often used as a delay

mechanism but modelled as an exception mechanism

(representing the duration of a task) and vice-versa (see the

right use below).

Use of tasks and events

Starting

task A

Receiving

document

X

...
Task A

finished

Document X

...

Task A
...

Normal flow

Document X

Event X

Analysts often wrongly model events and tasks. For

example: events are wrongly modelled as tasks, task states

are modelled as new tasks.

This task is redundant.

Task automatically

starts at input

sequence flow

This task is redundant.

Task A is automatically

finished at output

sequence flow.

This task is redundant.The act of receiving

a document is a task itself.

Task A Task B

Message A

Message B
A

B

Task A Task B

Message A

B

Message B

Starting and intermediate events can not be sources of

message flows.
Both examples are wrong - intermediate

message events can not produce

message flows. Events can be only

triggered by a message flow.

Wrong positioning of

message event

The Start Event indicates where a particular process will start. Intermediate

Events occur between a Start Event and an End Event. It will affect the flow

of the process, but will not start or (directly) terminate the process. The End

Event indicates where a process will end.

A specific time or cycle can be set that will trigger the start of the Process

or continue the process. Intermediate timer can be used to model the time-

based delays.

This type of event is triggered when the conditions for a rule

become true. Rules can be very useful to interrupt the loop process, for

example: 'The number of repeats = N'. Intermediate rule is used only for

exception handling.

A Link is a mechanism for connecting the end (Result) of one

Process to the start (Trigger) of another. Typically, these are

two Sub-Processes within the same parent Process. It can be used, for

example, when the working area (page) is too small – go to another page.

This type of event indicates that there are multiple ways of triggering the

Process. Only one of them will be required to {start, continue, end} the

Process.

This type of End indicates that a named Error should be generated. This

Error will be caught by an Intermediate Event within the Event Context.

This type of End indicates that all activities in the Process should be

immediately terminated. This includes all instances of Multi-Instances. The

Process is terminated without compensation or event handling.

Explanation of Poster Symbols

About the BPMN Poster

Sequence flows are not

allowed between Pools

P
o

o
l
B L
a

n
e

 A
L

a
n

e
 B

Task A

Task B Task C

P
o

o
l
A L
a

n
e

 A
L

a
n

e
 B

Task A

Task B Task C

A message flow is not

allowed within a process
A Pool can contain only one

(1) process

Lanes are often wrongly used in similar ways as Pools. They

wrongly contain more business processes or contain message

flows between different lanes.

Gateways are connected only with sequence flows. Also Avoid

potential deadlocks when using gateways.

Task A

Task B

Decision

information

from Pool X

Message flow cannot

influence the gateway

No output flow from the task

exists.

The decision must

contain at least two

output flows

When using expanded sub-processes, sequence flows should

be connected to the boundaries of sub-processes. Processes

and sub-processes should start and end properly!

Task A

Sub-process »P«

Task B Task C

A sequence flow cannot cross

the boundary of a sub-process

The process should have an

end event

The sub-process should

have a start event

Task A

Sub-process »P«

Task B Task C

Task C

A conditional flow Is not

allowed (necessary) here

Send message to

Pool X A message flow cannot be

a gateway alternative

Analysing

decision

information

Task A

Task B

Task C

Send message

to Pool X

Message to Pool X

Message

from Pool X

Exception flow

Until Loop

~

Ad Hoc –

No flow

The Sequence Flow mechanisms is divided into types: Normal flow, Exception flow,

Conditional flow, Link Events and Ad Hoc (no flow). Refer also to specific

»Workflow Patterns«.

A

A

Intermediate

link used as

GOTO

Important note, explanation

Warning or error in the BPMN model

Recommendation

Wrong model

Right (corrected) model

This poster is licensed under the Creative Commons Attribution-

Noncommercial-No Derivative Works 2.5 Slovenia License

Authors:

Gregor Polan!i! & Tomislav Rozman

Email: info@itposter.net

University of Maribor

Faculty of Electrical Engineering and Computer Science

Institute of Informatics

Poster version: 1.0.9 (4
th

June 2008)

Literature used: BPMN Specification 1.0 @ http://www.bpmi.org

http://bpmn.itposter.net

This is used for compensation handling--both setting and performing

compensation. It calls for compensation if the Event is part of a Normal

Flow. It reacts to a named compensation call when attached to the

boundary of an activity. Very useful for modelling roll-back actions within

the transaction.

This type of Event is used within a Transaction Sub-Process. This type of

Event MUST be attached to the boundary of a Sub-Process. It SHALL be

triggered if a Cancel End Event is reached within the Transaction Sub-

Process.

Workflow patterns
Normal sequence flow

Parallel split, uncontrolled flow

Multiple merge, uncontrolled flow

Exclusive choice with

decision gateway

Simple merge,

uncontrolled flow

Synchronization

(pararel join)

Parallel split,

forking gateway

Discriminator,

merging gateway

Multiple choice

Alter. 3

Alter. 1

Alter. 2

Event based decision Complex decision

(gateway)

Multiple choice, inclusive

decision gateway Synchronization merge,

merging gateway

Simple merge,

uncontrolled flow

Intermediate link

used as GOTO

No Expanded sub-process

Looped subprocess

Interrupt

loop rule

B

B ~ Collapsed adhoc sub-process

F
ro

m
:

To:

F
ro

m
:

To:

L
a

n
e[state]

Check for the latest version at: http://bpmn.itposter.net

Example of a

deadlock

Exception X

Exception X

Exception X

Performing

task A

Conditional flow

Although it is recommended that a process has an explicit start and end

event, this is not a rule. In fact start and end events can be hidden in a sub

process, if needed, or attached to the boundary of the task so as not to

interrupt the normal sequence flow between the sub-process and the rest of

the process.

Document Y

Event Y

Exception flow

Cancel - compensation events are triggered.

Cancel event can be used only with transaction.

...

...

......

... ...

...

Gateways Data

Attaching a data object with an Undirected
Association to a sequence flow indicates hand‐over

of information between the activities involved.

A Directed Association indicates information flow.

A data object can be read at the start of an

activity or written upon completion.

A Bidirected Association indicates that the data

object is modified, i.e. read and written during the

execution of an actvity.

A Data Object represents information flowing

through the process, such as business documents,

e‐mails or letters.

Events Transactions

Swimlanes

activity

Start Event: Catching an event

starts a new process instance.

Intermediate Event (catching):
The process can only continue

once an event has been caught.

Attached Intermediate Event: The

activity is aborted once an event is

caught.

Intermediate Event (throwing):
An event is thrown and the process

continues.

End Event: An event is thrown

when the end of the process is

reached.

Start EndIntermediate

Plain

Message

Timer

Error

Cancel

Compen‐

sation

Conditional

Link

Signal

Multiple

Terminate

Catching Throwing

Untyped events, typically

showing where the process

starts or ends.

Receiving and sending

messages.

Cyclic timer events, points in

time, time spans or timeouts.

Catching or throwing named

errors.

Reacting to cancelled

transactions or triggering

cancellation.

Compensation handling or

triggering compensation.

Reacting to changed business

conditions or integrating

business rules.

Signalling across different

processes. One signal thrown

can be caught multiple times.

Catching or throwing one out of

a set of events.

Off‐page connectors. Two

corresponding link events equal

a sequence flow.

Triggering the immediate

termination of a process.

Data‐based Exclusive Gateway
When splitting, it routes the sequence flow to exactly one of the outgoing

branches based on conditions. When merging, it awaits one incoming branch

to complete before triggering the outgoing flow.

Inclusive Gateway
When splitting, one or more branches are activated based on branching

conditions. When merging, it awaits all active incoming branches to

complete.

Complex Gateway
It triggers one or more branches based on complex conditions or verbal

descriptions. Use it sparingly as the semantics might not be clear.

Parallel Gateway
When used to split the sequence flow, all outgoing branches are activated

simultaneously. When merging parallel branches it waits for all incoming

branches to complete before triggering the outgoing flow.

Activities

BPMN ‐ Business Process Modeling Notation

Transaction

Activity

Compensate

Activity

Transaction

A Transaction is a set of activities that logically

belong together; it might follow a specified

transaction protocol.

Attached Intermediate Cancel Events indicate

reactions to the cancellation of a transaction.

Activities inside the transaction are compensated

upon cancellation.

Completed activities can be compensated. An

activity and the corresponding Compensate Activity

are related using an attached Intermediate
Compensation Event.

Web: bpt.hpi.uni‐potsdam.de

Oryx: oryx‐project.org

Blog: bpmn.info

BPMN Version 1.2

Business Process Technology

Prof. Dr. Mathias Weske

Authors

Gero Decker

Alexander Grosskopf

Sven Wagner‐Boysen

read

doc

write

doc

modify

doc

modify

doc
[state2]

doc
[state1]

Pool

Pool

Message Flow symbolizes

information flow across

organizational boundaries.

Message flow can be attached to

pools, activities, or message events.

The order of message exchanges

can be specified by combining

message flow and sequence flow.

P
o
o
l

P
o
o
l

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Pools and Lanes represent

responsibilities for activities in a

process. A pool or a lane can be an

organization, a role, or a system.

Lanes sub‐divide pools or other

lanes hierarchically.

Pool
Collapsed Pools hide all internals

of the contained processes.

Task

Task

~

Collapsed

Subprocess

Intermediate

Message Event

Task

Task

Task

Task

Loop

Activity

Multiple

Instances

Collapsed Pool

L
a
n
e

L
a
n
e

E
x
p
a
n
d
e
d
 P

o
o
l

L
a
n
e

L
a
n
e

Data

Object

[state1]

Data

Object

[state2]

Conditional

Start Event

Parallel

Gateway

Parallel

Gateway

Grouping

End Event

Terminate

End Event

Data‐based

Exclusive

Gateway

Embedded

Subprocess

Ad‐hoc Subprocess

Text Annotation

Data

Object

Intermediate

Timer Event

Sequence

Flow

Intermediate

Error Event

Exception

Flow

Event‐based

Exclusive

Gateway Intermediate

Message Event

Intermediate

Timer Event

Catching Throwing

Event‐based Exclusive Gateway
Is always followed by catching events or receive tasks. Sequence flow is

routed to the subsequent event/task which happens first.

Condition

Default

Flow

Multiple

Instances

Loop

Multiple Instances of the

same activity are started in

parallel or sequentially, e.g.

for each line item in an

order.

Loop Activity is iterated if a

loop condition is true. The

condition is either tested

before or after the activity

execution.

Ad‐hoc Subprocesses
contain tasks only. Each task

can be executed arbitrarily

often until a completion

condition is fulfilled.

Collapsed

Subprocess

Task
A Task is a unit of

work, the job to be

performed.

A Subprocess is a

decomposable activity.

It can be collapsed to

hide the details.

An Expanded Subprocess contains a

valid BPMN diagram.

Expanded SubprocessAd‐hoc Subprocess

~

Sequence Flow defines the

execution order of activities.

Conditional Flow has a

condition assigned that

defines whether or not the

flow is used.

Default Flow is the default

branch to be chosen if all

other conditions evaluate to

false.

End Error Event

Message Flow

Documentation

Group

Text Annotation

An arbitrary set of objects can be

defined as a Group to show that

they logically belong together.

Any object can be associated with a

Text Annotation to provide

additional documentation.

Association

52

An association is used to associate data, text, and other
artefacts with flow objects

Note: in particular, input and output of activities

An association is represented by
a dotted line with a line arrowhead

53

Gateways Data

Attaching a data object with an Undirected
Association to a sequence flow indicates hand‐over

of information between the activities involved.

A Directed Association indicates information flow.

A data object can be read at the start of an

activity or written upon completion.

A Bidirected Association indicates that the data

object is modified, i.e. read and written during the

execution of an actvity.

A Data Object represents information flowing

through the process, such as business documents,

e‐mails or letters.

Events Transactions

Swimlanes

activity

Start Event: Catching an event

starts a new process instance.

Intermediate Event (catching):
The process can only continue

once an event has been caught.

Attached Intermediate Event: The

activity is aborted once an event is

caught.

Intermediate Event (throwing):
An event is thrown and the process

continues.

End Event: An event is thrown

when the end of the process is

reached.

Start EndIntermediate

Plain

Message

Timer

Error

Cancel

Compen‐

sation

Conditional

Link

Signal

Multiple

Terminate

Catching Throwing

Untyped events, typically

showing where the process

starts or ends.

Receiving and sending

messages.

Cyclic timer events, points in

time, time spans or timeouts.

Catching or throwing named

errors.

Reacting to cancelled

transactions or triggering

cancellation.

Compensation handling or

triggering compensation.

Reacting to changed business

conditions or integrating

business rules.

Signalling across different

processes. One signal thrown

can be caught multiple times.

Catching or throwing one out of

a set of events.

Off‐page connectors. Two

corresponding link events equal

a sequence flow.

Triggering the immediate

termination of a process.

Data‐based Exclusive Gateway
When splitting, it routes the sequence flow to exactly one of the outgoing

branches based on conditions. When merging, it awaits one incoming branch

to complete before triggering the outgoing flow.

Inclusive Gateway
When splitting, one or more branches are activated based on branching

conditions. When merging, it awaits all active incoming branches to

complete.

Complex Gateway
It triggers one or more branches based on complex conditions or verbal

descriptions. Use it sparingly as the semantics might not be clear.

Parallel Gateway
When used to split the sequence flow, all outgoing branches are activated

simultaneously. When merging parallel branches it waits for all incoming

branches to complete before triggering the outgoing flow.

Activities

BPMN ‐ Business Process Modeling Notation

Transaction

Activity

Compensate

Activity

Transaction

A Transaction is a set of activities that logically

belong together; it might follow a specified

transaction protocol.

Attached Intermediate Cancel Events indicate

reactions to the cancellation of a transaction.

Activities inside the transaction are compensated

upon cancellation.

Completed activities can be compensated. An

activity and the corresponding Compensate Activity

are related using an attached Intermediate
Compensation Event.

Web: bpt.hpi.uni‐potsdam.de

Oryx: oryx‐project.org

Blog: bpmn.info

BPMN Version 1.2

Business Process Technology

Prof. Dr. Mathias Weske

Authors

Gero Decker

Alexander Grosskopf

Sven Wagner‐Boysen

read

doc

write

doc

modify

doc

modify

doc
[state2]

doc
[state1]

Pool

Pool

Message Flow symbolizes

information flow across

organizational boundaries.

Message flow can be attached to

pools, activities, or message events.

The order of message exchanges

can be specified by combining

message flow and sequence flow.

P
o
o
l

P
o
o
l

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Pools and Lanes represent

responsibilities for activities in a

process. A pool or a lane can be an

organization, a role, or a system.

Lanes sub‐divide pools or other

lanes hierarchically.

Pool
Collapsed Pools hide all internals

of the contained processes.

Task

Task

~

Collapsed

Subprocess

Intermediate

Message Event

Task

Task

Task

Task

Loop

Activity

Multiple

Instances

Collapsed Pool

L
a
n
e

L
a
n
e

E
x
p
a
n
d
e
d
 P

o
o
l

L
a
n
e

L
a
n
e

Data

Object

[state1]

Data

Object

[state2]

Conditional

Start Event

Parallel

Gateway

Parallel

Gateway

Grouping

End Event

Terminate

End Event

Data‐based

Exclusive

Gateway

Embedded

Subprocess

Ad‐hoc Subprocess

Text Annotation

Data

Object

Intermediate

Timer Event

Sequence

Flow

Intermediate

Error Event

Exception

Flow

Event‐based

Exclusive

Gateway Intermediate

Message Event

Intermediate

Timer Event

Catching Throwing

Event‐based Exclusive Gateway
Is always followed by catching events or receive tasks. Sequence flow is

routed to the subsequent event/task which happens first.

Condition

Default

Flow

Multiple

Instances

Loop

Multiple Instances of the

same activity are started in

parallel or sequentially, e.g.

for each line item in an

order.

Loop Activity is iterated if a

loop condition is true. The

condition is either tested

before or after the activity

execution.

Ad‐hoc Subprocesses
contain tasks only. Each task

can be executed arbitrarily

often until a completion

condition is fulfilled.

Collapsed

Subprocess

Task
A Task is a unit of

work, the job to be

performed.

A Subprocess is a

decomposable activity.

It can be collapsed to

hide the details.

An Expanded Subprocess contains a

valid BPMN diagram.

Expanded SubprocessAd‐hoc Subprocess

~

Sequence Flow defines the

execution order of activities.

Conditional Flow has a

condition assigned that

defines whether or not the

flow is used.

Default Flow is the default

branch to be chosen if all

other conditions evaluate to

false.

End Error Event

Message Flow

Documentation

Group

Text Annotation

An arbitrary set of objects can be

defined as a Group to show that

they logically belong together.

Any object can be associated with a

Text Annotation to provide

additional documentation.

54

Events Activities

Artefacts

Graphical connecting objects

Sequence flow mechanism Compensation Association

S
ta

rt

In
te

rm
e
d
ia

te

E
n
d

Message

Timer

Error

Multiple

Link

Rule

Compensation

Cancel

Terminate

General

Event type

A message arrives from a participant and triggers the Event. This causes

process to {start, continue, end} if it was waiting for a message, or changes

the flow if exception happens. End type of message event indicates that a

message is sent to a participant at the conclusion of the process.

Event flow
Description

An event is something that »happens« during the process. These events affect the

flow of the process and usually have a cause (trigger) or an impact (result).

Examples: 'Email received', '3 o'clock', 'Warehouse empty', 'Critical error',...

An activity is a generic type of work that a company performs. An

activity can be atomic (task) or compound (process, sub-process).

Examples: 'Send a letter', 'Write a report', 'Calculate the interests',...

~

Description

Process

Collapsed

sub-process

Expanded

sub-process

Task

Transaction

A task is used to represent the

activity on the lowest abstraction

level.

More information about the

transaction and compensation

attribute can be found under

»Compensation Association«.

Looping

Ad Hoc

Compensation

Task/Subprocess special attributes

The task or sub-process is repeated.

The tasks in the sub-process can not be connected with

sequence flows at design time.

Multiple instances of task or sub-process will be created.

The symbol represents a compensation task or sub-process.

Multiple instances

Gateways
A gateway is used to split or merge multiple process

flows. Thus it will determine branching, forking,

merging and joining of paths. Examples: 'Condition true?

– yes/no', 'Choose colour? – red/green/blue',...

Gateway control types

Data based exclusive decision or

merging. Both symbols have equal

meaning. See also Conditional flow.

Event based exclusive decision only.

Data based inclusive decision or

merging.

Complex condition (a combination of

basic conditions)

Parallel forking and joining

(synchronization).

XOR
(DATA)

XOR
(EVENT)

OR

COM-

PLEX

AND

Swimlanes

P
o

o
l L
a

n
e

Pools and lanes are used to represent organizations,

roles, systems and responsibilities. Examples:

'University', 'Sales division', 'Warehouse', 'ERP system',...

A Lane is a sub-partition within a pool used to organize and

categorize activities.

A Pool represents a participant in a process. It contains a business

process and is used in B2B situations.

A Pool MUST contain 0 or 1

business process.

A Pool can contain 0 or more

lanes.

Two pools can only be connected

with message flows.

Artefacts are used to provide additional information about the process. If

required, modellers and modelling tools are free to add new artefacts.

Examples of data objects: 'A letter', 'Email message', 'XML document',

'Confirmation',...

Set of standardized artefacts

Data object

Group

Annotation

Data objects provide information about what activities are required to be

triggered and/or what they produce. They are considered as Artefacts

because they do not have any direct effect on the Sequence Flow or

Message Flow of the Process. The state of the data object should also be

set.

Grouping can be used for documentation or analysis purposes. Groups

can also be used to identify the activities of a distributed transaction that is

shown across Pools. Grouping of activities does not affect the Sequence

or Message Flow.

Text Annotations are a mechanism for a modeller to provide additional

information for the reader of a BPMN Diagram.

Normal

sequence flow

Conditional

sequence flow

Default

sequence flow

Message flow

Association

There are three ways of connecting Flow objects (Events, Activities,
Gateways) with each other or with other information – using sequence

flows, message flows or associations.

Graphical connecting objects

A Sequence Flow is used to show the order In which the activities in a

process will be performed.

A Message Flow is used to show the flow of messages between two

participants that are prepared to send and receive them. In BPMN,

two separate Pools in a Diagram can represent the two participants.
An Association (directed, non-directed) is used to associate

information with Flow Objects. Text and graphical non-Flow Objects

can be associated with Flow objects.

A Sequence Flow can have condition expressions which are evaluated

at runtime to determine whether or not the flow will be used.

For Data-Based Exclusive Decisions or Inclusive Decisions, one type

of flow is the Default condition flow. This flow will be used only if all

other outgoing conditional flows are NOT true at runtime.

Sequence Flow and Message Flow rules
Only objects that can have an incoming and/or outgoing Sequence Flow / Message

Flow are shown in the Tables Below.

Start

transaction

Successfull

transaction

Task A

Transaction boundary

Undo task A

Task B

Undo task B

Failed transaction

Transaction

exception

Handle through

other services

Wait a few minutes

Try again

Error - compensation

events cannot be

triggered

Task

Compensation activity

In case of transactions it is desired that all activities which constitute

a transaction are finished successfully. Otherwise the transaction fails

and rollback (compensation) activities occur which undo done

activities.
Normal sequence flow

Use of the sequence flow

mechanism

Use of message events and

message flows

Use of flows within lanes Use of gatewaysWrong use of flows in/between

pools
When modelling Pools, sequence flows and start/end events are

often missing, because it is wrongly presumed that message

flows substitute sequence flows. Additionally, sequence flows

are incorrectly used to connect pools.

P
o

o
l
A

Task A

P
o

o
l
B

Task D

Message

flow AD

Message

flow EB

Task B

Task E

Missing sequence flows

Task C

Task F

Missing end event

Missing start event

Model the process in each Pool independently and afterwards

define message flows between Pools.

(Wrong) Use of time events

Task A Task B

Task B ...

Delay

Exception time

(e.g. »after 2 hours«)

Here a time event Is used as

a DELAY mechanism.

Here it represents the

DURATION of a task.

...

An intermediate event

has to be used.

There are two common mistakes when using time events. First,

starting events are often used instead of intermediate events.

Second, intermediate events are often used as a delay

mechanism but modelled as an exception mechanism

(representing the duration of a task) and vice-versa (see the

right use below).

Use of tasks and events

Starting

task A

Receiving

document

X

...
Task A

finished

Document X

...

Task A
...

Normal flow

Document X

Event X

Analysts often wrongly model events and tasks. For

example: events are wrongly modelled as tasks, task states

are modelled as new tasks.

This task is redundant.

Task automatically

starts at input

sequence flow

This task is redundant.

Task A is automatically

finished at output

sequence flow.

This task is redundant.The act of receiving

a document is a task itself.

Task A Task B

Message A

Message B
A

B

Task A Task B

Message A

B

Message B

Starting and intermediate events can not be sources of

message flows.
Both examples are wrong - intermediate

message events can not produce

message flows. Events can be only

triggered by a message flow.

Wrong positioning of

message event

The Start Event indicates where a particular process will start. Intermediate

Events occur between a Start Event and an End Event. It will affect the flow

of the process, but will not start or (directly) terminate the process. The End

Event indicates where a process will end.

A specific time or cycle can be set that will trigger the start of the Process

or continue the process. Intermediate timer can be used to model the time-

based delays.

This type of event is triggered when the conditions for a rule

become true. Rules can be very useful to interrupt the loop process, for

example: 'The number of repeats = N'. Intermediate rule is used only for

exception handling.

A Link is a mechanism for connecting the end (Result) of one

Process to the start (Trigger) of another. Typically, these are

two Sub-Processes within the same parent Process. It can be used, for

example, when the working area (page) is too small – go to another page.

This type of event indicates that there are multiple ways of triggering the

Process. Only one of them will be required to {start, continue, end} the

Process.

This type of End indicates that a named Error should be generated. This

Error will be caught by an Intermediate Event within the Event Context.

This type of End indicates that all activities in the Process should be

immediately terminated. This includes all instances of Multi-Instances. The

Process is terminated without compensation or event handling.

Explanation of Poster Symbols

About the BPMN Poster

Sequence flows are not

allowed between Pools

P
o

o
l
B L
a

n
e

 A
L

a
n

e
 B

Task A

Task B Task C

P
o

o
l
A L
a

n
e

 A
L

a
n

e
 B

Task A

Task B Task C

A message flow is not

allowed within a process
A Pool can contain only one

(1) process

Lanes are often wrongly used in similar ways as Pools. They

wrongly contain more business processes or contain message

flows between different lanes.

Gateways are connected only with sequence flows. Also Avoid

potential deadlocks when using gateways.

Task A

Task B

Decision

information

from Pool X

Message flow cannot

influence the gateway

No output flow from the task

exists.

The decision must

contain at least two

output flows

When using expanded sub-processes, sequence flows should

be connected to the boundaries of sub-processes. Processes

and sub-processes should start and end properly!

Task A

Sub-process »P«

Task B Task C

A sequence flow cannot cross

the boundary of a sub-process

The process should have an

end event

The sub-process should

have a start event

Task A

Sub-process »P«

Task B Task C

Task C

A conditional flow Is not

allowed (necessary) here

Send message to

Pool X A message flow cannot be

a gateway alternative

Analysing

decision

information

Task A

Task B

Task C

Send message

to Pool X

Message to Pool X

Message

from Pool X

Exception flow

Until Loop

~

Ad Hoc –

No flow

The Sequence Flow mechanisms is divided into types: Normal flow, Exception flow,

Conditional flow, Link Events and Ad Hoc (no flow). Refer also to specific

»Workflow Patterns«.

A

A

Intermediate

link used as

GOTO

Important note, explanation

Warning or error in the BPMN model

Recommendation

Wrong model

Right (corrected) model

This poster is licensed under the Creative Commons Attribution-

Noncommercial-No Derivative Works 2.5 Slovenia License

Authors:

Gregor Polan!i! & Tomislav Rozman

Email: info@itposter.net

University of Maribor

Faculty of Electrical Engineering and Computer Science

Institute of Informatics

Poster version: 1.0.9 (4
th

June 2008)

Literature used: BPMN Specification 1.0 @ http://www.bpmi.org

http://bpmn.itposter.net

This is used for compensation handling--both setting and performing

compensation. It calls for compensation if the Event is part of a Normal

Flow. It reacts to a named compensation call when attached to the

boundary of an activity. Very useful for modelling roll-back actions within

the transaction.

This type of Event is used within a Transaction Sub-Process. This type of

Event MUST be attached to the boundary of a Sub-Process. It SHALL be

triggered if a Cancel End Event is reached within the Transaction Sub-

Process.

Workflow patterns
Normal sequence flow

Parallel split, uncontrolled flow

Multiple merge, uncontrolled flow

Exclusive choice with

decision gateway

Simple merge,

uncontrolled flow

Synchronization

(pararel join)

Parallel split,

forking gateway

Discriminator,

merging gateway

Multiple choice

Alter. 3

Alter. 1

Alter. 2

Event based decision Complex decision

(gateway)

Multiple choice, inclusive

decision gateway Synchronization merge,

merging gateway

Simple merge,

uncontrolled flow

Intermediate link

used as GOTO

No Expanded sub-process

Looped subprocess

Interrupt

loop rule

B

B ~ Collapsed adhoc sub-process

F
ro

m
:

To:

F
ro

m
:

To:

L
a

n
e[state]

Check for the latest version at: http://bpmn.itposter.net

Example of a

deadlock

Exception X

Exception X

Exception X

Performing

task A

Conditional flow

Although it is recommended that a process has an explicit start and end

event, this is not a rule. In fact start and end events can be hidden in a sub

process, if needed, or attached to the boundary of the task so as not to

interrupt the normal sequence flow between the sub-process and the rest of

the process.

Document Y

Event Y

Exception flow

Cancel - compensation events are triggered.

Cancel event can be used only with transaction.

...

...

......

... ...

...

A few patterns

55

56

Sequence:
order fulfillment

64 3 Essential Process Modeling

Fig. 3.1 The diagram of a simple order fulfillment process

In this chapter we will become familiar with the core set of symbols provided by
BPMN. As stated earlier, a business process involves events and activities. Events
represent things that happen instantaneously (e.g. an invoice has been received)
whereas activities represent units of work that have a duration (e.g. an activity to
pay an invoice). Also, we recall that in a process, events and activities are logically
related. The most elementary form of relation is that of sequence, which implies that
one event or activity A is followed by another event or activity B. Accordingly, the
three most basic concepts of BPMN are event, activity, and arc. Events are repre-
sented by circles, activities by rounded rectangles, and arcs (called sequence flows
in BPMN) are represented by arrows with a full arrow-head.

Example 3.1 Figure 3.1 shows a simple sequence of activities modeling an order
fulfillment process in BPMN. This process starts whenever a purchase order has
been received from a customer. The first activity that is carried out is confirming the
order. Next, the shipment address is received so that the product can be shipped to
the customer. Afterwards, the invoice is emitted and once the payment is received
the order is archived, thus completing the process.

From the example above we notice that the two events are depicted with two
slightly different symbols. We use circles with a thin border to capture start events
and circles with a thick border to capture end events. Start and end events have an
important role in a process model: the start event indicates when instances of the
process start whereas the end event indicates when instances complete. For exam-
ple, a new instance of the order fulfillment process is triggered whenever a purchase
order is received, and completes when the order is fulfilled. Let us imagine that
the order fulfillment process is carried out at a seller’s organization. Every day this
organization will run a number of instances of this process, each instance being
independent of the others. Once a process instance has been spawned, we use the
notion of token to identify the progress (or state) of that instance. Tokens are cre-
ated in a start event, flow throughout the process model until they are destroyed in
an end event. We depict tokens as colored dots on top of a process model. For ex-
ample Fig. 3.2 shows the state of three instances of the order fulfillment process:
one instance has just started (black token on the start event), another is shipping the
product (red token on activity “Ship product”), and the third one has received the
payment and is about to start archiving the order (green token in the sequence flow
between “Receive payment” and “Archive order”).

While it comes natural to give a name (also called label) to each activity, we
should not forget to give labels to events as well. For example, giving a name to
each start event allows us to communicate what triggers an instance of the process,

57

Exclusive decisions:
invoice checking process68 3 Essential Process Modeling

Fig. 3.4 An example of the use of XOR gateways

forked with an XOR-split. An XOR gateway is indicated with an empty diamond
or with a diamond marked with an “X”. From now on, we will always use the “X”
marker.

Example 3.2 Invoice checking process.

As soon as an invoice is received from a customer, it needs to be checked for mismatches.
The check may result in either of these three options: i) there are no mismatches, in which
case the invoice is posted; ii) there are mismatches but these can be corrected, in which
case the invoice is re-sent to the customer; and iii) there are mismatches but these cannot
be corrected, in which case the invoice is blocked. Once one of these three activities is
performed the invoice is parked and the process completes.

To model this process we start with a decision activity, namely “Check invoice
for mismatches” following a start event “Invoice received”. A decision activity is
an activity that leads to different outcomes. In our example, this activity results
in three possible outcomes, which are mutually exclusive; so we need to use an
XOR-split after this activity to fork the flow into three branches. Accordingly, three
sequence flows will emanate from this gateway, one towards activity “Post invoice”,
performed if there are no mismatches, another one towards “Re-send invoice to
customer”, performed if mismatches exist but can be corrected, and a third flow
towards “Block invoice”, performed if mismatches exist which cannot be corrected
(see Fig. 3.4). From a token perspective, an XOR-split routes the token coming from
its incoming branch towards one of its outgoing branches, i.e. only one outgoing
branch can be taken.

When using an XOR-split, make sure each outgoing sequence flow is annotated
with a label capturing the condition upon which that specific branch is taken. More-
over, always use mutually exclusive conditions, i.e. only one of them can be true
every time the XOR-split is reached by a token. This is the characteristic of the
XOR-split gateway. In our example an invoice can either be correct, or contain mis-
matches that can be fixed, or mismatches that cannot be fixed: only one of these
conditions is true per invoice received.

It is important to annotate
branches with the conditions
under which they are taken

58

Parallel activities:
airport security check

70 3 Essential Process Modeling

Fig. 3.5 An example of the use of AND gateways

undergoing the required security checks. After the first activity, and before the last
one, we need to perform two activities which can be executed in any order, i.e. which
do not depend on each other: “Pass personal security screening” and “Pass luggage
screening”. To model this situation we use an AND-split linking activity “Proceed
to security check” with the two screening activities, and an AND-join linking the
two screening activities with activity “Proceed to departure level” (see Fig. 3.5).

The AND-split splits the token coming from activity “Proceed to security check”
into two tokens. Each of these tokens independently flows through one of the two
branches. This means that when we reach an AND-split, we take all outgoing
branches (note that an AND-split may have multiple outgoing arcs). As we said
before, a token is used to indicate the state of a given instance. When multiple to-
kens of the same color are distributed across a process model, e.g. as a result of
executing an AND-split, they collectively represent the state of an instance. For ex-
ample, if a token is on the arc emitting from activity “Pass luggage screening” and
another token of the same color is on the arc incident to activity “Pass personal
security screening”, this indicates an instance of the security check process where
a passenger has just passed the luggage screening but not yet started the personal
security screening.

The AND-join of our example waits for a token to arrive from each of the two
incoming arcs, and once they are all available, it merges the tokens back into one.
The single token is then sent to activity “Proceed to departure level”. This means that
we proceed when all incoming branches have completed (note again that an AND-
join may have multiple incoming arcs). This behavior of waiting for a number of
tokens to arrive and then merging the tokens into one is called synchronization.

Example 3.4 Let us extend the order fulfillment example of Fig. 3.1 by assuming
that a purchase order is only confirmed if the product is in stock, otherwise the pro-
cess completes by rejecting the order. Further, if the order is confirmed, the shipment
address is received and the requested product is shipped while the invoice is emit-
ted and the payment is received. Afterwards, the order is archived and the process
completes.

The resulting model is shown in Fig. 3.6. Let us make a couple of remarks. First,
this model has two activities that are mutually exclusive: “Confirm order” and “Re-

59

XOR + AND:
order fulfillment

Multiple end events are often considered as a convenient notation
(they are mutually exclusive in the example)

BPMN adopts implicit termination semantics:
a case ends only when each ``token’’ reaches the end

3.2 Branching and Merging 71

Fig. 3.6 A more elaborated version of the order fulfillment process diagram

ject order”, thus we preceded them with an XOR-split (remember to put an activity
before an XOR-split to allow the decision to be taken, such as a check like in this
case, or an approval). Second, the two sequences “Get shipment address”–“Ship
product” and “Emit invoice”–“Receive payment” can be performed independently
of each other, so we put them in a block between an AND-split and an AND-join. In
fact, these two sets of activities are typically handled by different resources within
a seller’s organization, like a sales clerk for the shipment and a financial officer for
the invoice, and thus can be executed in parallel (note the word “meantime” in the
process description, which indicates that two or more activities can be performed at
the same time).

Let us compare this new version of the order fulfillment process with that in
Fig. 3.1 in terms of events. The new version features two end events while the first
version features one end event. In a BPMN model we can have multiple end events,
each capturing a different outcome of the process (e.g. balance paid vs. arrears pro-
cessed, order approved vs. order rejected). BPMN adopts the so-called implicit ter-
mination semantics, meaning that a process instance completes only when each to-
ken flowing in the model reaches an end event. Similarly, we can have multiple start
events in a BPMN model, each event capturing a different trigger to start a process
instance. For example, we may start our order fulfillment process either when a new
purchase order is received or when a revised order is resubmitted. If a revised order
is resubmitted, we first retrieve the order details from the orders database, and then
continue with the rest of the process. This variant of the order fulfillment model is
shown in Fig. 3.7. An instance of this process model is triggered by the first event
that occurs (note the use of an XOR-join to merge the branches coming from the
two start events).

Exercise 3.2 Model the following fragment of a business process for assessing loan
applications.

A loan application is approved if it passes two checks: (i) the applicant’s loan risk assess-
ment, done automatically by a system, and (ii) the appraisal of the property for which the
loan has been asked, carried out by a property appraiser. The risk assessment requires a

60

Multiple start events:
order fulfillment

Multiple start events are often considered as a convenient notation
(they capture mutually exclusive triggers to start a process instance)

72 3 Essential Process Modeling

Fig. 3.7 A variant of the order fulfillment process with two different triggers

credit history check on the applicant, which is performed by a financial officer. Once both
the loan risk assessment and the property appraisal have been performed, a loan officer can
assess the applicant’s eligibility. If the applicant is not eligible, the application is rejected,
otherwise the acceptance pack is prepared and sent to the applicant.

There are two situations when a gateway can be omitted. An XOR-join can be
omitted before an activity or event. In this case, the incoming arcs to the XOR-join
are directly connected to the activity/event. An example of this shorthand notation
is shown in Fig. 1.6, where there are two incident arcs to activity “Select suitable
equipment”. An AND-split can also be omitted when it follows an activity or event.
In this case, the outgoing arcs of the AND-split emanate directly from the activ-
ity/event.

3.2.3 Inclusive Decisions

Sometimes we may need to take one or more branches after a decision activity.
Consider the following business process.

Example 3.5 Order distribution process.

A company has two warehouses that store different products: Amsterdam and Hamburg.
When an order is received, it is distributed across these warehouses: if some of the relevant
products are maintained in Amsterdam, a sub-order is sent there; likewise, if some relevant
products are maintained in Hamburg, a sub-order is sent there. Afterwards, the order is
registered and the process completes.

Can we model the above scenario using a combination of AND and XOR gate-
ways? The answer is yes. However, there are some problems. Figures 3.8 and 3.9
show two possible solutions. In the first one, we use an XOR-split with three alter-
native branches: one taken if the order only contains Amsterdam products (where
the sub-order is forwarded to the Amsterdam warehouse), another taken if the order
only contains Hamburg products (similarly, in this branch the sub-order is forwarded

61

Omitting gateways

Business Process Modeling Notation, v2.0 29

Fork BPMN uses the term “fork” to refer to the

dividing of a path into two or more parallel

paths (also known as an AND-Split). It is a

place in the Process where activities can be

performed concurrently, rather than sequen-

tially.

There are two options:

• Multiple Outgoing Sequence Flow can

be used (see figure top-right). This

represents “uncontrolled” flow is the

preferred method for most situations.

• A Parallel Gateway can be used (see

figure bottom-right). This will be used

rarely, usually in combination with other

Gateways.

Join BPMN uses the term “join” to refer to the com-

bining of two or more parallel paths into one

path (also known as an AND-Join or synchro-

nization).

A Parallel Gateway is used to show the joining

of multiple Sequence Flow.

Decision, Branching

Point

Decisions are Gateways within a Process

(see page 295) or a Choreography (see

page 375) where the flow of control can take

one or more alternative paths.

See next five rows.

Exclusive This Decision represents a branching point

where Alternatives are based on conditional

expressions contained within the outgoing

Sequence Flow (see page 298 or page 375).

Only one of the Alternatives will be chosen.

Default

Condition 1

Business Process Modeling Notation, v2.0 29

Fork BPMN uses the term “fork” to refer to the

dividing of a path into two or more parallel

paths (also known as an AND-Split). It is a

place in the Process where activities can be

performed concurrently, rather than sequen-

tially.

There are two options:

• Multiple Outgoing Sequence Flow can

be used (see figure top-right). This

represents “uncontrolled” flow is the

preferred method for most situations.

• A Parallel Gateway can be used (see

figure bottom-right). This will be used

rarely, usually in combination with other

Gateways.

Join BPMN uses the term “join” to refer to the com-

bining of two or more parallel paths into one

path (also known as an AND-Join or synchro-

nization).

A Parallel Gateway is used to show the joining

of multiple Sequence Flow.

Decision, Branching

Point

Decisions are Gateways within a Process

(see page 295) or a Choreography (see

page 375) where the flow of control can take

one or more alternative paths.

See next five rows.

Exclusive This Decision represents a branching point

where Alternatives are based on conditional

expressions contained within the outgoing

Sequence Flow (see page 298 or page 375).

Only one of the Alternatives will be chosen.

Default

Condition 1

An AND-gateway can be omitted when it follows an activity or event

Similarly, a XOR-gateway before an activity or event can be omitted

62

Inclusive decisions
(one, many)

30 Business Process Modeling Notation, v2.0

Event-Based This Decision represents a branching point

where Alternatives are based on an Event

that occurs at that point in the Process (see

page 307) or Choreography (see page 375).

The specific Event, usually the receipt of a

Message, determines which of the paths will

be taken. Other types of Events can be used,

such as Timer. Only one of the Alternatives

will be chosen.

There are two options for receiving Mes-

sages:

• Tasks of Type Receive can be used

(see figure top-right).

• Intermediate Events of Type Message

can be used (see figure bottom-right).

Inclusive This Decision represents a branching point

where Alternatives are based on conditional

expressions contained within the outgoing

Sequence Flow (see page 300).

In some sense it is a grouping of related inde-

pendent Binary (Yes/No) Decisions. Since

each path is independent, all combinations of

the paths may be taken, from zero to all. How-

ever, it should be designed so that at least

one path is taken. A Default Condition could

be used to ensure that at least one path is

taken.

There are two versions of this type of Deci-

sion:

• The first uses a collection of conditional

Sequence Flow, marked with mini-

diamonds (see top-right figure).

• The second uses an Inclusive Gateway

(see bottom-right picture).

[Type Receive]

[Type Receive]

Condition 1

Condition 2

Condition 2

Condition 1

3.2 Branching and Merging 73

Fig. 3.8 Modeling an inclusive decision: first trial

Fig. 3.9 Modeling an inclusive decision: second trial

to the Hamburg warehouse), and a third branch to be taken in case the order con-
tains products from both warehouses (in which case sub-orders are forwarded to
both warehouses). These three branches converge in an XOR-join which leads to
the registration of the order.

While this model captures our scenario correctly, the resulting diagram is some-
what convoluted, since we need to duplicate the two activities that forward sub-
orders to the respective warehouses twice. And if we had more than two warehouses,
the number of duplicated activities would increase. For example, if we had three
warehouses, we would need an XOR-split with seven outgoing branches, and each
activity would need to be duplicated four times. Clearly this solution is not scal-
able.

63

Inclusive decisions:
order distribution

Only XOR / AND gateways, but the diagram is convoluted!
What if we had three or more warehouses? (does not scale)

3.2 Branching and Merging 73

Fig. 3.8 Modeling an inclusive decision: first trial

Fig. 3.9 Modeling an inclusive decision: second trial

to the Hamburg warehouse), and a third branch to be taken in case the order con-
tains products from both warehouses (in which case sub-orders are forwarded to
both warehouses). These three branches converge in an XOR-join which leads to
the registration of the order.

While this model captures our scenario correctly, the resulting diagram is some-
what convoluted, since we need to duplicate the two activities that forward sub-
orders to the respective warehouses twice. And if we had more than two warehouses,
the number of duplicated activities would increase. For example, if we had three
warehouses, we would need an XOR-split with seven outgoing branches, and each
activity would need to be duplicated four times. Clearly this solution is not scal-
able.

64

Inclusive decisions:
order distribution

Only XOR / AND gateways, the diagram can ``scale’’,
but is it correct? (also the case no-warehouse is now possible)

74 3 Essential Process Modeling

Fig. 3.10 Modeling an inclusive decision with the OR gateway

In the second solution we use an AND-split with two outgoing arcs, each
of which leads to an XOR-split with two alternative branches. One is taken
if the order contains Amsterdam (Hamburg) products, in which case an ac-
tivity is performed to forward the sub-order to the respective warehouse; the
other branch is taken if the order does not contain any Amsterdam (Hamburg)
products, in which case nothing is done until the XOR-join, which merges
the two branches back. Then an AND-join merges the two parallel branches
coming out of the AND-split and the process completes by registering the or-
der.

What is the problem with this second solution? The example scenario allows
three cases: the products are in Amsterdam only, in Hamburg only, or in both ware-
houses, while this solution allows one more case, i.e. when the products are in
neither of the warehouses. This case occurs when the two empty branches of the
two XOR-splits are taken and results in doing nothing between activity “Check or-
der line items” and activity “Register order”. Thus this solution, despite being more
compact than the first one, is wrong.

To model situations where a decision may lead to one or more options be-
ing taken at the same time, we need to use an inclusive (OR) split gateway. An
OR-split is similar to the XOR-split, but the conditions on its outgoing branches
do not need to be mutually exclusive, i.e. more than one of them can be true
at the same time. When we encounter an OR-split, we thus take one or more
branches depending on which conditions are true. In terms of token seman-
tics, this means that the OR-split takes the input token and generates a num-
ber of tokens equivalent to the number of output conditions that are true, where
this number can be at least one and at most as the total number of outgoing
branches. Similar to the XOR-split gateway, an OR-split can also be equipped
with a default flow, which is taken only when all other conditions evaluate to
false.

Figure 3.10 shows the solution to our example using the OR gateway. After the
sub-order has been forwarded to either of the two warehouses or to both, we use
an OR-join to synchronize the flow and continue with the registration of the order.
An OR-join proceeds when all active incoming branches have completed. Waiting
for an active branch means waiting for an incoming branch that will ultimately de-

65

Inclusive decisions:
order distribution

OR gateways, the diagram can ``scale’’,
but remember all the issues with unmatched OR-joins: they are still valid!

Use OR-gateways only when strictly necessary

66

XOR + AND + OR:
order fulfillment3.2 Branching and Merging 77

Fig. 3.12 The order fulfillment process diagram with product manufacturing

3.2.4 Rework and Repetition

So far we have seen structures that are linear, i.e. each activity is performed at most
once. However, sometimes we may require to repeat one or several activities, for
instance because of a failed check.

Example 3.7

In the treasury minister’s office, once a ministerial inquiry has been received, it is first
registered into the system. Then the inquiry is investigated so that a ministerial response
can be prepared. The finalization of a response includes the preparation of the response
itself by the cabinet officer and the review of the response by the principal registrar. If the
registrar does not approve the response, the latter needs to be prepared again by the cabinet
officer for review. The process finishes only once the response has been approved.

To model rework or repetition we first need to identify the activities, or more
in general the fragment of the process, that can be repeated. In our example this
consists of the sequence of activities “Prepare ministerial response” and “Review
ministerial response”. Let us call this our repetition block. The property of a repeti-
tion block is that the last of its activities must be a decision activity. In fact, this will
allow us to decide whether to go back before the repetition block starts, so that this
can be repeated, or to continue with the rest of the process. As such, this decision
activity should have two outcomes. In our example the decision activity is “Review
ministerial response” and its outcomes are: “response approved” (in this case we
continue with the process) and “response not approved” (we go back). To model
these two outcomes, we use an XOR-split with two outgoing branches: one which
allows us to continue with the rest of the process (in our example, this is simply

Better if gateways are balanced

67

XOR + AND + OR:
order fulfillment3.2 Branching and Merging 77

Fig. 3.12 The order fulfillment process diagram with product manufacturing

3.2.4 Rework and Repetition

So far we have seen structures that are linear, i.e. each activity is performed at most
once. However, sometimes we may require to repeat one or several activities, for
instance because of a failed check.

Example 3.7

In the treasury minister’s office, once a ministerial inquiry has been received, it is first
registered into the system. Then the inquiry is investigated so that a ministerial response
can be prepared. The finalization of a response includes the preparation of the response
itself by the cabinet officer and the review of the response by the principal registrar. If the
registrar does not approve the response, the latter needs to be prepared again by the cabinet
officer for review. The process finishes only once the response has been approved.

To model rework or repetition we first need to identify the activities, or more
in general the fragment of the process, that can be repeated. In our example this
consists of the sequence of activities “Prepare ministerial response” and “Review
ministerial response”. Let us call this our repetition block. The property of a repeti-
tion block is that the last of its activities must be a decision activity. In fact, this will
allow us to decide whether to go back before the repetition block starts, so that this
can be repeated, or to continue with the rest of the process. As such, this decision
activity should have two outcomes. In our example the decision activity is “Review
ministerial response” and its outcomes are: “response approved” (in this case we
continue with the process) and “response not approved” (we go back). To model
these two outcomes, we use an XOR-split with two outgoing branches: one which
allows us to continue with the rest of the process (in our example, this is simply

Better if gateways are balanced

68

XOR + AND + OR:
order fulfillment3.2 Branching and Merging 77

Fig. 3.12 The order fulfillment process diagram with product manufacturing

3.2.4 Rework and Repetition

So far we have seen structures that are linear, i.e. each activity is performed at most
once. However, sometimes we may require to repeat one or several activities, for
instance because of a failed check.

Example 3.7

In the treasury minister’s office, once a ministerial inquiry has been received, it is first
registered into the system. Then the inquiry is investigated so that a ministerial response
can be prepared. The finalization of a response includes the preparation of the response
itself by the cabinet officer and the review of the response by the principal registrar. If the
registrar does not approve the response, the latter needs to be prepared again by the cabinet
officer for review. The process finishes only once the response has been approved.

To model rework or repetition we first need to identify the activities, or more
in general the fragment of the process, that can be repeated. In our example this
consists of the sequence of activities “Prepare ministerial response” and “Review
ministerial response”. Let us call this our repetition block. The property of a repeti-
tion block is that the last of its activities must be a decision activity. In fact, this will
allow us to decide whether to go back before the repetition block starts, so that this
can be repeated, or to continue with the rest of the process. As such, this decision
activity should have two outcomes. In our example the decision activity is “Review
ministerial response” and its outcomes are: “response approved” (in this case we
continue with the process) and “response not approved” (we go back). To model
these two outcomes, we use an XOR-split with two outgoing branches: one which
allows us to continue with the rest of the process (in our example, this is simply

Better if gateways are balanced

78 3 Essential Process Modeling

Fig. 3.13 A process model for addressing ministerial correspondence

the end event “Ministerial correspondence addressed”), the other which goes back
to before activity “Prepare ministerial response”. We use an XOR-join to reconnect
this branch to the point of the process model just before the repetition block. The
model for our example is illustrated in Fig. 3.13.

Question Why do we need to merge the loopback branch of a repetition block with
an XOR-join?

The reason for using an XOR-join is that this gateway has a very simple seman-
tics: it moves any token it receives in its input arc to its output arc, which is what
we need in this case. In fact, if we merged the loopback branch with the rest of the
model using an AND-join we would deadlock since this gateway would try to syn-
chronize the two incoming branches when we know that only one of them can be
active at a time: if we were looping we would receive the token from the loopback
branch; otherwise we would receive it from the other branch indicating that we are
entering the repetition block for the first time. An OR-join would work but is an
overkill since we know that only one branch will be active at a time.

Exercise 3.4 Model the following fragment of a business process for assessing loan
applications.

Once a loan application is received by the loan provider, and before proceeding with its
assessment, the application itself needs to be checked for completeness. If the application is
incomplete, it is returned to the applicant, so that they can fill out the missing information
and send it back to the loan provider. This process is repeated until the application is found
complete.

We have learned how to combine activities, events, and gateways to model basic
business processes. For each such element we have showed its graphical represen-
tation, the rules for combining it with other modeling elements and explained its
behavior in terms of token rules. All these aspects fall under the term components of
a modeling language. If you want to know more about this topic, you can read the
box “Components of a modeling language”.

COMPONENTS OF A MODELING LANGUAGE
A modeling language consists of three parts: syntax, semantics, and notation.
The syntax provides a set of modeling elements and a set of rules to govern

69

Rework and repetition:
ministerial correspondence

A repetition block starts with a XOR-join
and ends with a decision gateway (XOR-split)

80 3 Essential Process Modeling

Fig. 3.14 The order fulfillment example with artifacts

from activity “Obtain raw materials from Supplier 1” to Raw materials, indicates
that Raw materials is an output object for this activity. To avoid cluttering the dia-
gram with data associations that cross sequence flows, we may repeat a data object
multiple times within the same process model. However, all occurrences of a given
object do conceptually refer to the same artifact. For example, in Fig. 3.14 Purchase
order is repeated twice as input to “Check stock availability” and to “Confirm order”
since these two activities are far away from each other in terms of model layout.

Often the output from an activity coincides with the input to a subsequent activity.
For example, once Raw materials have been obtained, these are used by activity
“Manufacture product” to create a Product. The Product in turn is packaged and
sent to the customer by activity “Ship product”. Effectively, data objects allow us
to model the information flow between process activities. Bear in mind, however,
that data objects and their associations with activities cannot replace the sequence
flow. In other words, even if an object is passed from an activity A to an activity B,
we still need to model the sequence flow from A to B. A shorthand notation for
passing an object from an activity to the other is by directly connecting the data
object to the sequence flow between two consecutive activities via an undirected
association. See for example the Shipment address being passed from activity “Get

70

Information artifacts:
order fulfillment

artifacts provide
additional information,

at the price of
increased complexity

80 3 Essential Process Modeling

Fig. 3.14 The order fulfillment example with artifacts

from activity “Obtain raw materials from Supplier 1” to Raw materials, indicates
that Raw materials is an output object for this activity. To avoid cluttering the dia-
gram with data associations that cross sequence flows, we may repeat a data object
multiple times within the same process model. However, all occurrences of a given
object do conceptually refer to the same artifact. For example, in Fig. 3.14 Purchase
order is repeated twice as input to “Check stock availability” and to “Confirm order”
since these two activities are far away from each other in terms of model layout.

Often the output from an activity coincides with the input to a subsequent activity.
For example, once Raw materials have been obtained, these are used by activity
“Manufacture product” to create a Product. The Product in turn is packaged and
sent to the customer by activity “Ship product”. Effectively, data objects allow us
to model the information flow between process activities. Bear in mind, however,
that data objects and their associations with activities cannot replace the sequence
flow. In other words, even if an object is passed from an activity A to an activity B,
we still need to model the sequence flow from A to B. A shorthand notation for
passing an object from an activity to the other is by directly connecting the data
object to the sequence flow between two consecutive activities via an undirected
association. See for example the Shipment address being passed from activity “Get

71

Information artifacts:
order fulfillment

text annotation

80 3 Essential Process Modeling

Fig. 3.14 The order fulfillment example with artifacts

from activity “Obtain raw materials from Supplier 1” to Raw materials, indicates
that Raw materials is an output object for this activity. To avoid cluttering the dia-
gram with data associations that cross sequence flows, we may repeat a data object
multiple times within the same process model. However, all occurrences of a given
object do conceptually refer to the same artifact. For example, in Fig. 3.14 Purchase
order is repeated twice as input to “Check stock availability” and to “Confirm order”
since these two activities are far away from each other in terms of model layout.

Often the output from an activity coincides with the input to a subsequent activity.
For example, once Raw materials have been obtained, these are used by activity
“Manufacture product” to create a Product. The Product in turn is packaged and
sent to the customer by activity “Ship product”. Effectively, data objects allow us
to model the information flow between process activities. Bear in mind, however,
that data objects and their associations with activities cannot replace the sequence
flow. In other words, even if an object is passed from an activity A to an activity B,
we still need to model the sequence flow from A to B. A shorthand notation for
passing an object from an activity to the other is by directly connecting the data
object to the sequence flow between two consecutive activities via an undirected
association. See for example the Shipment address being passed from activity “Get

72

Information artifacts:
order fulfillment

data stores
(for persistent
data objects)

80 3 Essential Process Modeling

Fig. 3.14 The order fulfillment example with artifacts

from activity “Obtain raw materials from Supplier 1” to Raw materials, indicates
that Raw materials is an output object for this activity. To avoid cluttering the dia-
gram with data associations that cross sequence flows, we may repeat a data object
multiple times within the same process model. However, all occurrences of a given
object do conceptually refer to the same artifact. For example, in Fig. 3.14 Purchase
order is repeated twice as input to “Check stock availability” and to “Confirm order”
since these two activities are far away from each other in terms of model layout.

Often the output from an activity coincides with the input to a subsequent activity.
For example, once Raw materials have been obtained, these are used by activity
“Manufacture product” to create a Product. The Product in turn is packaged and
sent to the customer by activity “Ship product”. Effectively, data objects allow us
to model the information flow between process activities. Bear in mind, however,
that data objects and their associations with activities cannot replace the sequence
flow. In other words, even if an object is passed from an activity A to an activity B,
we still need to model the sequence flow from A to B. A shorthand notation for
passing an object from an activity to the other is by directly connecting the data
object to the sequence flow between two consecutive activities via an undirected
association. See for example the Shipment address being passed from activity “Get

73

Information artifacts:
order fulfillment

data objects
(for convenience,
the same object
can be repeated
several times)

state of
the objectshorthand

74

Resources as lanes:
order fulfillment 84

3
E

ssentialProcess
M

odeling

F
ig.3.15

T
he

orderfulfillm
entexam

ple
w

ith
resource

inform
ation

organization

system
departments

Placing items

75

events: must be placed in the proper lane

activities: must be placed in the proper lane

data-objects: placement is irrelevant

gateways:
(X)OR-splits: same lane as preceding decision activity

AND-split, joins: placement is irrelevant

Some remarks

76

Lanes are often used to separate activities associated with
a specific company function or role

Sequence flow may cross the boundaries of Lanes within
the same Pool

Message flow may not be used between Flow objects in
Lanes of the same Pool

Question time

77

BPTrends July, 2004 Introduction to BPMN

(c) 2004 Stephen A. White. All Rights Reserved. www.bptrends.com

3

Connecting Objects

The Flow Objects are connected together in a diagram to create the basic skeletal structure of a
business process. There are three Connecting Objects that provide this function. These connectors are:

Sequence Flow

A Sequence Flow is represented by a solid line with a

solid arrowhead (see the figure to the right) and is used
to show the order (the sequence) that activities will be

performed in a Process. Note that the term “control flow”
is generally not used in BPMN.

Message Flow

A Message Flow is represented by a dashed line with an
open arrowhead (see the figure to the right) and is used

to show the flow of messages between two separate

Process Participants (business entities or business roles)
that send and receive them. In BPMN, two separate Pools

in the Diagram will represent the two Participants.

Association

An Association is represented by a dotted line with a line

arrowhead (see the figure to the right) and is used to
associate data, text, and other Artifacts with flow objects.

Associations are used to show the inputs and outputs of
activities.

For modelers who require or desire a low level of precision to create process models for
documentation and communication purposes, the core elements plus the connectors will provide
the ability to easily create understandable diagrams (see Figure 1).

Figure 1: An Example of a Simple Business Process

For modelers who require a higher level of precision to create process models, which will be subject
to detailed analysis or will be managed by Business Process Management System (BPMS), additional
details can be added to the core elements and shown through internal markers (see Figure 2).

which symbol? which implicit gateway?

default?

Identify sub-processes:
order fulfillment

78

98 4 Advanced Process Modeling

Fig. 4.1 Identifying sub-processes in the order fulfillment process of Fig. 3.12

materials from Supplier 1(2)”, lead together to the acquisition of raw materials.
Thus these activities, and their connecting gateways, can be encapsulated in a sub-
process. In other words, they can be seen as the internal steps of a macro-activity
called “Acquire raw materials”. Similarly, the two parallel branches for shipping and
invoicing the order can be grouped under another sub-process activity called “Ship
and invoice”. Figure 4.1 illustrates the resulting model, where the above activities
have been enclosed in two sub-process activities. We represent such activities with
a large rounded box which encloses the internal steps. As we can observe from
Fig. 4.1, we also added a start event and an end event inside each sub-process activ-
ity, to explicitly indicate when the sub-process starts and completes.

Recall that our initial objective was to simplify a process model. Once we have
identified the boundaries of the sub-processes, we can simplify the model by hid-
ing the content of its sub-processes, as shown in Fig. 4.2. This is done by replacing
the macro-activity representing the sub-process with a standard-size activity. We
indicate that this activity hides a sub-process by marking it with a small square
with a plus sign (+) inside (like if we could expand the content of that activity
by pressing the plus button). This operation is called collapsing a sub-process. By
collapsing a sub-process we reduce the total number of activities (the order ful-
fillment process has only six activities now), thus improving the model readabil-
ity. In BPMN, a sub-process which hides its internal steps is called collapsed sub-
process, as opposed to an expanded sub-process which shows its internal steps (as
in Fig. 4.1).

4.1 Process Decomposition 99

Fig. 4.2 A simplified version of the order fulfillment process after hiding the content of its sub-
processes

Exercise 4.1 Identify suitable sub-processes in the process for assessing loan ap-
plications modeled in Exercise 3.5.

Hint Use the building blocks that you created throughout Exercises 3.1–3.4.

Collapsing a sub-process does not imply losing its content. The sub-process
is still there, just defined at an abstraction level below. In fact, we can nest sub-
processes in multiple levels, so as to decompose a process model hierarchically. An
example is shown in Fig. 4.3, which models a business process for disbursing home
loans. In the first level we identified two sub-processes: one for checking the appli-
cant’s liability, the other for signing the loan. In the second level, we factored out
the scheduling of the loan disbursement within the process for signing loans into a
separate sub-process.

As we go down the hierarchical decomposition of a process model, we can add
more details. For example, we may establish a convention that at the top level we
only model core business activities, at the second level we add decision points, and
so on all the way down to modeling exceptions and details that are only relevant for
process automation.

Question When should we decompose a process model into sub-processes?

We should use sub-processes whenever a model becomes too large that is hard to
understand. While it is hard to precisely define when a process model is “too large”,
since understandability is subjective, it has been shown that using more than ap-
proximately 30 flow objects (i.e. activities, events, gateways) leads to an increased
probability of making mistakes in a process model (e.g. introducing behavioral is-
sues). Thus, we suggest to use as few elements as possible per each process model
level, and in particular to decompose a process model if this has more than 30 flow
objects.

Reducing the size of a process model, for example by collapsing its sub-
processes, is one of the most effective ways of improving a process model’s read-
ability. Other structural aspects that affect the readability include the density of the

Hiding sub-processes:
order fulfillment

79

100 4 Advanced Process Modeling

Fig. 4.3 A process model for disbursing home loans, laid down over three hierarchical levels via
the use of sub-processes

process model connections, the number of parallel branches, the longest path from a
start to an end event, as well as cosmetic aspects such as the layout, the labels style
(e.g. always use a verb-noun style), the colors palette, the lines thickness, etc. More
information on establishing process modeling guidelines can be found in Chap. 5.

We have shown that we can simplify a process model by first identifying the
content of a sub-process, and then hiding this content by collapsing the sub-process
activity. Sometimes, we may wish to proceed in the opposite direction, meaning that
when modeling a process we already identify activities that can be broken down in
smaller steps, but we intentionally under-specify their content. In other words, we
do not link the sub-process activity to a process model at a lower level capturing
its content (like if by pressing the plus button nothing would happen). The reason
for doing this is to tell the reader that some activities are made up of sub-steps, but
that disclosing the details of these is not relevant. This could be the case of activity
“Ship product” in the order fulfillment example, for which modeling the distinction
between its internal steps for packaging and for shipping is not relevant.

4.2 Process Reuse

By default a sub-process is embedded within its parent process model, and as such
it can only be invoked from within that process model. Often, when modeling a
business process we may need to reuse parts of other process models of the same
organization. For example, a loan provider may reuse the sub-process for signing

Nesting sub-processes:
home loans

80

100 4 Advanced Process Modeling

Fig. 4.3 A process model for disbursing home loans, laid down over three hierarchical levels via
the use of sub-processes

process model connections, the number of parallel branches, the longest path from a
start to an end event, as well as cosmetic aspects such as the layout, the labels style
(e.g. always use a verb-noun style), the colors palette, the lines thickness, etc. More
information on establishing process modeling guidelines can be found in Chap. 5.

We have shown that we can simplify a process model by first identifying the
content of a sub-process, and then hiding this content by collapsing the sub-process
activity. Sometimes, we may wish to proceed in the opposite direction, meaning that
when modeling a process we already identify activities that can be broken down in
smaller steps, but we intentionally under-specify their content. In other words, we
do not link the sub-process activity to a process model at a lower level capturing
its content (like if by pressing the plus button nothing would happen). The reason
for doing this is to tell the reader that some activities are made up of sub-steps, but
that disclosing the details of these is not relevant. This could be the case of activity
“Ship product” in the order fulfillment example, for which modeling the distinction
between its internal steps for packaging and for shipping is not relevant.

4.2 Process Reuse

By default a sub-process is embedded within its parent process model, and as such
it can only be invoked from within that process model. Often, when modeling a
business process we may need to reuse parts of other process models of the same
organization. For example, a loan provider may reuse the sub-process for signing

Global sub-processes:
home / student loans

81

suppose the ``Sign loan’’
process is defined as a

separate model:
it can be reused

4.2 Process Reuse 101

Fig. 4.4 The process model for disbursing student loans invokes the same model for signing loans
used by the process for disbursing home loans, via a call activity

loans contained in the home loan disbursement for other types of loan, such as a
process for disbursing student loans or motor loans.

In BPMN, we can define the content of a sub-process outside its parent process,
by defining the sub-process as a global process model. A global process model is
a process model that is not embedded within any process model, and as such can
be invoked by other process models within the same process model collection. To
indicate that the sub-process being invoked is a global process model, we use the
collapsed sub-process activity with a thicker border (this activity type is called call
activity in BPMN). Coming back to the loan disbursement example of Fig. 4.3, we
can factor out the sub-process for signing loans and define it as a global process
model, so that it can also be invoked by a process model for disbursing student
loans (see Fig. 4.4).

Question Embedded or global sub-process?

Our default choice should be to define sub-processes as global process models
so as to maximize their reusability within our process model collection. Supporting
processes such as payment, invoicing, HR, printing, are good candidates for being
defined as global process models, since they are typically shared by various business
processes within an organization. Besides reusability, another advantage of using
global process models is that any change made to these models will be automati-
cally propagated to all process models that invoke them. In some cases, however,
we may want to keep the changes internal to a specific process. For example, an
invoicing process used for corporate orders settlement would typically be different

Call activities:
home / student loans

82

thick borders denote
call activities

(to global sub-processes)

Global processes:
advantages

83

Readability: processes tend to be smaller

Reusability: define once, use many time

Sharing: any change made to a global process
is automatically propagated to all models that invoke it

Exercises

84

Model the following fragments of business processes
for assessing loan applications:

Exercise: loan application 1

85

Once a loan application has been approved by the loan provider, an
acceptance pack is prepared and sent to the customer.

The acceptance pack includes a repayment schedule which the
customer needs to agree upon by sending the signed documents
back to the loan provider.

The latter then verifies the repayment agreement:
if the applicant disagreed with the repayment schedule, the loan
provider cancels the application;
if the applicant agreed, the loan provider approves the application.
In either case, the process completes with the loan provider notifying
the applicant of the application status.

86

A loan application is approved if it passes two checks:
(i) the applicant’s loan risk assessment, which is done automatically
by a system, and
(ii) the appraisal of the property for which the loan has been asked,
carried out by a property appraiser.

The risk assessment requires a credit history check on the applicant,
which is performed by a financial officer.

Once both the loan risk assessment and the property appraisal have
been performed, a loan officer can assess the applicant’s eligibility.

If the applicant is not eligible, the application is rejected,
otherwise the acceptance pack is prepared and sent to the applicant.

Exercise: loan application 2

87

A loan application may be coupled with a home insurance which is
offered at discounted prices.
The applicant may express their interest in a home insurance plan at
the time of submitting their loan application to the loan provider.

Based on this information, if the loan application is approved, the loan
provider may either only send an acceptance pack to the applicant,
or also send a home insurance quote.

The process then continues with the verification of the repayment
agreement.

Exercise: loan application 3

88

Once a loan application is received by the loan provider, and before
proceeding with its assessment, the application itself needs to be
checked for completeness.

If the application is incomplete, it is returned to the applicant, so that
they can fill out the missing information and send it back to the loan
provider.

This process is repeated until the application is complete.

Exercise: loan application 4

89

Put together the four fragments of the loan assessment process that
you created in previous Exercises.

Then extend the resulting model by adding all the required artifacts.

Moreover, attach annotations to specify the business rules behind:
(i) checking an application completeness,
(ii) assessing an application eligibility, and
(iii) verifying a repayment agreement.

Exercise: loan application 5

90

Extend the business process for assessing loan applications that you
created in previous exercises by considering the following resource
aspects.

The process for assessing loan applications is executed by four roles
within the loan provider:
a financial officer takes care of checking the applicant’s credit history;
a property appraiser is responsible for appraising the property;
an insurance sales representative sends the home insurance quote
to the applicant if this is required.
All other activities are performed by the loan officer who is the main
point of contact with the applicant.

Exercise: loan application 6

91

Can the process model below execute correctly?
If not, how can it be fixed without affecting the cycle, i.e.

such that F, G, and E all remain in a cycle?

Exercises: refactoring

92

The graphical syntax is not expressive enough
to model exactly all interesting situations

In many cases part of the behaviour is moved
to decorations and annotations

(without them no implementation is possible)

Semantics annotations

4.3 More on Rework and Repetition 103

Fig. 4.5 The process model for addressing ministerial correspondence of Fig. 3.13 simplified
using a loop activity

ministerial correspondence of Example 3.7. To make this model simpler, we can
take the fragment identified by the XOR-join and the XOR-split (which includes
the repetition block and the loopback branch) and replace it with a sub-process
containing the activities in the repetition block. To identify that this sub-process
may be repeated (if the response is not approved), we mark the sub-process activity
with a loop symbol, as shown in Fig. 4.5. We can use an annotation to specify the
loop condition, e.g. “until response approved”.

As for any sub-process, you may decide not to specify the content of a loop
sub-process. However, if you do so, do not forget to put a decision activity as the
last activity inside the sub-process, otherwise there is no way to determine when to
repeat the sub-process.

Question Loop activity or cycle?

The loop activity is a shorthand notation for a structured cycle, i.e. a repetition
block delimited by a single entry point to the cycle, and a single exit point from
the cycle, like in the example above. Sometimes there might be more than one en-
try and/or exit point, or the entry/exit point might be inside the repetition block.
Consider for example the model in Fig. 4.6. Here the repetition block is made up
of activities “Assess application”, “Notify rejection” and “Receive customer feed-
back”; the cycle has an entry point and two exit points, of which one inside the
repetition block. When an unstructured cycle has multiple exit points, like in this
case, a loop activity cannot be used, unless additional conditions are used to specify
the situations in which the cycle can be exited, which will render the model more
complex.

Exercise 4.3

1. Identify the entry and exit points that delimit the unstructured cycles in the pro-
cess models shown in Solution 3.4 and in Exercise 3.9. What are the repetition
blocks?

Loop annotation:
ministerial correspondence

93

the loop-symbol decoration
marks the possible repetition

of the sub-process activity

we can use annotations
to specify loop conditions

4.3 More on Rework and Repetition 105

Fig. 4.7 Obtaining quotes from five suppliers

To do so, we added a task to retrieve the list of suppliers, and passed this list to a
multi-instance task, which contacts the various suppliers. You would have noticed
that in this example we have also marked the data object Suppliers list with the
multi-instance symbol. This is used to indicate a collection of similar data objects,
like a list of order items, or a list of customers. When a collection is used as input
to a multi-instance activity, the number of items in the collection determines the
number of activity instances to be created. Alternatively, we can specify the number
of instances to be created via an annotation on the multi-instance activity (e.g. “15
suppliers”, or “as per suppliers database”).

Let us come back to our example. Assume the list of suppliers has become quite
large over time, say there are 20 suppliers in the database. As per our organizational
policies, however, five quotes from five different suppliers are enough to make a
decision. Thus, we do not want to wait for all 20 suppliers to reply back to our
request for quote. To do so, we can annotate the multi-instance activity with the
minimum number of instances that need to complete before passing control to the
outgoing arc (e.g. “complete when five quotes obtained”, as shown in Fig. 4.8).
When the multi-instance activity is triggered, 20 tokens are generated, each marking
the progress of one of the 20 instances. Then, as soon as the first five instances
complete, all the other instances are canceled (the respective tokens are destroyed)
and one token is sent to the output arc to signal completion.

Let us take the order fulfillment example in Fig. 4.2, and expand the content of
the sub-process for acquiring raw materials. To make this model more realistic, we
can use a multi-instance sub-process in place of the structure delimited by the two
OR gateways, assuming that the list of suppliers to be contacted will be determined

Parallel repetition:
procurement process

94

the larger the number of suppliers
the larger the model!

we must revise the model if
the suppliers change!

Multi-instance activities:
procurement process

95

the multi-instance symbol annotation
denotes an activity that is executed

multiple times concurrently
(e.g. repeated activity for multiple entries

or data-items)

106 4 Advanced Process Modeling

Fig. 4.8 Obtaining quotes from multiple suppliers, whose number is not known a priori

Fig. 4.9 Using a multi-instance pool to represent multiple suppliers

on the fly from a suppliers database (the updated model is shown in Fig. 4.9). By the
same principle, we replace the two pools “Supplier 1” and “Supplier 2” with a single
pool, namely “Supplier”, which we also mark with the multi-instance symbol—a
multi-instance pool represents a set of resource classes, or resources, having similar
characteristics.

the multi-instance
symbol annotation

denotes a
collection of data

the list of instances
is determined
dynamically

the annotation says that
as soon as five instance
terminate we cancel the

pending ones

108 4 Advanced Process Modeling

Fig. 4.10 Using an ad-hoc sub-process to model uncontrolled repetition

4.4 Handling Events

As we pointed out in Chap. 3, events are used to model something that happens in-
stantaneously in a process. We saw start events, which signal how process instances
start (tokens are created), and end events, which signal when process instances com-
plete (tokens are destroyed). When an event occurs during a process, for example
an order confirmation is received after sending an order out to the customer and
before proceeding with the shipment, the event is called intermediate. A token re-
mains trapped in the incoming sequence flow of an intermediate event until the
event occurs. Then the token traverses the event instantaneously, i.e. events can-
not retain tokens. An intermediate event is represented as a circle with a double
border.

4.4.1 Message Events

In the previous chapter, we showed that we can mark a start event with an empty en-
velope to specify that new process instances are triggered by the receipt of a message
(cf. Fig. 3.16). Besides the start message event, we can also mark an end event and
an intermediate event with an envelope to capture the interaction between our pro-
cess and another party. These types of event are collectively called message events.
An end message event signals that a process concludes upon sending a message.
An intermediate message event signals the receipt of a message, or that a message
has just been sent, during the execution of the process. Intermediate and end mes-
sage events represent an alternative notation to those activities that are solely used
to send or receive a message. Take for example activities “Return application to ap-
plicant” and “Receive updated applications” in Fig. 4.11a, which is an extract of the
loan assessment model of Solution 3.7. It is more meaningful to replace the former
activity with an intermediate send message event and the latter activity with an in-
termediate receive message event, as illustrated in Fig. 4.11b, since these activities

Ad-hoc sub-processes:
customer process

96

the ad-hoc symbol annotation
denotes an uncontrolled repetition of activities:

they may be repeated multiple times with no specific order
or not occur at all, until a condition is met

we can use
annotations
to specify

loop conditions

97

A start event can be annotated with a white-envelope:
a process instance is created

when a certain message is received

An end event can be annotated with a black-filled envelope:
the process concludes by sending a message

Intermediate events and activities can be annotated with
both kinds of envelope

(white = receipt of a message,
black = the sending of a message)

Message annotated
events and activities

98

Process break
(event waiting)

Business Process Modeling Notation, v2.0 31

Merging BPMN uses the term “merge” to refer to the

exclusive combining of two or more paths into

one path (also known as an OR-Join).

A Merging Exclusive Gateway is used to show

the merging of multiple Sequence Flow.

If all the incoming flow is alternative, then a

Gateway is not needed. That is, uncontrolled

flow provides the same behavior.

Looping BPMN provides 2 (two) mechanisms for loop-

ing within a Process.
See Next Two Figures

Activity Looping The attributes of Tasks and Sub-Processes

will determine if they are repeated or per-

formed once (see page 198). There are two

types of loops: Standard and Multi-Instance. A

small looping indicator will be displayed at the

bottom-center of the activity.

Sequence Flow Looping Loops can be created by connecting a

Sequence Flow to an “upstream” object. An

object is considered to be upstream if that

object has an outgoing Sequence Flow that

leads to a series of other Sequence Flow, the

last of which is an incoming Sequence Flow

for the original object.

Multiple Instances The attributes of Tasks and Sub-Processes

will determine if they are repeated or per-

formed once (see page 198). A small parallel

indicator will be displayed at the bottom-cen-

ter of the activity.

Process Break (some-

thing out of the control of

the process makes the

process pause)

A Process Break is a location in the Process

that shows where an expected delay will

occur within a Process (see page 256). An

Intermediate Event is used to show the actual

behavior (see top-right figure). In addition, a

Process Break Artifact, as designed by a

modeler or modeling tool, can be associated

with the Event to highlight the location of the

delay within the flow.

Announce

Issues for Vote

Increment

Tally

Voting

Response

the envelope annotation denotes an intermediate message event:
it signals the receipt of a message

110 4 Advanced Process Modeling

Fig. 4.12 Using timer events to drive the various activities of a business process

event, i.e. an event that throws a trigger from within the process. An intermediate
message event has both flavors since it can be used both as a catching event (the
message is received from another pool) or as a throwing event (the message is sent
to another pool).

4.4.2 Temporal Events

Besides the message event, there are other triggers that can be specified for a start
event. One worth of notice is the timer event. This event type indicates that process
instances start upon the occurrence of a specific temporal event, e.g. every Friday
morning, every working day of the month, every morning at 7am.

A timer event may also be used as intermediate event, to model a temporal inter-
val that needs to elapse before the process instance can proceed. To indicate a timer
event, we mark the event symbol with a light watch inside the circle. Timer events
are catching events only since a timer is a trigger outside the control of the process.
In other words, the process does not generate the timer, but rather reacts to this.

Example 4.3 Let us consider the following process at a small claims tribunal.

In a small claims tribunal, callovers occur once a month, to set down the matter for the
upcoming trials. The process for setting up a callover starts three weeks prior to the callover
day, with the preparation of the callover list containing information such as contact details of
the involved parties and estimated hearing date. One week prior to the callover, the involved
parties are contacted to determine if they are all ready to go to trial. If this is the case, the
callover is set, otherwise it is deferred to the next available slot. Finally, on the callover day,
the callover material is prepared and the callover is held.

This process is driven by three temporal events: it starts three weeks prior to
the callover date, continues one week prior to the callover date, and concludes on
the day of the callover. To model these temporal events we need one start and
two intermediate timer events, as shown in Fig. 4.12. Let us see how this pro-
cess works from a token semantics point of view. A token capturing a new in-
stance is generated every time it is three weeks prior to the callover date (we
assume this date has been scheduled by another process). Once the first activity

Timer events:
small claims tribunal

99

the clock annotation denotes
a timer start event:

an instance of the process
is created when some

temporal event happens
the clock annotation denotes
a timer intermediate event:
the process is blocked until

a time-out expires

100

Event-based decisions
(also deferred choice)

30 Business Process Modeling Notation, v2.0

Event-Based This Decision represents a branching point

where Alternatives are based on an Event

that occurs at that point in the Process (see

page 307) or Choreography (see page 375).

The specific Event, usually the receipt of a

Message, determines which of the paths will

be taken. Other types of Events can be used,

such as Timer. Only one of the Alternatives

will be chosen.

There are two options for receiving Mes-

sages:

• Tasks of Type Receive can be used

(see figure top-right).

• Intermediate Events of Type Message

can be used (see figure bottom-right).

Inclusive This Decision represents a branching point

where Alternatives are based on conditional

expressions contained within the outgoing

Sequence Flow (see page 300).

In some sense it is a grouping of related inde-

pendent Binary (Yes/No) Decisions. Since

each path is independent, all combinations of

the paths may be taken, from zero to all. How-

ever, it should be designed so that at least

one path is taken. A Default Condition could

be used to ensure that at least one path is

taken.

There are two versions of this type of Deci-

sion:

• The first uses a collection of conditional

Sequence Flow, marked with mini-

diamonds (see top-right figure).

• The second uses an Inclusive Gateway

(see bottom-right picture).

[Type Receive]

[Type Receive]

Condition 1

Condition 2

Condition 2

Condition 1

30 Business Process Modeling Notation, v2.0

Event-Based This Decision represents a branching point

where Alternatives are based on an Event

that occurs at that point in the Process (see

page 307) or Choreography (see page 375).

The specific Event, usually the receipt of a

Message, determines which of the paths will

be taken. Other types of Events can be used,

such as Timer. Only one of the Alternatives

will be chosen.

There are two options for receiving Mes-

sages:

• Tasks of Type Receive can be used

(see figure top-right).

• Intermediate Events of Type Message

can be used (see figure bottom-right).

Inclusive This Decision represents a branching point

where Alternatives are based on conditional

expressions contained within the outgoing

Sequence Flow (see page 300).

In some sense it is a grouping of related inde-

pendent Binary (Yes/No) Decisions. Since

each path is independent, all combinations of

the paths may be taken, from zero to all. How-

ever, it should be designed so that at least

one path is taken. A Default Condition could

be used to ensure that at least one path is

taken.

There are two versions of this type of Deci-

sion:

• The first uses a collection of conditional

Sequence Flow, marked with mini-

diamonds (see top-right figure).

• The second uses an Inclusive Gateway

(see bottom-right picture).

[Type Receive]

[Type Receive]

Condition 1

Condition 2

Condition 2

Condition 1

Event-based split gateway
can be used to select

a branch based on some
external event

112 4 Advanced Process Modeling

Fig. 4.13 A race condition between an incoming message and a timer

by the process environment.1 An internal choice is determined by the outcome of a
decision activity. Thus, the event-based XOR-split can only be followed by interme-
diate catching events like a timer or a message event, or by receiving activities. Since
the choice is delayed until an event happens, the event-based split is also known as
deferred choice. There is no event-based XOR-join, so the branches emanating from
an event-based split are merged with a normal XOR-join.

Exercise 4.8 Model the following process.

A restaurant chain submits a purchase order (PO) to replenish its warehouses every Thurs-
day. The restaurant chain’s procurement system expects to receive either a “PO Response”
or an error message. However, it may also happen that no response is received at all due to
system errors or due to delays in handling the PO on the supplier’s side. If no response is
received by Friday afternoon or if an error message is received, a purchasing officer at the
restaurant chain’s headquarters should be notified. Otherwise, the PO Response is processed
normally.

The event-based split can be used as the counterpart of an internal decision on
a collaborating party. For example, a choice made from within the Client pool to
send either an acceptance message or a rejection message to an Insurer, needs to be
matched by an event-driven decision on the insurer pool to react to the choice made
by the client. This example is illustrated in Fig. 4.14.

Event-based gateways can be used to avoid behavioral anomalies in the com-
munication between pools. Take for example the collaboration diagram between the
auctioning service and the seller in Fig. 4.15. This collaboration may deadlock if the
seller is already registered, as this party will wait for the account creation request
message which in that case will never arrive. To fix this issue, we need to allow the
seller to receive the creation confirmation message straightaway in case the seller is
already registered, as shown in Fig. 4.16.

1Specifically, the XOR-split of Chap. 3 is called data-based XOR-split since the branch to take is
based on the evaluation of two or more conditions on data that are produced by a decision activity.

101

Deferred choice

A race condition between
an incoming message

and a timer

102

Exceptions are events
that deviate a process from its normal course

They include: business faults (e.g., out of stock),
technology faults (e.g., database crash)

Exceptions provoke the interruption or abortion
of the running process instance

Before adding exceptions it is important to have
the sunny-day scenario well understood

Exceptions:
rainy-days vs sunny-days

116 4 Advanced Process Modeling

Fig. 4.18 Using a terminate event to signal improper process termination

with a full circle inside), causes the immediate cessation of the process instance at
its current level and for any sub-process.

In the example of Fig. 4.18—a variant of the home loan that we already saw in
Fig. 4.3—a home loan is rejected and the process is aborted if the applicant has
debts and/or low liability. From a token semantics, the terminate event destroys all
tokens in the process model and in any sub-process. In our example, this is needed
to avoid the process to deadlock at the AND-join, since a token may remain trapped
before the AND-join if there is high liability and debts or low liability and no debts.

Observe that if a terminate event is triggered from within a sub-process, it will
not cause the abortion of the parent process but only that of the sub-process, i.e. the
terminate event is only propagated downwards in a process hierarchy.

Exercise 4.10 Revise the examples presented so far in this chapter, by using the
terminate event appropriately.

4.5.2 Internal Exceptions

Instead of aborting the whole process, we can handle an exception by interrupting
the specific activity that has caused the exception. Next, we can start a recovery
procedure to bring the process back to a consistent state and continue its execution,
and if this is not possible, only then, abort the process altogether. BPMN provides
the error event to capture these types of scenario. An end error event is used to
interrupt the enclosing sub-process and throw an exception. This exception is then
caught by an intermediate catching error event which is attached to the boundary of
the same sub-process. In turn, this boundary event triggers the recovery procedure
through an outgoing branch which is called exception flow.

103

Process abortion:
home loan

end terminate event:
causes the immediate

cessation of the current
process instance

(and of any sub-process,
but not of the parent process if any)

104

We can handle exceptions of sub-processes
by interrupting the activity that caused the exception

and moving the control flow to another process

The recovery procedure can try to bring the
process back to a consistent state

Error end events are used to interrupt the execution

Boundary events trigger the recovery procedure
(called exception flow)

Handling exceptions:
rainy-days vs sunny-days

105

Throwing and catching:
order fulfillment

the lightning annotation
denotes a throwing event:
it models an out-of-stock

exception

4.5 Handling Exceptions 117

Fig. 4.19 Error events model internal exceptions

The error event is depicted as an event with a lightning marker. Following the
BPMN conventions for throwing and catching events, the lightning is empty for the
catching intermediate event and full for the end throwing event.

An example of error events is shown in Fig. 4.19 in the context of our order ful-
fillment process. If there is an out of stock exception, the acquisition of raw materi-
als is interrupted and the recovery procedure is triggered, which in this case simply
consists of a task to notify the customer before aborting the process. In terms of
token semantics, upon throwing an end error event, all tokens are removed from
the enclosing sub-process (causing its interruption), and one token is sent through
the exception flow emanating from the boundary error event. There is no restriction
on the modeling elements we can put in the exception flow to model the recovery
procedure. Typically, we would complete the exception flow with an end terminate
event to abort the process, or wire this flow back to the normal sequence flow if the
exception has been properly handled.

4.5.3 External Exceptions

An exception may also be caused by an external event occurring during an activity.
For example, while checking the stock availability for the product in a purchase
order, the Seller may receive an order cancellation from the customer. Upon this
request, the Seller should interrupt the stock availability check and handle the order
cancellation. Scenarios like the above are called unsolicited exceptions since they
originate externally to the process. They can be captured by attaching a catching
intermediate message event to an activity’s boundary, as shown in Fig. 4.20. From
a token semantics, when the intermediate message event is triggered, the token is
removed from the enclosing activity, consequently causing the activity interruption,
and sent through the exception flow emanating from the boundary event, to perform
the recovery procedure.

the lightning annotation
denotes an error-catching event

106

Recovery from faults:
image manipulation
Petri Net Transformations for Business Processes – A Survey 51

Legend

u
t

e
m

l

fail

f

Start event

End event

Error exception event –
Cancel Region

Task

XOR-split –
Exclusive Choice

XOR-join –
Simple Merge

AND-split –
Parallel Split

AND-join –
Synchonization

a b Sequence flow from – Sequence

[redo]
[image small
enough]

[image too big]

Fig. 3. The example process as a BPMN process

transformation itself. The section focuses on BPMN version 1.0, because at the
time that the transformation was developed that was the current version. There-
fore, comments on BPMN apply to version 1.0 only.

3.1 Language

BPMN is a rich language that provides the modeler with a large collection of
object types to represent various aspects of a business process, including the
control-flow, data, resources and exceptions. BPMN is mainly meant for model-
ing business processes at a conceptual level, meaning that it is mainly intended
for drawing process models that will be used for communication between stake-
holders in the processes. As a consequence, formal rigor and conciseness were
not primary concerns when developing the BPMN specification.

The three types of BPMN objects that can be used to represent the control-
flow aspect of a process are activities, events, gateways. Many subtypes of these
objects exist. Control-flow objects can be connected by sequence flows, which
are directed arcs that represent the flow of control from one object to the next.
Figure 3 illustrates some of these objects, by representing the example process
in BPMN and by relating the object types to the workflow patterns explained
in Sect. 2.2.

3.2 Transformation Challenges

Due to the large number of object types that constitute BPMN it is hard to
define a mapping and show (or prove) that the mapping works for all possible
combinations of these object types. Especially, because the mapping of a com-
position of object types is not the same as the composition of the mapping of
those object types. This complicates, for example, defining mapping rules for
interruptions of sub-process invocations.

Intermediate time out
and a loop

107

BPTrends July, 2004 Introduction to BPMN

(c) 2004 Stephen A. White. All Rights Reserved. www.bptrends.com

4

Figure 2: A Segment of a Process with more Details

Swimlanes

Many process modeling methodologies utilize the concept of swimlanes as a mechanism to organize
activities into separate visual categories in order to illustrate different functional capabilities or
responsibilities. BPMN supports swimlanes with two main constructs. The two types of BPD
swimlane objects are:

Pool

A Pool represents a Participant in a

Process. It is also acts as a
graphical container for partitioning

a set of activities from other Pools
(see the figure to the right),

usually in the context of B2B
situations.

Lane

A Lane is a sub-partition within a

Pool and will extend the entire
length of the Pool, either vertically

or horizontally (see the figure to
the right). Lanes are used to

organize and categorize activities.

Pools are used when the diagram involves two separate business entities or participants (see Figure
3) and are physically separated in the diagram. The activities within separate Pools are considered
self-contained Processes. Thus, the Sequence Flow may not cross the boundary of a Pool. Message
Flow is defined as being the mechanism to show the communication between two participants, and,
thus, must connect between two Pools (or the objects within the Pools).

4.5 Handling Exceptions 123

Fig. 4.24 Compensating for the shipment and for the payment

a compensation activity specific to the activity to be compensated. For example the
compensation activity for “Receive payment” is “Reimburse customer”. The bound-
ary event is connected to the compensation activity via a dotted arrow with an open
arrowhead, called compensation association (whose notation is the same as that of
the data association). This activity is marked with the compensate symbol to indi-
cate its purpose, and must not have any outgoing flow: in case the compensation
procedure is complex, this activity can be a sub-process.

Compensation is only effective if the attached activity has completed. Once all
activities that could be compensated are compensated, the process resumes from af-
ter the throwing compensation event, unless this is an end event. If the compensation
is for the entire process, we can use an event sub-process with a start compensate
event in place of the boundary event.

In this section we have seen various ways to handle exceptions in business pro-
cess, from simple process abortion to complex exception handling. Before adding
exceptions it is important to understand the sunny-day scenario well. So start by
modeling that. Then think of all possible situations that can go wrong. For each of
these exceptions, identify what type of exception handling mechanism needs to be
used. First, determine the cause of the exception: internal or external. Next, decide
if aborting the process is enough, or if a recovery procedure needs to be triggered.
Finally, evaluate whether the interrupted activity needs to be compensated as part of
the recovery procedure.

Compensations

108

the receipt of an order
cancelation request triggers
the start of a compensation

if the compensable
activities have been
already completed,
then they must be

compensated

109

Model the following process fragment:

After a car accident, a statement is sought from two
witnesses out of the five that were present, in order to

lodge the insurance claim.
As soon as the first two statements are received, the claim
can be lodged with the insurance company without waiting

for the other statements.

Exercises

Conversations,
choreographies, and

collaborations

110

Conversation
A Conversation is the logical relation of

(correlated) Message exchanges

Business Process Modeling Notation, v2.0 293

11 Conversation

The Conversation diagram is similar to a Collaboration diagram. However, the Pools of a Conversation are not

allowed to contain a Process and a Choreography is not allowed to be placed in between the Pools of a

Conversation diagram.

The view includes two (2) additional graphical elements that do not exist in other BPMN views:

• A Communication

• A CommunicationLink

A Conversation is set of Message exchanges (Message Flow) that share the same Correlation.

A Conversation is the logical relation of Message exchanges. The logical relation, in practice, often concerns a

business object(s) of interest, e.g, “Order,” “Shipment and Delivery,” and “Invoice.” Hence, a Conversation is

associated with a set of name-value pairs, or a Correlation Key (e.g., “Order Identifier,” “Delivery Identifier”),

which is recorded in Messages that are exchanged. In this way, a Message can be routed to the specific Process

instance responsible for receiving and processing the Message.

Figure 11.1 shows a simple example of a Conversation diagram.

Figure 11.1 - A Conversation diagram

Figure 11.2 shows a variation of the example above where the Conversation node has been expanded into its

component Message Flow.

Conversation

Partic ipa nt BPa rtic ip ant A

communication
element

111

Conversation diagram

112

Activities
Conversations

Events

Gateways

Conversation Diagram

None: Untyped events,

indicate start point, state

changes or final states.

Message: Receiving and

sending messages.

Timer: Cyclic timer events,

points in time, time spans or

timeouts.

Error: Catching or throwing

named errors.

Cancel: Reacting to cancelled

transactions or triggering

cancellation.

Compensation: Handling or

triggering compensation.

Conditional: Reacting to

changed business conditions

or integrating business rules.

Signal: Signalling across differ‐

ent processes. A signal thrown

can be caught multiple times.

Multiple: Catching one out of

a set of events. Throwing all

events defined

Link: Off‐page connectors.

Two corresponding link events

equal a sequence flow.

Terminate: Triggering the

immediate termination of a

process.

Escalation: Escalating to

an higher level of

responsibility.

Parallel Multiple: Catching

all out of a set of parallel

events.

Start EndIntermediate

C
a
tc

h
in

g

T
h
ro

w
in

g

E
v
e
n
t

S
u
b
‐P

ro
c
e
ss

In
te

rr
u
p
ti

n
g

T
o
p
‐L

e
v
e
l

E
v
e
n
t

S
u
b
‐P

ro
c
e
ss

N
o
n
‐I

n
te

rr
u
p
ti

n
g

B
o
u
n
d
a
ry

In

te
rr

u
p
ti

n
g

B
o
u
n
d
a
ry

 N
o
n
‐

In
te

rr
u
p
ti

n
g

Sequence Flow

defines the execution

order of activities.

Conditional Flow

has a condition

assigned that defines

whether or not the

flow is used.

Default Flow

is the default branch

to be chosen if all

other conditions

evaluate to false.

Task

A Task is a unit of work, the job to be

performed. When marked with a symbol

it indicates a Sub‐Process, an activity that can

be refined.

Transaction

A Transaction is a set of activities that logically

belong together; it might follow a specified

transaction protocol.

Event

Sub‐Process

An Event Sub‐Process is placed into a Process or

Sub‐Process. It is activated when its start event

gets triggered and can interrupt the higher level

process context or run in parallel (non‐

interrupting) depending on the start event.

Call Activity
A Call Activity is a wrapper for a globally defined

Sub‐Process or Task that is reused in the current

process.

Task Types
Types specify the nature of

the action to be performed:

Send Task

Receive Task

User Task

Manual Task

Business Rule Task

Service Task

Script Task

Markers indicate execution

behavior of activities:

Activity Markers

Sub‐Process Marker

Loop Marker

Parallel MI Marker

Sequential MI Marker

~ Ad Hoc Marker

Compensation Marker

A Communication defines a set of

logically related message exchanges.

When marked with a symbol it

indicates a Sub‐Conversation, a

compound conversation element.

A Forked Conversation Link connects

Communications and multiple

Participants.

A Conversation Link connects

Communications and Participants.

Inclusive Gateway
When splitting, one or more

branches are activated. All

active incoming branches must

complete before merging.

Complex Gateway
Complex merging and

branching behavior that is not

captured by other gateways.

Exclusive Event‐based Gateway
(instantiate)
Each occurrence of a subsequent

event starts a new process

instance.

Parallel Event‐based Gateway
(instantiate)
The occurrence of all subsequent

events starts a new process

instance.

Pool

(collapsed)

Multi Instance Pool

(collapsed)

Communication

Sub‐Conversation

Pool

(collapsed)
Participant B

The order of message
exchanges can be

specified by combining

message flow and

sequence flow.

P
o
o
l

P
o
o
l

Pools (Participants) and Lanes
represent responsibilities for

activities in a process. A pool

or a lane can be an

organization, a role, or a

system. Lanes subdivide pools

or other lanes hierarchically.

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Message Flow

symbolizes information

flow across organizational

boundaries. Message flow

can be attached to pools,

activities, or message

events.

Data

TaskInput Out-

put

Data Store

A Data Object represents information flowing

through the process, such as business

documents, e‐mails, or letters.

A Data Store is a place where the process can

read or write data, e.g., a database or a filing

cabinet. It persists beyond the lifetime of the

process instance.

A Data Input is an external input for the

entire process. It can be read by an activity.

A Data Output is a variable available as result

of the entire process.

A Message is used to depict the contents of a

communication between two Participants.

A Collection Data Object represents a

collection of information, e.g., a list of order

items.

Pool (Collapsed)

Collaboration Diagram

P
o
o
l
(E

x
p
a
n
d
e
d
)

L
a
n
e

L
a
n
e

Choreographies

Choreography Diagram

A Choreography Task
represents an Interaction

(Message Exchange)

between two Participants.

Choreography

Task

Participant A

Participant B

A Choreography Sub‐
Process contains a refined

choreography with several

Interactions.

Multiple Participants Marker
denotes a set of

Participants of the

same kind.

Swimlanes

BPMN 2.0 ‐ Business Process Model and Notation

Collection

Ad‐hoc Sub‐Process

Task

Task

~

Message

Start Event

Message Flow

Data Object

Collapsed

Sub‐Process

Event‐based

Gateway

Escalation

End Event

Timer

Intermediate

Event

Receive Task

Attached

Intermediate

Timer Event

Link

Intermediate

Event

Manual Task

End

Event

Data

Store

Link

Intermediate

Event

Parallel

Multiple

Intermediate

Event

Text Annotation

Group

Multi Instance

Task (Parallel)

Message

End Event

Send Task

Parallel

Gateway

Exclusive

Gateway

Attached

Intermediate

Error Event

Signal

End

Event

Call Activity

Sub‐Process

Event Sub‐Process

Conditional

Start Event

Error End

Event

Start

Event

End

Event

Looped

Sub‐Process

condition

http://bpmb.de/poster

Participant A

Participant C
Participant B

Choreography

Task

Participant A

Participant B

Choreography

Task

Participant A

Participant C

Initiating

Message

Response

Message

Choreography

Task

Participant B

Participant A

When splitting, it routes the sequence flow to exactly

one of the outgoing branches. When merging, it awaits

one incoming branch to complete before triggering the

outgoing flow.

Exclusive Gateway

Is always followed by catching events or receive tasks.

Sequence flow is routed to the subsequent event/task

which happens first.

Event‐based Gateway

When used to split the sequence flow, all outgoing

branches are activated simultaneously. When merging

parallel branches it waits for all incoming branches to

complete before triggering the outgoing flow.

Parallel Gateway

Choreography

Sub‐Process

Participant A

Participant C

Participant B

Activities
Conversations

Events

Gateways

Conversation Diagram

None: Untyped events,

indicate start point, state

changes or final states.

Message: Receiving and

sending messages.

Timer: Cyclic timer events,

points in time, time spans or

timeouts.

Error: Catching or throwing

named errors.

Cancel: Reacting to cancelled

transactions or triggering

cancellation.

Compensation: Handling or

triggering compensation.

Conditional: Reacting to

changed business conditions

or integrating business rules.

Signal: Signalling across differ‐

ent processes. A signal thrown

can be caught multiple times.

Multiple: Catching one out of

a set of events. Throwing all

events defined

Link: Off‐page connectors.

Two corresponding link events

equal a sequence flow.

Terminate: Triggering the

immediate termination of a

process.

Escalation: Escalating to

an higher level of

responsibility.

Parallel Multiple: Catching

all out of a set of parallel

events.

Start EndIntermediate

C
a
tc

h
in

g

T
h
ro

w
in

g

E
v
e
n
t

S
u
b
‐P

ro
c
e
ss

In
te

rr
u
p
ti

n
g

T
o
p
‐L

e
v
e
l

E
v
e
n
t

S
u
b
‐P

ro
c
e
ss

N
o
n
‐I

n
te

rr
u
p
ti

n
g

B
o
u
n
d
a
ry

In

te
rr

u
p
ti

n
g

B
o
u
n
d
a
ry

 N
o
n
‐

In
te

rr
u
p
ti

n
g

Sequence Flow

defines the execution

order of activities.

Conditional Flow

has a condition

assigned that defines

whether or not the

flow is used.

Default Flow

is the default branch

to be chosen if all

other conditions

evaluate to false.

Task

A Task is a unit of work, the job to be

performed. When marked with a symbol

it indicates a Sub‐Process, an activity that can

be refined.

Transaction

A Transaction is a set of activities that logically

belong together; it might follow a specified

transaction protocol.

Event

Sub‐Process

An Event Sub‐Process is placed into a Process or

Sub‐Process. It is activated when its start event

gets triggered and can interrupt the higher level

process context or run in parallel (non‐

interrupting) depending on the start event.

Call Activity
A Call Activity is a wrapper for a globally defined

Sub‐Process or Task that is reused in the current

process.

Task Types
Types specify the nature of

the action to be performed:

Send Task

Receive Task

User Task

Manual Task

Business Rule Task

Service Task

Script Task

Markers indicate execution

behavior of activities:

Activity Markers

Sub‐Process Marker

Loop Marker

Parallel MI Marker

Sequential MI Marker

~ Ad Hoc Marker

Compensation Marker

A Communication defines a set of

logically related message exchanges.

When marked with a symbol it

indicates a Sub‐Conversation, a

compound conversation element.

A Forked Conversation Link connects

Communications and multiple

Participants.

A Conversation Link connects

Communications and Participants.

Inclusive Gateway
When splitting, one or more

branches are activated. All

active incoming branches must

complete before merging.

Complex Gateway
Complex merging and

branching behavior that is not

captured by other gateways.

Exclusive Event‐based Gateway
(instantiate)
Each occurrence of a subsequent

event starts a new process

instance.

Parallel Event‐based Gateway
(instantiate)
The occurrence of all subsequent

events starts a new process

instance.

Pool

(collapsed)

Multi Instance Pool

(collapsed)

Communication

Sub‐Conversation

Pool

(collapsed)
Participant B

The order of message
exchanges can be

specified by combining

message flow and

sequence flow.

P
o
o
l

P
o
o
l

Pools (Participants) and Lanes
represent responsibilities for

activities in a process. A pool

or a lane can be an

organization, a role, or a

system. Lanes subdivide pools

or other lanes hierarchically.

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Message Flow

symbolizes information

flow across organizational

boundaries. Message flow

can be attached to pools,

activities, or message

events.

Data

TaskInput Out-

put

Data Store

A Data Object represents information flowing

through the process, such as business

documents, e‐mails, or letters.

A Data Store is a place where the process can

read or write data, e.g., a database or a filing

cabinet. It persists beyond the lifetime of the

process instance.

A Data Input is an external input for the

entire process. It can be read by an activity.

A Data Output is a variable available as result

of the entire process.

A Message is used to depict the contents of a

communication between two Participants.

A Collection Data Object represents a

collection of information, e.g., a list of order

items.

Pool (Collapsed)

Collaboration Diagram

P
o
o
l
(E

x
p
a
n
d
e
d
)

L
a
n
e

L
a
n
e

Choreographies

Choreography Diagram

A Choreography Task
represents an Interaction

(Message Exchange)

between two Participants.

Choreography

Task

Participant A

Participant B

A Choreography Sub‐
Process contains a refined

choreography with several

Interactions.

Multiple Participants Marker
denotes a set of

Participants of the

same kind.

Swimlanes

BPMN 2.0 ‐ Business Process Model and Notation

Collection

Ad‐hoc Sub‐Process

Task

Task

~

Message

Start Event

Message Flow

Data Object

Collapsed

Sub‐Process

Event‐based

Gateway

Escalation

End Event

Timer

Intermediate

Event

Receive Task

Attached

Intermediate

Timer Event

Link

Intermediate

Event

Manual Task

End

Event

Data

Store

Link

Intermediate

Event

Parallel

Multiple

Intermediate

Event

Text Annotation

Group

Multi Instance

Task (Parallel)

Message

End Event

Send Task

Parallel

Gateway

Exclusive

Gateway

Attached

Intermediate

Error Event

Signal

End

Event

Call Activity

Sub‐Process

Event Sub‐Process

Conditional

Start Event

Error End

Event

Start

Event

End

Event

Looped

Sub‐Process

condition

http://bpmb.de/poster

Participant A

Participant C
Participant B

Choreography

Task

Participant A

Participant B

Choreography

Task

Participant A

Participant C

Initiating

Message

Response

Message

Choreography

Task

Participant B

Participant A

When splitting, it routes the sequence flow to exactly

one of the outgoing branches. When merging, it awaits

one incoming branch to complete before triggering the

outgoing flow.

Exclusive Gateway

Is always followed by catching events or receive tasks.

Sequence flow is routed to the subsequent event/task

which happens first.

Event‐based Gateway

When used to split the sequence flow, all outgoing

branches are activated simultaneously. When merging

parallel branches it waits for all incoming branches to

complete before triggering the outgoing flow.

Parallel Gateway

Choreography

Sub‐Process

Participant A

Participant C

Participant B

Choreography

113

The behaviour of different Conversations is modelled
through separate Choreographies

A Choreography defines the sequence of
interaction between participants

A choreography does not exists in a pool
and it is not executable

It describes how the participants are supposed to behave

Choreography task

114

316 Business Process Modeling Notation, v2.0

12.4.1 Choreography Task

A Choreography Task is an atomic Activity in a Choreography Process. It represents an Interaction, which is a

coherent set (1 or more) of Message exchanges between two (2) Participants. Using a Collaboration diagram to view

these elements (see page 143 for more information on Collaboration), we would see the two (2) Pools representing the

two (2) Participants of the Interaction (see Figure 12.7). The communication between the Participants is shown as a

Message Flow.

Figure 12.7 - A Collaboration view of Choreography Task elements

In a Choreography diagram, this Interaction is collapsed into a single object, a Choreography Task. The name of

the Choreography Task and each of the Participants are all displayed in the different bands that make up the shape’s

graphical notation. There are two (2) more Participant Bands and one Task Name Band (see Figure 12.8).

Figure 12.8 - A Choreography Task

P
a

rt
ic

ip
a

n
t

A
P

a
rt

ic
ip

a
n

t
B

Choreo graphy

Task Name

Participant 1

Pa rticipant 2

Task Name

Ban d

Pa rtic ip ant

Ba nd

Pa rtic ip ant

Ba nd

Business Process Modeling Notation, v2.0 317

Figure 12.9 - A Choreography Task

The interaction defined by a Choreography Task can be shown in an expanded format through a Collaboration

diagram (see Figure 12.7—see page 143 for more information on Collaborations). In the Collaboration view, the

Participants of the Choreography Task Participant Band’s will be represented by Pools. The interaction between

them will be a Message Flow.

Figure 12.10 - A two-way Choreography Task

P
a

rt
ic

ip
a

nt
 A

P
a

rt
ic

ip
a

n
t

B

Receive

Message

Send

Message

Initiating

Message

Choreography

Task Name

Participant A

Participant B

Ini tia ting

Message

Return

Message

A Choreography task is an activity in a choreography
 that consists of a set (one or more) Message exchanges

A choreography task involves two or more participants
that are displayed in different bands

top/bottom band positioning
is inessential

Sequence flow in a
choreography

115

Sequence Flow are used within Choreographies
to show the sequence of the

Choreography Activities, Events, and Gateways

Business Process Modeling Notation, v2.0 313

12.3.1 Sequence Flow

Sequence Flow are used within Choreographies to show the sequence of the Choreography Activities, which

may have intervening Gateways. They are used in the same way as they are in Processes. They are only allowed to

connect with other Flow Objects. For Processes, they can only connect Events, Gateways, and Activities. For

Choreographies, they can only connect Events, Gateways, and Choreography Activities (see Figure 12.5).

Figure 12.5 - The use of Sequence Flow in a Choreography

There are two additional variations of Sequence Flow:

• Conditional Sequence Flow: Conditions can be added to Sequence Flow in two situations:

• From Gateways: Outgoing Sequence Flow have conditions for Exclusive and Inclusive Gateways. The

data referenced in the conditions must be visible to two (2) or more Participants in the Choreography. The data

becomes visible if it is part of a Message that had been sent (previously) within the Choreography. See pages

375 and 383 for more information about how Exclusive and Inclusive Gateways are used in

Choreography.

• From Choreography Activities: Outgoing Sequence Flow may have conditions for Choreography

Activities. Since these act similar to Inclusive Gateways, the Conditional Sequence Flow can be used in

Choreographies. The conditions have the same restrictions that apply to the visibility of the data for

Gateways.

• Default Sequence Flow: For Exclusive Gateways, Inclusive Gateways, and Choreography Activities

that have Conditional Sequence Flow, one of the outgoing Sequence Flow may be a Default Sequence Flow.

Because the other outgoing Sequence Flow will have appropriately visible of data as described above, the

Participants would know if all the other conditions would be false, thus the Default Sequence Flow would be

selected and the Choreography would move down that Sequence Flow.

In some applications it is useful to allow more Messages to be sent between Participants when a Choreography is

carried out than are contained the Choreography model. This enables Participants to exchange other Messages as

needed without changing the Choreography. There are two ways to specify this:

• If the isClosed attribute of a Choreography has a value of false or no value, then Participants MAY send

Messages to each other without additional Choreography Activities in the Choreography. Unmodeled

messaging can be restricted on particular Sequence Flow in the Choreography, see next bullet. If the isClosed

attribute of a Choreography has a value of true, then Participants MAY NOT send Messages to each other

without additional Choreography Activities in the Choreography. This restriction overrides any unmodeled

messaging allowed by Sequence Flow in the next bullet.

P lac e Order

B uy er

S ell er

C on firm Orde r

Buy er

Sel ler

S equ enc e F l ow w i ll

d efi ne the order of

C h oreog raphy e lem en ts

the initiator of the second interaction
must be involved in the previous one

Collaboration

116

A Collaboration contains two or more Pools,
representing the Participants in the Collaboration

A Pool may be empty or show a Process within

The Message exchange is shown by a Message Flow
that connects Pools or the objects within the Pools
The Messages associated with the Message Flow

may also be shown

 Choreographies may be shown “in between”
the Pools as they bisect the Message Flow

Examples
(a taste of BPMN)

117

A conversation

118

Business Process Modeling Notation, v2.0 295

Figure 11.3 - Conversation diagram depicting several conversations between Participants in a related domain

Figure 11.3, above, depicts 13 distinct Conversations between collaborating Participants in a logistics domain. As

examples, Retailer and Supplier are involved in a Delivery Negotiations Conversation, and Consignee converses with

Retailer and Supplier through Delivery/Dispatch Plan and Shipment Schedule Conversations respectively. More than

two participants may be involved in a Conversation, e.g., Consignee, Consolidator and Shipper in Detailed Shipment

Schedule. The association of Participants to a Conversation are constrained to indicate whether one or many of

Participants are involved. For example, one instance of Retailer converses with one instance of Supplier for Deliver

Negotiations. However, one instance of Shipper converses with multiple instances of Carrier (indicated by the

multiplicity symbol “*” near Carrier) for Carrier Planning. Note, multiplicity in constraints of Conversation diagrams

means one or more (not zero or more).

The behavior of different Conversations is modeled through separate Choreographies, detailing the Message

exchange sequences. In practice, Conversations which are closely related could be combined in the same

Choreography models – e.g., a Message exchange in the Delivery Negotiation leads to Shipment Schedule, Delivery

Planning and Delivery/Dispatch Conversations and these could be combined together in the same Choreography.

Alternatively, they could be separated in different models.

Delivery / Dispatch
Plan

Delivery

Negotiations

Shipment Schedule

Delivery / Dispatch

Plan

Delivery / Dispatch

Plan

S upp lie rRetai ler

Con si gne e

Con so lida tor

Custo ms/

Quaran tin e

Shi pper

Insura nce

Ca rri er

(Land , Se a, Rail, or A ir)

B reakdown

S ervice
Lo ca tive Service

Carrier Planning

Coverage
Notification

Clearance Pre -
Not if ication

Truc k Breakdown

Provision
Arrival/Pickup
Confirmation

Traf fic Optimization
Guidance

A choreography

119

310 Business Process Modeling Notation, v2.0

a Choreography does not exist in a single Pool—it is not the purview of a single Participant. Each step in the

Choreography involves two (2) or more Participants (these steps are called Choreography Activities—see below).

This means that the Choreography, in BPMN terms, is defined outside of any particular Pool.

The key question that needs to be continually asked during the development of a Choreography is “what information

do the Participants in the Choreography have?” Basically, each Participant can only understand the status of the

Choreography through observable behavior of the other Participants–which are the Messages that have been sent and

received. If there are only two (2) Participants in the Choreography, then it is very simple—both Participants will be

aware of who is responsible for sending the next Message. However, if there are more than two (2) Participants, then

the modeler must be careful to sequence the Choreography Activities in such a way that the Participants know when

they are responsible for initiating the interactions.

Figure 12.2 presents a sample Choreography. The details of Choreography behavior and elements will be described

in the sections below.

Figure 12.2 - An example of a Choreography

To illustrate the correspondence between Collaboration and Choreography, consider an example from logistics.

Figure 12.3 shows a Collaboration where the Pools are expanded to reveal orchestration details per participant (for

Shipper, Retailer etc). Message Flow connect the elements in the different Pools related to different participants,

indicating Message exchanges. For example, a Planned Order Variations Message is sent by the Supplier to the

Retailer; the corresponding send and receive have been modeled using regular BPMN messaging Events. Also, a

number of Messages of the same type being sent, for example a number of Retailer Order and Delivery Variations

Messages can be sent from the Retailer to the Supplier, indicated by respective multi-instances constructs (for brevity,

the actual elements for sending/receiving inside the multi-instances construct have been omitted).

D oc tor

R equ es t

Pat ien t

D r. O ffi ce

H an dle

S y mptom s

Pa tie nt

D r. O ff ic e

H a ndl e

P res c ri pti on

P at ien t

D r. O f fic e

H and le

Sy m ptom s

Pa tie n t

D r. O ff ic e

I w an t t o s ee

the D o ctor

G o s ee the

D oc tor

I f eel s ic k
I n eed my

m ed ic i ne

H e re i s yo ur

me dic in e

P i ck up y our

m ed ic ine, then

lea ve

M es sa ge

T he uns ha ded Pa rt ic ipa nt is

th e i n it ia tor of th e A c tiv ity

T he b and s dis pl ay the na mes o f t he

Part ic ipa nts (R o les/Ent iti es)

Add iti ona l P arti ci pants c an b e a dded on

add iti ona l ba nds (for S ub -P ro ce ss es)

Th e M es s age is s had ed, s o i t

is no t the i n it ia t ing M es sa ge

Another choreography

120

312 Business Process Modeling Notation, v2.0

Figure 12.4 - The corresponding Choreography diagram logistics example

12.2 Data

A Choreography does not have a central control mechanism and, thus, there is no mechanism for maintaining any

central Process (Choreography) data. Thus, any element in a Process that would normally depend on conditional or

assignment expressions, would not have any central source for this data to be maintained and understood by all the

Participants involved in the Choreography.

As mentioned above, neither Data Objects nor Repositories are used in Choreographies. Both of these elements

are used exclusively in Processes and require the concept of a central locus of control. Data Objects are basically

variables and there would be no central system to manage them. Data can be used in expressions that are used in

Exclusive Gateways, but only that data which has been sent through a Message in the Choreography.

12.3 Use of BPMN Common Elements

Some BPMN elements are common to both Process and Choreography diagrams, as well as Collaboration; they

are used in these diagrams. The next few sections will describe the use of Messages, Message Flow, Participants,

Sequence Flow, Artifacts, Correlations, Expressions, and Services in Choreography.

The key graphical elements of Gateways and Events are also common to both Choreography and Process. Since

their usage has a large impact, they are described in major sections of this chapter (see page 369 for Events and page 375

for Gateways).

Planne d Ord er

Vari ati ons

S upp lier

Re tai ler

Deliver
Checkpoint

Request

S uppl ier

Re tai ler

Order & Delivery
Variations

Sup pli er

Reta ile r

Shipper

S upp lie r

Provid e Item

Sh ipp er

Su ppli er

De liver Item

Con signe e

S upp lie r

Provid e Item

Consign ee

Su ppli er

De liver Item

Sup pli er

Sh ippe r

Sup pli er

Co nsign ee

Update P O

and Del ivery

S ch edule

S upp lie r

Reta ile r

Accept PO and
Delivery

Schedule

Sup pli er

Reta ile r

PO and Delivery
Schedule Mods

Su ppl ier

Re tailer

Confi rma tio n of

Deli ve ry

Sched ule

Consig nee

Re tai ler

Retaile r

Co nfi rmation

Re ce ived

Co nsign ee

Retaile r

F ina lized PO

a nd Deli ve ry

Sche dule

S upp lier

Re tai ler

A collaboration with
two pools

121

BPTrends July, 2004 Introduction to BPMN

(c) 2004 Stephen A. White. All Rights Reserved. www.bptrends.com

5

Figure 3: An Example of a BPD with Pools

Lanes are more closely related to the traditional swimlane process modeling methodologies. Lanes
are often used to separate the activities associated with a specific company function or role (see
Figure 4). Sequence Flow may cross the boundaries of Lanes within a Pool, but Message Flow may
not be used between Flow Objects in Lanes of the same Pool.

Figure 4: A Segment of a Process with Lanes

A collaboration diagram

122

Business Process Modeling Notation, v2.0 311

Figure 12.3 - A Collaboration diagram logistics example

The scenario modeled in Figure 12-4 entails shipment planning for the next supply replenishment variations: the Supplier

confirms all previously accepted variations for delivery with the Retailer; the Retailer sends back a number of further

possible variations; the Supplier requests to the Shipper and Consignee possible changes in delivery; accordingly, the

Retailer interacts with the Supplier and Consignee for final confirmations.

A problem with model interconnections for complex Choreographies is that they are vulnerable to errors –

interconnections may not be sequenced correctly, since the logic of Message exchanges is considered from each partner

at a time. This in turn leads to deadlocks. For example, consider the PartnerRole of Retailer in Figure 12.4 and

assume that, by error, the order of Confirmation Delivery Schedule and Retailer Confirmation received (far right) were

swapped. This would result in a deadlock since both, Retailer and Consignee would wait for the other to send a

Message. Deadlocks in general, however, are not that obvious and might be difficult to recognize in a Collaboration.

Figure 12.4 shows the Choreography corresponding to the Collaboration of Figure 12.3 above.

S
h

ip
p

e
r

S
h

ip
p

e
r

Planned

Order

Variations

C
o

n
s
ig

n
e

e

R
e

ta
ile

r

Receive

Message

Send

Message

Receive

Message

Send

Message

Send

Message

Receive

Message

Send

Message

Receive

Message

Send

Message

Receive

Message

Receive

Message

Send

Message

Receive

Message

Send

Message

Receive

Message

Send

Message

Send

Message

Receive

Message

Receive

Message

Send

Message

Receive

Message

Send

Message

Send

Message

Send

Message

Receive

Message

Receive

Message

Order &

Delivery

Variations

Deliver

Checkpoint

Request

Shipment

Plan

Variation

Proposed

Plan & Cost

Variation

Delivery

Plan

Variation

Proposed

Plan & Cost

Variation

Updated PO

& Delivery

Schedule

PO &

Delivery

Modifications

PO &

Delivery

Schedule

Confirma-

tion of

Schedule

Confirma-

tion

Received

Finalized

Schedule

3.4
R

esources
87

F
ig.3.16

C
ollaboration

diagram
betw

een
a

seller,a
custom

erand
tw

o
suppliers

A collaboration diagram:
order fulfillment

106 4 Advanced Process Modeling

Fig. 4.8 Obtaining quotes from multiple suppliers, whose number is not known a priori

Fig. 4.9 Using a multi-instance pool to represent multiple suppliers

on the fly from a suppliers database (the updated model is shown in Fig. 4.9). By the
same principle, we replace the two pools “Supplier 1” and “Supplier 2” with a single
pool, namely “Supplier”, which we also mark with the multi-instance symbol—a
multi-instance pool represents a set of resource classes, or resources, having similar
characteristics.

Multi-instance pools:
order fulfillment

124

the multi-instance
symbol annotation

denotes
a set of resources

with similar characteristics

multi-instance
sub-process

125

Extend the loan application model by representing the
interactions between the loan provider and the applicant.

Exercises: loan application

From BPMN
to Petri nets

126

Semantics and analysis of business process models in BPMN

Remco M. Dijkman a, Marlon Dumas b,c, Chun Ouyang c,*

aDepartment of Technology Management, Eindhoven University of Technology, P.O. Box 513, 5600 MB, The Netherlands
b Institute of Computer Science, University of Tartu, J Liivi 2, Tartu 50409, Estonia

cFaculty of Information Technology, Queensland University of Technology, G.P.O. Box 2434, Brisbane, Qld 4001, Australia

Received 11 September 2007; received in revised form 15 January 2008; accepted 9 February 2008
Available online 29 February 2008

Abstract

The Business Process Modelling Notation (BPMN) is a standard for capturing business processes in the early phases of systems devel-
opment. The mix of constructs found in BPMN makes it possible to create models with semantic errors. Such errors are especially seri-
ous, because errors in the early phases of systems development are among the most costly and hardest to correct. The ability to statically
check the semantic correctness of models is thus a desirable feature for modelling tools based on BPMN. Accordingly, this paper pro-
poses a mapping from BPMN to a formal language, namely Petri nets, for which efficient analysis techniques are available. The proposed
mapping has been implemented as a tool that, in conjunction with existing Petri net-based tools, enables the static analysis of BPMN
models. The formalisation also led to the identification of deficiencies in the BPMN standard specification.
! 2008 Elsevier B.V. All rights reserved.

Keywords: Business process modelling and analysis; BPMN; Petri nets

1. Introduction

The Business Process Modelling Notation (BPMN) [17]
is a standard notation for capturing business processes,
especially at the level of domain analysis and high-level sys-
tems design. The notation inherits and combines elements
from a number of previously proposed notations for busi-
ness process modelling, including the XML Process Defini-
tion Language (XPDL) [21] and the Activity Diagrams
component of the Unified Modelling Notation (UML)
[16]. BPMN process models are composed of: (i) activity
nodes, denoting business events or items of work per-
formed by humans or by software applications and (ii) con-
trol nodes capturing the flow of control between activities.
Activity nodes and control nodes can be connected by
means of a flow relation in almost arbitrary ways.

Languages that follow a similar paradigm, known as
graph-oriented process definition languages, have been pre-

viously studied from a formal perspective (e.g., the work on
task structures [2]). It is known that models defined in this
family of languages may exhibit a range of semantic errors,
including deadlocks and livelocks. Such errors are espe-
cially problematic at the levels of domain analysis and
high-level systems design, because errors at these levels
are among the hardest and most costly to correct. BPMN
even increases the types of semantic errors with respect to
traditional graph-oriented languages, because it combines
graph-oriented features with other features, drawn from a
range of sources including Workflow Patterns [5] and Busi-
ness Process Execution Language (BPEL) [12], a standard
for defining business processes at the implementation level.
These features include the ability to define: (i) subprocesses
that may be executed multiple times concurrently; (ii) sub-
processes that may be interrupted as a result of exceptions;
and (iii) message flows between processes. The interactions
between these features are an additional source of semantic
errors.

For these reasons the ability to statically analyse BPMN
models is likely to become a desirable feature for tools sup-
porting process modelling in BPMN. Anecdotal evidence

0950-5849/$ - see front matter ! 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2008.02.006

* Corresponding author. Tel.: +61 7 31389385; fax: +61 7 31389390.
E-mail addresses: r.m.dijkman@tue.nl (R.M. Dijkman), marlon.dumas

@ut.ee (M. Dumas), c.ouyang@qut.edu.au (C. Ouyang).

www.elsevier.com/locate/infsof

Available online at www.sciencedirect.com

Information and Software Technology 50 (2008) 1281–1294

will switch to the exception flow at the point when the
exception occurs. Note that an error event on a normal
sequence flow models ‘‘throwing” an error, while one
attached on the boundary of the activity models ‘‘catching”
an error. This is similar to the strictly hierarchical throw-
catch mechanism used in most programming languages.

A message flow is used to show transmission of mes-
sages between two interacting processes via communication
actions such as send/receive task or message event. The two
processes are located, respectively, within two separate
pools, representing two participants (e.g., business entities
or roles). In graphical representation, a message flow is
drawn as a dashed line with an open arrowhead connected
to the target process and a circle connected to the source
process, and a pool is drawn as a rectangle labelled with
the process name.

Finally, a BPMN model is composed of a set of BPMN
processes which are related to each other via subprocess
invocation activities or message flows.

2.2. Petri nets

Petri nets are a formal model of concurrent systems.
Petri nets are particularly suited to model behaviour of sys-
tems in terms of ‘‘flow”, be it the flow of control or flow of
objects or information. This feature makes Petri nets a
good candidate for formally defining the semantics of
BPMN models, since BPMN is also flow-oriented. In addi-
tion, Petri nets have been studied from a theoretical point
of view for several decades, and this research had led to a
number of tools that enable their automated analysis.

A Petri net is a directed graph composed of two types of
nodes: places and transitions. This graphical syntax allows

Petri nets to be intuitively visualized. Usually, places are
represented as circles and transitions are represented as
rectangles. Petri nets are bipartite graphs, meaning that
an arc in the net may connect a place to a transition or vice
versa, but no arc may connect a place to another place or a
transition to another transition. A transition has a number
of immediately preceding places (called its input places) and
a number of immediately succeeding places (called its out-
put places).

Places are containers for tokens. Tokens represent the
thing(s) that flow through the system. At a given point dur-
ing the execution of a Petri net, each place may hold zero,
one or multiple tokens. Thus, a state of a Petri net is rep-
resented as a function that assigns a number of tokens to
each place in the net. Such a function is called a marking.
For example, Fig. 2(i) depicts a marking of a Petri net
where there is one token in the leftmost place and no token
in any other place. The state of a Petri net changes when
one of its transitions fires. A transition may only fire if
there is at least one token in each of its input places. In this
case, we say that the transition is enabled. For example, in
Fig. 2(i), the transition labelled t1 is enabled since this tran-
sition has only one input place and this input place has one

Fig. 2. Sample workflow net in two different states.

Fig. 1. Overview of BPMN.

R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294 1283Overview

127

Simplified BPMN

128

a start / exception event has just one outgoing flow
and no incoming flow

an end event has just one incoming flow
and no outgoing flow

all activities and intermediate events have exactly
one incoming flow and one outgoing flow

all gateways have either
one incoming flow (and multiple outgoing)

or one outgoing flow (and multiple incoming)

Simplified BPMN

129

The previous constraints are no real limitation:

events or activities with multiple incoming flows:
insert a preceding XOR-join gateway

events or activities with multiple outgoing flows:
insert a following AND-split gateway

gateways with multiple incoming and outgoing flows:
decompose in two gateways

insert start / end event if needed

Simplified BPMN

130

No link events
they are just a notational convenience
to spread a model into several pages

(no effect on the semantics)

 No transactions and compensations

Limited form of sub-processing

no OR-split
(can be expressed in terms of AND-split and XOR-split)

no OR-join

Gateways Data

Attaching a data object with an Undirected
Association to a sequence flow indicates hand‐over

of information between the activities involved.

A Directed Association indicates information flow.

A data object can be read at the start of an

activity or written upon completion.

A Bidirected Association indicates that the data

object is modified, i.e. read and written during the

execution of an actvity.

A Data Object represents information flowing

through the process, such as business documents,

e‐mails or letters.

Events Transactions

Swimlanes

activity

Start Event: Catching an event

starts a new process instance.

Intermediate Event (catching):
The process can only continue

once an event has been caught.

Attached Intermediate Event: The

activity is aborted once an event is

caught.

Intermediate Event (throwing):
An event is thrown and the process

continues.

End Event: An event is thrown

when the end of the process is

reached.

Start EndIntermediate

Plain

Message

Timer

Error

Cancel

Compen‐

sation

Conditional

Link

Signal

Multiple

Terminate

Catching Throwing

Untyped events, typically

showing where the process

starts or ends.

Receiving and sending

messages.

Cyclic timer events, points in

time, time spans or timeouts.

Catching or throwing named

errors.

Reacting to cancelled

transactions or triggering

cancellation.

Compensation handling or

triggering compensation.

Reacting to changed business

conditions or integrating

business rules.

Signalling across different

processes. One signal thrown

can be caught multiple times.

Catching or throwing one out of

a set of events.

Off‐page connectors. Two

corresponding link events equal

a sequence flow.

Triggering the immediate

termination of a process.

Data‐based Exclusive Gateway
When splitting, it routes the sequence flow to exactly one of the outgoing

branches based on conditions. When merging, it awaits one incoming branch

to complete before triggering the outgoing flow.

Inclusive Gateway
When splitting, one or more branches are activated based on branching

conditions. When merging, it awaits all active incoming branches to

complete.

Complex Gateway
It triggers one or more branches based on complex conditions or verbal

descriptions. Use it sparingly as the semantics might not be clear.

Parallel Gateway
When used to split the sequence flow, all outgoing branches are activated

simultaneously. When merging parallel branches it waits for all incoming

branches to complete before triggering the outgoing flow.

Activities

BPMN ‐ Business Process Modeling Notation

Transaction

Activity

Compensate

Activity

Transaction

A Transaction is a set of activities that logically

belong together; it might follow a specified

transaction protocol.

Attached Intermediate Cancel Events indicate

reactions to the cancellation of a transaction.

Activities inside the transaction are compensated

upon cancellation.

Completed activities can be compensated. An

activity and the corresponding Compensate Activity

are related using an attached Intermediate
Compensation Event.

Web: bpt.hpi.uni‐potsdam.de

Oryx: oryx‐project.org

Blog: bpmn.info

BPMN Version 1.2

Business Process Technology

Prof. Dr. Mathias Weske

Authors

Gero Decker

Alexander Grosskopf

Sven Wagner‐Boysen

read

doc

write

doc

modify

doc

modify

doc
[state2]

doc
[state1]

Pool

Pool

Message Flow symbolizes

information flow across

organizational boundaries.

Message flow can be attached to

pools, activities, or message events.

The order of message exchanges

can be specified by combining

message flow and sequence flow.

P
o
o
l

P
o
o
l

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Pools and Lanes represent

responsibilities for activities in a

process. A pool or a lane can be an

organization, a role, or a system.

Lanes sub‐divide pools or other

lanes hierarchically.

Pool
Collapsed Pools hide all internals

of the contained processes.

Task

Task

~

Collapsed

Subprocess

Intermediate

Message Event

Task

Task

Task

Task

Loop

Activity

Multiple

Instances

Collapsed Pool

L
a
n
e

L
a
n
e

E
x
p
a
n
d
e
d
 P

o
o
l

L
a
n
e

L
a
n
e

Data

Object

[state1]

Data

Object

[state2]

Conditional

Start Event

Parallel

Gateway

Parallel

Gateway

Grouping

End Event

Terminate

End Event

Data‐based

Exclusive

Gateway

Embedded

Subprocess

Ad‐hoc Subprocess

Text Annotation

Data

Object

Intermediate

Timer Event

Sequence

Flow

Intermediate

Error Event

Exception

Flow

Event‐based

Exclusive

Gateway Intermediate

Message Event

Intermediate

Timer Event

Catching Throwing

Event‐based Exclusive Gateway
Is always followed by catching events or receive tasks. Sequence flow is

routed to the subsequent event/task which happens first.

Condition

Default

Flow

Multiple

Instances

Loop

Multiple Instances of the

same activity are started in

parallel or sequentially, e.g.

for each line item in an

order.

Loop Activity is iterated if a

loop condition is true. The

condition is either tested

before or after the activity

execution.

Ad‐hoc Subprocesses
contain tasks only. Each task

can be executed arbitrarily

often until a completion

condition is fulfilled.

Collapsed

Subprocess

Task
A Task is a unit of

work, the job to be

performed.

A Subprocess is a

decomposable activity.

It can be collapsed to

hide the details.

An Expanded Subprocess contains a

valid BPMN diagram.

Expanded SubprocessAd‐hoc Subprocess

~

Sequence Flow defines the

execution order of activities.

Conditional Flow has a

condition assigned that

defines whether or not the

flow is used.

Default Flow is the default

branch to be chosen if all

other conditions evaluate to

false.

End Error Event

Message Flow

Documentation

Group

Text Annotation

An arbitrary set of objects can be

defined as a Group to show that

they logically belong together.

Any object can be associated with a

Text Annotation to provide

additional documentation.

Gateways Data

Attaching a data object with an Undirected
Association to a sequence flow indicates hand‐over

of information between the activities involved.

A Directed Association indicates information flow.

A data object can be read at the start of an

activity or written upon completion.

A Bidirected Association indicates that the data

object is modified, i.e. read and written during the

execution of an actvity.

A Data Object represents information flowing

through the process, such as business documents,

e‐mails or letters.

Events Transactions

Swimlanes

activity

Start Event: Catching an event

starts a new process instance.

Intermediate Event (catching):
The process can only continue

once an event has been caught.

Attached Intermediate Event: The

activity is aborted once an event is

caught.

Intermediate Event (throwing):
An event is thrown and the process

continues.

End Event: An event is thrown

when the end of the process is

reached.

Start EndIntermediate

Plain

Message

Timer

Error

Cancel

Compen‐

sation

Conditional

Link

Signal

Multiple

Terminate

Catching Throwing

Untyped events, typically

showing where the process

starts or ends.

Receiving and sending

messages.

Cyclic timer events, points in

time, time spans or timeouts.

Catching or throwing named

errors.

Reacting to cancelled

transactions or triggering

cancellation.

Compensation handling or

triggering compensation.

Reacting to changed business

conditions or integrating

business rules.

Signalling across different

processes. One signal thrown

can be caught multiple times.

Catching or throwing one out of

a set of events.

Off‐page connectors. Two

corresponding link events equal

a sequence flow.

Triggering the immediate

termination of a process.

Data‐based Exclusive Gateway
When splitting, it routes the sequence flow to exactly one of the outgoing

branches based on conditions. When merging, it awaits one incoming branch

to complete before triggering the outgoing flow.

Inclusive Gateway
When splitting, one or more branches are activated based on branching

conditions. When merging, it awaits all active incoming branches to

complete.

Complex Gateway
It triggers one or more branches based on complex conditions or verbal

descriptions. Use it sparingly as the semantics might not be clear.

Parallel Gateway
When used to split the sequence flow, all outgoing branches are activated

simultaneously. When merging parallel branches it waits for all incoming

branches to complete before triggering the outgoing flow.

Activities

BPMN ‐ Business Process Modeling Notation

Transaction

Activity

Compensate

Activity

Transaction

A Transaction is a set of activities that logically

belong together; it might follow a specified

transaction protocol.

Attached Intermediate Cancel Events indicate

reactions to the cancellation of a transaction.

Activities inside the transaction are compensated

upon cancellation.

Completed activities can be compensated. An

activity and the corresponding Compensate Activity

are related using an attached Intermediate
Compensation Event.

Web: bpt.hpi.uni‐potsdam.de

Oryx: oryx‐project.org

Blog: bpmn.info

BPMN Version 1.2

Business Process Technology

Prof. Dr. Mathias Weske

Authors

Gero Decker

Alexander Grosskopf

Sven Wagner‐Boysen

read

doc

write

doc

modify

doc

modify

doc
[state2]

doc
[state1]

Pool

Pool

Message Flow symbolizes

information flow across

organizational boundaries.

Message flow can be attached to

pools, activities, or message events.

The order of message exchanges

can be specified by combining

message flow and sequence flow.

P
o
o
l

P
o
o
l

L
a
n
e

Task

L
a
n
e

Task

P
o
o
l

Pools and Lanes represent

responsibilities for activities in a

process. A pool or a lane can be an

organization, a role, or a system.

Lanes sub‐divide pools or other

lanes hierarchically.

Pool
Collapsed Pools hide all internals

of the contained processes.

Task

Task

~

Collapsed

Subprocess

Intermediate

Message Event

Task

Task

Task

Task

Loop

Activity

Multiple

Instances

Collapsed Pool

L
a
n
e

L
a
n
e

E
x
p
a
n
d
e
d
 P

o
o
l

L
a
n
e

L
a
n
e

Data

Object

[state1]

Data

Object

[state2]

Conditional

Start Event

Parallel

Gateway

Parallel

Gateway

Grouping

End Event

Terminate

End Event

Data‐based

Exclusive

Gateway

Embedded

Subprocess

Ad‐hoc Subprocess

Text Annotation

Data

Object

Intermediate

Timer Event

Sequence

Flow

Intermediate

Error Event

Exception

Flow

Event‐based

Exclusive

Gateway Intermediate

Message Event

Intermediate

Timer Event

Catching Throwing

Event‐based Exclusive Gateway
Is always followed by catching events or receive tasks. Sequence flow is

routed to the subsequent event/task which happens first.

Condition

Default

Flow

Multiple

Instances

Loop

Multiple Instances of the

same activity are started in

parallel or sequentially, e.g.

for each line item in an

order.

Loop Activity is iterated if a

loop condition is true. The

condition is either tested

before or after the activity

execution.

Ad‐hoc Subprocesses
contain tasks only. Each task

can be executed arbitrarily

often until a completion

condition is fulfilled.

Collapsed

Subprocess

Task
A Task is a unit of

work, the job to be

performed.

A Subprocess is a

decomposable activity.

It can be collapsed to

hide the details.

An Expanded Subprocess contains a

valid BPMN diagram.

Expanded SubprocessAd‐hoc Subprocess

~

Sequence Flow defines the

execution order of activities.

Conditional Flow has a

condition assigned that

defines whether or not the

flow is used.

Default Flow is the default

branch to be chosen if all

other conditions evaluate to

false.

End Error Event

Message Flow

Documentation

Group

Text Annotation

An arbitrary set of objects can be

defined as a Group to show that

they logically belong together.

Any object can be associated with a

Text Annotation to provide

additional documentation.

Roughly

131

A place for each arc

one transitions for each event

one transition for each activity

one or two transitions for each gateway

…

with some exceptions!
(start event, end event, event-based gateways, loops, …)

Zoom in: start, intermediate

132

only the fact that one of the conditions will hold true when
the gateway is reached. In the case of an event-based gate-
way, the race condition between events or receive tasks is
captured by having the corresponding transitions compete
for tokens in the place corresponding to the gateway’s
input flow (but without introducing silent transitions as
we do for decision gateways). For an OR-split gateway,
since its behaviour can be captured through a combination
of AND-split and XOR-split gateways [5], the mapping,
which is not shown in Fig. 3, can be achieved accordingly.

Finally, places, which are drawn in dashed borders, indi-
cate that their usage is not unique to one module. They are
used to link the Petri-net modules of two connecting
BPMN objects and thus are identified by both objects.
Generally, any sequence flow is mapped onto a place
except for event-based decision gateways.

3.2. Activity looping and multiple instances

In BPMN, an activity may have attributes that specify
special behaviour such as repetition (i.e., the activity is exe-
cuted multiple times sequentially) and multiple instantia-
tion (i.e., the activity is executed multiple times
concurrently). There are two variants of sequential activity
repetition: one corresponding to a ‘‘while” loop and the
other corresponding to a ‘‘repeat-until” loop. From a con-
trol-flow perspective these repetition constructs can be seen
as ‘‘macros”, in the sense that they can be expanded in
terms of decision and merge nodes as shown in Fig. 4. Note
that the value of attribute ‘‘TestTime” determines whether
the repeated activity corresponds to a ‘‘while” loop or a
‘‘repeat-until” loop.

Activities with a ‘‘multiple instantiation” attribute, hith-
erto called multi-instance activities, are executed in multiple
instances (i.e., copies) with each of these instances running
concurrently and independently of the others. The number
of instances ðnÞ may be determined at design time or at
runtime. If n is known at design time, the ‘‘multiple instan-
tiation” construct can be regarded as a macro. Indeed, a

multi-instance activity of this type can be replaced by n
identical copies of the activity enclosed between an
AND-split and an AND-join as shown in Fig. 5. On the
other hand, if n is only calculated at runtime, we need to
synchronise an a priori unknown number of instances of
the activity. This type of synchronisation can be expressed
using high-level Petri net features such as those found in
Coloured Petri nets or YAWL [4]. Since we deliberately
restrict the proposed mapping to produce plain Petri nets,
we have chosen not to deal with multi-instance activities
where n is only determined at runtime. Nonetheless, if
the purpose of the mapping is to check for deadlocks in
the process model, we can treat a multiple instance activity
as a single-instance one. Indeed, because the multiple
instances (or copies) of the activity are executed indepen-
dently, it is sufficient to check that one instance does not
deadlock to ensure that the entire multi-instance activity
does not deadlock. This is why our tool implementation
offers the option of mapping multiple instance activities
with an a priori unknown instance parameter n, with the
assumption that n ¼ 1.

3.3. Subprocess

A subprocess may be viewed as a standalone process.
Fig. 6 shows the mapping of a subprocess without excep-
tion handling and with a single start and end event. A
BPMN process model may have multiple start or end
events. The behaviour of such a process is however not
clear in the BPMN specification (see Section 4 for a
detailed discussion). Hence, we have restricted the mapping
to subprocesses with a single start event and a single end
event only. This restriction could be lifted if a clear seman-
tics for multiple (sub-)processes with multiple start and end
events was given.

Fig. 7 depicts the mapping of calling a subprocess ðP Þ
via a subprocess invocation activity ðSIÞ. Two places drawn
in dashed borders capture, respectively, the incoming
and outgoing flows of activity SI. There are two new

Fig. 3. Mapping task, events, and gateways onto Petri-net modules.

R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294 1285

Zoom in: end event, task

133

only the fact that one of the conditions will hold true when
the gateway is reached. In the case of an event-based gate-
way, the race condition between events or receive tasks is
captured by having the corresponding transitions compete
for tokens in the place corresponding to the gateway’s
input flow (but without introducing silent transitions as
we do for decision gateways). For an OR-split gateway,
since its behaviour can be captured through a combination
of AND-split and XOR-split gateways [5], the mapping,
which is not shown in Fig. 3, can be achieved accordingly.

Finally, places, which are drawn in dashed borders, indi-
cate that their usage is not unique to one module. They are
used to link the Petri-net modules of two connecting
BPMN objects and thus are identified by both objects.
Generally, any sequence flow is mapped onto a place
except for event-based decision gateways.

3.2. Activity looping and multiple instances

In BPMN, an activity may have attributes that specify
special behaviour such as repetition (i.e., the activity is exe-
cuted multiple times sequentially) and multiple instantia-
tion (i.e., the activity is executed multiple times
concurrently). There are two variants of sequential activity
repetition: one corresponding to a ‘‘while” loop and the
other corresponding to a ‘‘repeat-until” loop. From a con-
trol-flow perspective these repetition constructs can be seen
as ‘‘macros”, in the sense that they can be expanded in
terms of decision and merge nodes as shown in Fig. 4. Note
that the value of attribute ‘‘TestTime” determines whether
the repeated activity corresponds to a ‘‘while” loop or a
‘‘repeat-until” loop.

Activities with a ‘‘multiple instantiation” attribute, hith-
erto called multi-instance activities, are executed in multiple
instances (i.e., copies) with each of these instances running
concurrently and independently of the others. The number
of instances ðnÞ may be determined at design time or at
runtime. If n is known at design time, the ‘‘multiple instan-
tiation” construct can be regarded as a macro. Indeed, a

multi-instance activity of this type can be replaced by n
identical copies of the activity enclosed between an
AND-split and an AND-join as shown in Fig. 5. On the
other hand, if n is only calculated at runtime, we need to
synchronise an a priori unknown number of instances of
the activity. This type of synchronisation can be expressed
using high-level Petri net features such as those found in
Coloured Petri nets or YAWL [4]. Since we deliberately
restrict the proposed mapping to produce plain Petri nets,
we have chosen not to deal with multi-instance activities
where n is only determined at runtime. Nonetheless, if
the purpose of the mapping is to check for deadlocks in
the process model, we can treat a multiple instance activity
as a single-instance one. Indeed, because the multiple
instances (or copies) of the activity are executed indepen-
dently, it is sufficient to check that one instance does not
deadlock to ensure that the entire multi-instance activity
does not deadlock. This is why our tool implementation
offers the option of mapping multiple instance activities
with an a priori unknown instance parameter n, with the
assumption that n ¼ 1.

3.3. Subprocess

A subprocess may be viewed as a standalone process.
Fig. 6 shows the mapping of a subprocess without excep-
tion handling and with a single start and end event. A
BPMN process model may have multiple start or end
events. The behaviour of such a process is however not
clear in the BPMN specification (see Section 4 for a
detailed discussion). Hence, we have restricted the mapping
to subprocesses with a single start event and a single end
event only. This restriction could be lifted if a clear seman-
tics for multiple (sub-)processes with multiple start and end
events was given.

Fig. 7 depicts the mapping of calling a subprocess ðP Þ
via a subprocess invocation activity ðSIÞ. Two places drawn
in dashed borders capture, respectively, the incoming
and outgoing flows of activity SI. There are two new

Fig. 3. Mapping task, events, and gateways onto Petri-net modules.

R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294 1285

Zoom in: parallel gateway

134

only the fact that one of the conditions will hold true when
the gateway is reached. In the case of an event-based gate-
way, the race condition between events or receive tasks is
captured by having the corresponding transitions compete
for tokens in the place corresponding to the gateway’s
input flow (but without introducing silent transitions as
we do for decision gateways). For an OR-split gateway,
since its behaviour can be captured through a combination
of AND-split and XOR-split gateways [5], the mapping,
which is not shown in Fig. 3, can be achieved accordingly.

Finally, places, which are drawn in dashed borders, indi-
cate that their usage is not unique to one module. They are
used to link the Petri-net modules of two connecting
BPMN objects and thus are identified by both objects.
Generally, any sequence flow is mapped onto a place
except for event-based decision gateways.

3.2. Activity looping and multiple instances

In BPMN, an activity may have attributes that specify
special behaviour such as repetition (i.e., the activity is exe-
cuted multiple times sequentially) and multiple instantia-
tion (i.e., the activity is executed multiple times
concurrently). There are two variants of sequential activity
repetition: one corresponding to a ‘‘while” loop and the
other corresponding to a ‘‘repeat-until” loop. From a con-
trol-flow perspective these repetition constructs can be seen
as ‘‘macros”, in the sense that they can be expanded in
terms of decision and merge nodes as shown in Fig. 4. Note
that the value of attribute ‘‘TestTime” determines whether
the repeated activity corresponds to a ‘‘while” loop or a
‘‘repeat-until” loop.

Activities with a ‘‘multiple instantiation” attribute, hith-
erto called multi-instance activities, are executed in multiple
instances (i.e., copies) with each of these instances running
concurrently and independently of the others. The number
of instances ðnÞ may be determined at design time or at
runtime. If n is known at design time, the ‘‘multiple instan-
tiation” construct can be regarded as a macro. Indeed, a

multi-instance activity of this type can be replaced by n
identical copies of the activity enclosed between an
AND-split and an AND-join as shown in Fig. 5. On the
other hand, if n is only calculated at runtime, we need to
synchronise an a priori unknown number of instances of
the activity. This type of synchronisation can be expressed
using high-level Petri net features such as those found in
Coloured Petri nets or YAWL [4]. Since we deliberately
restrict the proposed mapping to produce plain Petri nets,
we have chosen not to deal with multi-instance activities
where n is only determined at runtime. Nonetheless, if
the purpose of the mapping is to check for deadlocks in
the process model, we can treat a multiple instance activity
as a single-instance one. Indeed, because the multiple
instances (or copies) of the activity are executed indepen-
dently, it is sufficient to check that one instance does not
deadlock to ensure that the entire multi-instance activity
does not deadlock. This is why our tool implementation
offers the option of mapping multiple instance activities
with an a priori unknown instance parameter n, with the
assumption that n ¼ 1.

3.3. Subprocess

A subprocess may be viewed as a standalone process.
Fig. 6 shows the mapping of a subprocess without excep-
tion handling and with a single start and end event. A
BPMN process model may have multiple start or end
events. The behaviour of such a process is however not
clear in the BPMN specification (see Section 4 for a
detailed discussion). Hence, we have restricted the mapping
to subprocesses with a single start event and a single end
event only. This restriction could be lifted if a clear seman-
tics for multiple (sub-)processes with multiple start and end
events was given.

Fig. 7 depicts the mapping of calling a subprocess ðP Þ
via a subprocess invocation activity ðSIÞ. Two places drawn
in dashed borders capture, respectively, the incoming
and outgoing flows of activity SI. There are two new

Fig. 3. Mapping task, events, and gateways onto Petri-net modules.

R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294 1285

Zoom in: choice gateway

135

only the fact that one of the conditions will hold true when
the gateway is reached. In the case of an event-based gate-
way, the race condition between events or receive tasks is
captured by having the corresponding transitions compete
for tokens in the place corresponding to the gateway’s
input flow (but without introducing silent transitions as
we do for decision gateways). For an OR-split gateway,
since its behaviour can be captured through a combination
of AND-split and XOR-split gateways [5], the mapping,
which is not shown in Fig. 3, can be achieved accordingly.

Finally, places, which are drawn in dashed borders, indi-
cate that their usage is not unique to one module. They are
used to link the Petri-net modules of two connecting
BPMN objects and thus are identified by both objects.
Generally, any sequence flow is mapped onto a place
except for event-based decision gateways.

3.2. Activity looping and multiple instances

In BPMN, an activity may have attributes that specify
special behaviour such as repetition (i.e., the activity is exe-
cuted multiple times sequentially) and multiple instantia-
tion (i.e., the activity is executed multiple times
concurrently). There are two variants of sequential activity
repetition: one corresponding to a ‘‘while” loop and the
other corresponding to a ‘‘repeat-until” loop. From a con-
trol-flow perspective these repetition constructs can be seen
as ‘‘macros”, in the sense that they can be expanded in
terms of decision and merge nodes as shown in Fig. 4. Note
that the value of attribute ‘‘TestTime” determines whether
the repeated activity corresponds to a ‘‘while” loop or a
‘‘repeat-until” loop.

Activities with a ‘‘multiple instantiation” attribute, hith-
erto called multi-instance activities, are executed in multiple
instances (i.e., copies) with each of these instances running
concurrently and independently of the others. The number
of instances ðnÞ may be determined at design time or at
runtime. If n is known at design time, the ‘‘multiple instan-
tiation” construct can be regarded as a macro. Indeed, a

multi-instance activity of this type can be replaced by n
identical copies of the activity enclosed between an
AND-split and an AND-join as shown in Fig. 5. On the
other hand, if n is only calculated at runtime, we need to
synchronise an a priori unknown number of instances of
the activity. This type of synchronisation can be expressed
using high-level Petri net features such as those found in
Coloured Petri nets or YAWL [4]. Since we deliberately
restrict the proposed mapping to produce plain Petri nets,
we have chosen not to deal with multi-instance activities
where n is only determined at runtime. Nonetheless, if
the purpose of the mapping is to check for deadlocks in
the process model, we can treat a multiple instance activity
as a single-instance one. Indeed, because the multiple
instances (or copies) of the activity are executed indepen-
dently, it is sufficient to check that one instance does not
deadlock to ensure that the entire multi-instance activity
does not deadlock. This is why our tool implementation
offers the option of mapping multiple instance activities
with an a priori unknown instance parameter n, with the
assumption that n ¼ 1.

3.3. Subprocess

A subprocess may be viewed as a standalone process.
Fig. 6 shows the mapping of a subprocess without excep-
tion handling and with a single start and end event. A
BPMN process model may have multiple start or end
events. The behaviour of such a process is however not
clear in the BPMN specification (see Section 4 for a
detailed discussion). Hence, we have restricted the mapping
to subprocesses with a single start event and a single end
event only. This restriction could be lifted if a clear seman-
tics for multiple (sub-)processes with multiple start and end
events was given.

Fig. 7 depicts the mapping of calling a subprocess ðP Þ
via a subprocess invocation activity ðSIÞ. Two places drawn
in dashed borders capture, respectively, the incoming
and outgoing flows of activity SI. There are two new

Fig. 3. Mapping task, events, and gateways onto Petri-net modules.

R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294 1285

Zoom in: event based gateway

136

only the fact that one of the conditions will hold true when
the gateway is reached. In the case of an event-based gate-
way, the race condition between events or receive tasks is
captured by having the corresponding transitions compete
for tokens in the place corresponding to the gateway’s
input flow (but without introducing silent transitions as
we do for decision gateways). For an OR-split gateway,
since its behaviour can be captured through a combination
of AND-split and XOR-split gateways [5], the mapping,
which is not shown in Fig. 3, can be achieved accordingly.

Finally, places, which are drawn in dashed borders, indi-
cate that their usage is not unique to one module. They are
used to link the Petri-net modules of two connecting
BPMN objects and thus are identified by both objects.
Generally, any sequence flow is mapped onto a place
except for event-based decision gateways.

3.2. Activity looping and multiple instances

In BPMN, an activity may have attributes that specify
special behaviour such as repetition (i.e., the activity is exe-
cuted multiple times sequentially) and multiple instantia-
tion (i.e., the activity is executed multiple times
concurrently). There are two variants of sequential activity
repetition: one corresponding to a ‘‘while” loop and the
other corresponding to a ‘‘repeat-until” loop. From a con-
trol-flow perspective these repetition constructs can be seen
as ‘‘macros”, in the sense that they can be expanded in
terms of decision and merge nodes as shown in Fig. 4. Note
that the value of attribute ‘‘TestTime” determines whether
the repeated activity corresponds to a ‘‘while” loop or a
‘‘repeat-until” loop.

Activities with a ‘‘multiple instantiation” attribute, hith-
erto called multi-instance activities, are executed in multiple
instances (i.e., copies) with each of these instances running
concurrently and independently of the others. The number
of instances ðnÞ may be determined at design time or at
runtime. If n is known at design time, the ‘‘multiple instan-
tiation” construct can be regarded as a macro. Indeed, a

multi-instance activity of this type can be replaced by n
identical copies of the activity enclosed between an
AND-split and an AND-join as shown in Fig. 5. On the
other hand, if n is only calculated at runtime, we need to
synchronise an a priori unknown number of instances of
the activity. This type of synchronisation can be expressed
using high-level Petri net features such as those found in
Coloured Petri nets or YAWL [4]. Since we deliberately
restrict the proposed mapping to produce plain Petri nets,
we have chosen not to deal with multi-instance activities
where n is only determined at runtime. Nonetheless, if
the purpose of the mapping is to check for deadlocks in
the process model, we can treat a multiple instance activity
as a single-instance one. Indeed, because the multiple
instances (or copies) of the activity are executed indepen-
dently, it is sufficient to check that one instance does not
deadlock to ensure that the entire multi-instance activity
does not deadlock. This is why our tool implementation
offers the option of mapping multiple instance activities
with an a priori unknown instance parameter n, with the
assumption that n ¼ 1.

3.3. Subprocess

A subprocess may be viewed as a standalone process.
Fig. 6 shows the mapping of a subprocess without excep-
tion handling and with a single start and end event. A
BPMN process model may have multiple start or end
events. The behaviour of such a process is however not
clear in the BPMN specification (see Section 4 for a
detailed discussion). Hence, we have restricted the mapping
to subprocesses with a single start event and a single end
event only. This restriction could be lifted if a clear seman-
tics for multiple (sub-)processes with multiple start and end
events was given.

Fig. 7 depicts the mapping of calling a subprocess ðP Þ
via a subprocess invocation activity ðSIÞ. Two places drawn
in dashed borders capture, respectively, the incoming
and outgoing flows of activity SI. There are two new

Fig. 3. Mapping task, events, and gateways onto Petri-net modules.

R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294 1285

Task, events and gateways as nets

137

only the fact that one of the conditions will hold true when
the gateway is reached. In the case of an event-based gate-
way, the race condition between events or receive tasks is
captured by having the corresponding transitions compete
for tokens in the place corresponding to the gateway’s
input flow (but without introducing silent transitions as
we do for decision gateways). For an OR-split gateway,
since its behaviour can be captured through a combination
of AND-split and XOR-split gateways [5], the mapping,
which is not shown in Fig. 3, can be achieved accordingly.

Finally, places, which are drawn in dashed borders, indi-
cate that their usage is not unique to one module. They are
used to link the Petri-net modules of two connecting
BPMN objects and thus are identified by both objects.
Generally, any sequence flow is mapped onto a place
except for event-based decision gateways.

3.2. Activity looping and multiple instances

In BPMN, an activity may have attributes that specify
special behaviour such as repetition (i.e., the activity is exe-
cuted multiple times sequentially) and multiple instantia-
tion (i.e., the activity is executed multiple times
concurrently). There are two variants of sequential activity
repetition: one corresponding to a ‘‘while” loop and the
other corresponding to a ‘‘repeat-until” loop. From a con-
trol-flow perspective these repetition constructs can be seen
as ‘‘macros”, in the sense that they can be expanded in
terms of decision and merge nodes as shown in Fig. 4. Note
that the value of attribute ‘‘TestTime” determines whether
the repeated activity corresponds to a ‘‘while” loop or a
‘‘repeat-until” loop.

Activities with a ‘‘multiple instantiation” attribute, hith-
erto called multi-instance activities, are executed in multiple
instances (i.e., copies) with each of these instances running
concurrently and independently of the others. The number
of instances ðnÞ may be determined at design time or at
runtime. If n is known at design time, the ‘‘multiple instan-
tiation” construct can be regarded as a macro. Indeed, a

multi-instance activity of this type can be replaced by n
identical copies of the activity enclosed between an
AND-split and an AND-join as shown in Fig. 5. On the
other hand, if n is only calculated at runtime, we need to
synchronise an a priori unknown number of instances of
the activity. This type of synchronisation can be expressed
using high-level Petri net features such as those found in
Coloured Petri nets or YAWL [4]. Since we deliberately
restrict the proposed mapping to produce plain Petri nets,
we have chosen not to deal with multi-instance activities
where n is only determined at runtime. Nonetheless, if
the purpose of the mapping is to check for deadlocks in
the process model, we can treat a multiple instance activity
as a single-instance one. Indeed, because the multiple
instances (or copies) of the activity are executed indepen-
dently, it is sufficient to check that one instance does not
deadlock to ensure that the entire multi-instance activity
does not deadlock. This is why our tool implementation
offers the option of mapping multiple instance activities
with an a priori unknown instance parameter n, with the
assumption that n ¼ 1.

3.3. Subprocess

A subprocess may be viewed as a standalone process.
Fig. 6 shows the mapping of a subprocess without excep-
tion handling and with a single start and end event. A
BPMN process model may have multiple start or end
events. The behaviour of such a process is however not
clear in the BPMN specification (see Section 4 for a
detailed discussion). Hence, we have restricted the mapping
to subprocesses with a single start event and a single end
event only. This restriction could be lifted if a clear seman-
tics for multiple (sub-)processes with multiple start and end
events was given.

Fig. 7 depicts the mapping of calling a subprocess ðP Þ
via a subprocess invocation activity ðSIÞ. Two places drawn
in dashed borders capture, respectively, the incoming
and outgoing flows of activity SI. There are two new

Fig. 3. Mapping task, events, and gateways onto Petri-net modules.

R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294 1285

Activity looping

138

transitions: one identified as tðSI ;callÞ modelling the invoca-
tion of subprocess P, the other tðSI ;returnÞ modelling the flow
returns to the parent process after P completed.

3.4. Exception handling

In BPMN, exception handling is captured by excep-
tion flows. An exception flow originates from an error
event attached to the boundary of an activity. For pre-
sentation purposes, it is convenient to distinguish the
case where the activity is a single task, from the case
where it is a subprocess. Fig. 8 shows the mapping of
an error event associated with a task. Given that the exe-
cution of task T is atomic, the occurrence of exception
Ex may only interrupt T when T is enabled and has
not yet completed. In Petri net terms, this means that

the occurrence of exception Ex can ‘‘steal” the input
token that would normally be consumed by the transi-
tion corresponding to task T.

In the case of an exception flow associated to a subpro-
cess, the occurrence of the exception (i.e., the error event)
will cancel the execution of the subprocess assuming that
this latter has started but has not yet completed. The map-
ping is complicated by the fact that it needs to capture the
cancellation of the running subprocess at any point when
the exception occurs. This means that when the transition
corresponding to the error event fires, all the tokens left
in the Petri net fragment corresponding to the subprocess
need to be removed. However, due to the local nature of
Petri net transitions, it is cumbersome to model a ‘‘vacuum
cleaner” that would remove all tokens from a given frag-
ment of a net [3].

Fig. 4. Macro expansions for repeated activities.

Fig. 5. Macro expansion for a multi-instance activity where n is known at design time.

Fig. 6. Mapping of a subprocess without exception handling.

Fig. 7. Calling a subprocess via a subprocess invocation activity.

Fig. 8. Mapping of a task with an exception flow.

1286 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

transitions: one identified as tðSI ;callÞ modelling the invoca-
tion of subprocess P, the other tðSI ;returnÞ modelling the flow
returns to the parent process after P completed.

3.4. Exception handling

In BPMN, exception handling is captured by excep-
tion flows. An exception flow originates from an error
event attached to the boundary of an activity. For pre-
sentation purposes, it is convenient to distinguish the
case where the activity is a single task, from the case
where it is a subprocess. Fig. 8 shows the mapping of
an error event associated with a task. Given that the exe-
cution of task T is atomic, the occurrence of exception
Ex may only interrupt T when T is enabled and has
not yet completed. In Petri net terms, this means that

the occurrence of exception Ex can ‘‘steal” the input
token that would normally be consumed by the transi-
tion corresponding to task T.

In the case of an exception flow associated to a subpro-
cess, the occurrence of the exception (i.e., the error event)
will cancel the execution of the subprocess assuming that
this latter has started but has not yet completed. The map-
ping is complicated by the fact that it needs to capture the
cancellation of the running subprocess at any point when
the exception occurs. This means that when the transition
corresponding to the error event fires, all the tokens left
in the Petri net fragment corresponding to the subprocess
need to be removed. However, due to the local nature of
Petri net transitions, it is cumbersome to model a ‘‘vacuum
cleaner” that would remove all tokens from a given frag-
ment of a net [3].

Fig. 4. Macro expansions for repeated activities.

Fig. 5. Macro expansion for a multi-instance activity where n is known at design time.

Fig. 6. Mapping of a subprocess without exception handling.

Fig. 7. Calling a subprocess via a subprocess invocation activity.

Fig. 8. Mapping of a task with an exception flow.

1286 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

Multiple instances
(design-time bounded)

139

transitions: one identified as tðSI ;callÞ modelling the invoca-
tion of subprocess P, the other tðSI ;returnÞ modelling the flow
returns to the parent process after P completed.

3.4. Exception handling

In BPMN, exception handling is captured by excep-
tion flows. An exception flow originates from an error
event attached to the boundary of an activity. For pre-
sentation purposes, it is convenient to distinguish the
case where the activity is a single task, from the case
where it is a subprocess. Fig. 8 shows the mapping of
an error event associated with a task. Given that the exe-
cution of task T is atomic, the occurrence of exception
Ex may only interrupt T when T is enabled and has
not yet completed. In Petri net terms, this means that

the occurrence of exception Ex can ‘‘steal” the input
token that would normally be consumed by the transi-
tion corresponding to task T.

In the case of an exception flow associated to a subpro-
cess, the occurrence of the exception (i.e., the error event)
will cancel the execution of the subprocess assuming that
this latter has started but has not yet completed. The map-
ping is complicated by the fact that it needs to capture the
cancellation of the running subprocess at any point when
the exception occurs. This means that when the transition
corresponding to the error event fires, all the tokens left
in the Petri net fragment corresponding to the subprocess
need to be removed. However, due to the local nature of
Petri net transitions, it is cumbersome to model a ‘‘vacuum
cleaner” that would remove all tokens from a given frag-
ment of a net [3].

Fig. 4. Macro expansions for repeated activities.

Fig. 5. Macro expansion for a multi-instance activity where n is known at design time.

Fig. 6. Mapping of a subprocess without exception handling.

Fig. 7. Calling a subprocess via a subprocess invocation activity.

Fig. 8. Mapping of a task with an exception flow.

1286 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

Sub-processes

140

transitions: one identified as tðSI ;callÞ modelling the invoca-
tion of subprocess P, the other tðSI ;returnÞ modelling the flow
returns to the parent process after P completed.

3.4. Exception handling

In BPMN, exception handling is captured by excep-
tion flows. An exception flow originates from an error
event attached to the boundary of an activity. For pre-
sentation purposes, it is convenient to distinguish the
case where the activity is a single task, from the case
where it is a subprocess. Fig. 8 shows the mapping of
an error event associated with a task. Given that the exe-
cution of task T is atomic, the occurrence of exception
Ex may only interrupt T when T is enabled and has
not yet completed. In Petri net terms, this means that

the occurrence of exception Ex can ‘‘steal” the input
token that would normally be consumed by the transi-
tion corresponding to task T.

In the case of an exception flow associated to a subpro-
cess, the occurrence of the exception (i.e., the error event)
will cancel the execution of the subprocess assuming that
this latter has started but has not yet completed. The map-
ping is complicated by the fact that it needs to capture the
cancellation of the running subprocess at any point when
the exception occurs. This means that when the transition
corresponding to the error event fires, all the tokens left
in the Petri net fragment corresponding to the subprocess
need to be removed. However, due to the local nature of
Petri net transitions, it is cumbersome to model a ‘‘vacuum
cleaner” that would remove all tokens from a given frag-
ment of a net [3].

Fig. 4. Macro expansions for repeated activities.

Fig. 5. Macro expansion for a multi-instance activity where n is known at design time.

Fig. 6. Mapping of a subprocess without exception handling.

Fig. 7. Calling a subprocess via a subprocess invocation activity.

Fig. 8. Mapping of a task with an exception flow.

1286 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

transitions: one identified as tðSI ;callÞ modelling the invoca-
tion of subprocess P, the other tðSI ;returnÞ modelling the flow
returns to the parent process after P completed.

3.4. Exception handling

In BPMN, exception handling is captured by excep-
tion flows. An exception flow originates from an error
event attached to the boundary of an activity. For pre-
sentation purposes, it is convenient to distinguish the
case where the activity is a single task, from the case
where it is a subprocess. Fig. 8 shows the mapping of
an error event associated with a task. Given that the exe-
cution of task T is atomic, the occurrence of exception
Ex may only interrupt T when T is enabled and has
not yet completed. In Petri net terms, this means that

the occurrence of exception Ex can ‘‘steal” the input
token that would normally be consumed by the transi-
tion corresponding to task T.

In the case of an exception flow associated to a subpro-
cess, the occurrence of the exception (i.e., the error event)
will cancel the execution of the subprocess assuming that
this latter has started but has not yet completed. The map-
ping is complicated by the fact that it needs to capture the
cancellation of the running subprocess at any point when
the exception occurs. This means that when the transition
corresponding to the error event fires, all the tokens left
in the Petri net fragment corresponding to the subprocess
need to be removed. However, due to the local nature of
Petri net transitions, it is cumbersome to model a ‘‘vacuum
cleaner” that would remove all tokens from a given frag-
ment of a net [3].

Fig. 4. Macro expansions for repeated activities.

Fig. 5. Macro expansion for a multi-instance activity where n is known at design time.

Fig. 6. Mapping of a subprocess without exception handling.

Fig. 7. Calling a subprocess via a subprocess invocation activity.

Fig. 8. Mapping of a task with an exception flow.

1286 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

Message flow

141

in the BPMN specification. This is further discussed in Sec-
tion 4.

Finally, we note that if a subprocess P is nested within
another subprocess P 0, the execution of P may be cancelled
due to the cancellation of P 0, regardless of the reason why
P 0 is cancelled. Accordingly, each task or event in P needs
to check the OK status of both P and P 0 to ensure that once
P 0 is cancelled the execution of P stops as well.

3.5. Message flow

A message flow describes the interaction between pro-
cesses. It can be mapped to a place with an incoming arc
from the transition modelling a send action and an outgo-
ing arc to the transition modelling a receive action. A spe-
cial case is the mapping of a message flow to a start event
where the process is instantiated each time a message is
received. In this case, the message flow is directly mapped
to an arc linking the transition that models sending the
message to the place that signals triggering the start event
(e.g., place ps in the mapping of start event s shown in
Fig. 3, which we refer to as the ‘‘trigger place” of start
event s). Fig. 10 shows four mapping rules, each capturing
a case for a message sent by a task or an end event and
received by a task or a start event. Note that a task may

be replaced by an intermediate message event without
changing the rule.

The above mapping is restricted to tasks that either send
or receive messages but not both (such as user task and ser-
vice task). This restriction does not limit the expressive
power of BPMN, because successively sending and receiv-
ing a message can be represented by two tasks such as a
send followed by a receive.

3.6. Initial marking configuration

The initial state of a BPMN model can be specified by
the initial marking of the corresponding Petri net model.
The basic idea for configuring the initial marking is to
mark the trigger places for each of the start events that
do not have any incoming message flows and that the pro-
cesses they belong to are top-level processes. A message
flow that has as a target the start event of a process, will
create an instance of the process upon message delivery.
So, the mapping should ensure that the trigger place of
each start event with an incoming message flow does not
contain a token in the initial marking, because the process
can only be instantiated as a consequence of this event
when a message has arrived. A special case is that each
top-level process is instantiated by another process via an

Fig. 10. Mapping of message flows between BPMN processes.

Fig. 9. Mapping of a subprocess with an exception flow.

1288 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

Exception handling:
single task

142

transitions: one identified as tðSI ;callÞ modelling the invoca-
tion of subprocess P, the other tðSI ;returnÞ modelling the flow
returns to the parent process after P completed.

3.4. Exception handling

In BPMN, exception handling is captured by excep-
tion flows. An exception flow originates from an error
event attached to the boundary of an activity. For pre-
sentation purposes, it is convenient to distinguish the
case where the activity is a single task, from the case
where it is a subprocess. Fig. 8 shows the mapping of
an error event associated with a task. Given that the exe-
cution of task T is atomic, the occurrence of exception
Ex may only interrupt T when T is enabled and has
not yet completed. In Petri net terms, this means that

the occurrence of exception Ex can ‘‘steal” the input
token that would normally be consumed by the transi-
tion corresponding to task T.

In the case of an exception flow associated to a subpro-
cess, the occurrence of the exception (i.e., the error event)
will cancel the execution of the subprocess assuming that
this latter has started but has not yet completed. The map-
ping is complicated by the fact that it needs to capture the
cancellation of the running subprocess at any point when
the exception occurs. This means that when the transition
corresponding to the error event fires, all the tokens left
in the Petri net fragment corresponding to the subprocess
need to be removed. However, due to the local nature of
Petri net transitions, it is cumbersome to model a ‘‘vacuum
cleaner” that would remove all tokens from a given frag-
ment of a net [3].

Fig. 4. Macro expansions for repeated activities.

Fig. 5. Macro expansion for a multi-instance activity where n is known at design time.

Fig. 6. Mapping of a subprocess without exception handling.

Fig. 7. Calling a subprocess via a subprocess invocation activity.

Fig. 8. Mapping of a task with an exception flow.

1286 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

Exception handling:
sub-processes

143

in the BPMN specification. This is further discussed in Sec-
tion 4.

Finally, we note that if a subprocess P is nested within
another subprocess P 0, the execution of P may be cancelled
due to the cancellation of P 0, regardless of the reason why
P 0 is cancelled. Accordingly, each task or event in P needs
to check the OK status of both P and P 0 to ensure that once
P 0 is cancelled the execution of P stops as well.

3.5. Message flow

A message flow describes the interaction between pro-
cesses. It can be mapped to a place with an incoming arc
from the transition modelling a send action and an outgo-
ing arc to the transition modelling a receive action. A spe-
cial case is the mapping of a message flow to a start event
where the process is instantiated each time a message is
received. In this case, the message flow is directly mapped
to an arc linking the transition that models sending the
message to the place that signals triggering the start event
(e.g., place ps in the mapping of start event s shown in
Fig. 3, which we refer to as the ‘‘trigger place” of start
event s). Fig. 10 shows four mapping rules, each capturing
a case for a message sent by a task or an end event and
received by a task or a start event. Note that a task may

be replaced by an intermediate message event without
changing the rule.

The above mapping is restricted to tasks that either send
or receive messages but not both (such as user task and ser-
vice task). This restriction does not limit the expressive
power of BPMN, because successively sending and receiv-
ing a message can be represented by two tasks such as a
send followed by a receive.

3.6. Initial marking configuration

The initial state of a BPMN model can be specified by
the initial marking of the corresponding Petri net model.
The basic idea for configuring the initial marking is to
mark the trigger places for each of the start events that
do not have any incoming message flows and that the pro-
cesses they belong to are top-level processes. A message
flow that has as a target the start event of a process, will
create an instance of the process upon message delivery.
So, the mapping should ensure that the trigger place of
each start event with an incoming message flow does not
contain a token in the initial marking, because the process
can only be instantiated as a consequence of this event
when a message has arrived. A special case is that each
top-level process is instantiated by another process via an

Fig. 10. Mapping of message flows between BPMN processes.

Fig. 9. Mapping of a subprocess with an exception flow.

1288 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

accounts for
multiple instances

Example: Order process

144

6. Related work

To the best of our knowledge, the only other attempt to
define a comprehensive formal semantics of BPMN is that
of Wong and Gibbons [22], which uses Communicating
Sequential Processes (CSP) as the target formal model.
Like our semantics can be checked by Petri net checking
tools, their semantics can be checked by CSP checking
tools such as FDR [10]. In their work, a BPMN model is
mapped to a set of CSP processes and events. Each task
object is mapped to a CSP process while the flow relations
between task objects are captured through CSP events. The
conditions for initiation of a task are encoded as possible
combinations of CSP events that need to occur for the task
to be enabled. When a task completes, it generates event
occurrences that may then combine with other event occur-
rences to initiate other tasks. The CSP models produced in
this way may be large and complex, and they do not pre-
serve the structure of the BPMN model. For example, a

simple sequence of BPMN activities is not translated as a
sequence of processes. Also, Wong and Gibbons [22] do
not show how the CSP semantics can be used to detect var-
ious types of errors.

Puhlmann and Weske [20] present the foundations of a
tool for static analysis of BPMN process models. This tool
relies on a mapping from a subset of BPMN to p-calculus.
However, this mapping only covers a small subset of
BPMN. In particular, it does not take into account error
handling, which is a key feature of BPMN. Puhlmann
and Weske also show that the p-calculus expressions pro-
duced by this tool can be used to check the soundness of
BPMN models using existing reasoning tools based on
the p-calculus, in particular using the Mobility Workbench.
Experiments show however that this approach does not
scale beyond relatively small BPMN models (less than 10
nodes), whereas our approach can cope with models at
least three times larger without being affected by efficiency
issues.

Fig. 13. Examples of BPMN process models and transformations to Petri nets.

Table 1
Evaluation results of BPMN2PNML

Model No. BPMN model Petri net model Processing times (ms)

Tasks Events XORa AND Subprocesses Messages Exceptions Places Transitions Total Transformation

1 11 2 9 2 31 34 16828 1234
2 7 4 4 4 23 21 13875 1297
3 9 8 3 2 2 35 39 14703 2031
4 4 2 2 10 10 13109 703
5 3 2 2 2 12 11 15375 734
6 4 8 4 4 24 20 13781 1218
7 5 12 4 5 31 25 13828 1265
8 2 2 4 11 12 13187 797
9 5 2 2 11 11 13000 641
10 5 2 2 11 9 15516 750
11 6 4 2 2 19 16 13891 1125
12 6 4 3 2 1 20 19 13625 1093
13 12 4 10 2 1 1 38 43 14657 2016

a This includes both data-based and event-based gateways.

1292 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

6. Related work

To the best of our knowledge, the only other attempt to
define a comprehensive formal semantics of BPMN is that
of Wong and Gibbons [22], which uses Communicating
Sequential Processes (CSP) as the target formal model.
Like our semantics can be checked by Petri net checking
tools, their semantics can be checked by CSP checking
tools such as FDR [10]. In their work, a BPMN model is
mapped to a set of CSP processes and events. Each task
object is mapped to a CSP process while the flow relations
between task objects are captured through CSP events. The
conditions for initiation of a task are encoded as possible
combinations of CSP events that need to occur for the task
to be enabled. When a task completes, it generates event
occurrences that may then combine with other event occur-
rences to initiate other tasks. The CSP models produced in
this way may be large and complex, and they do not pre-
serve the structure of the BPMN model. For example, a

simple sequence of BPMN activities is not translated as a
sequence of processes. Also, Wong and Gibbons [22] do
not show how the CSP semantics can be used to detect var-
ious types of errors.

Puhlmann and Weske [20] present the foundations of a
tool for static analysis of BPMN process models. This tool
relies on a mapping from a subset of BPMN to p-calculus.
However, this mapping only covers a small subset of
BPMN. In particular, it does not take into account error
handling, which is a key feature of BPMN. Puhlmann
and Weske also show that the p-calculus expressions pro-
duced by this tool can be used to check the soundness of
BPMN models using existing reasoning tools based on
the p-calculus, in particular using the Mobility Workbench.
Experiments show however that this approach does not
scale beyond relatively small BPMN models (less than 10
nodes), whereas our approach can cope with models at
least three times larger without being affected by efficiency
issues.

Fig. 13. Examples of BPMN process models and transformations to Petri nets.

Table 1
Evaluation results of BPMN2PNML

Model No. BPMN model Petri net model Processing times (ms)

Tasks Events XORa AND Subprocesses Messages Exceptions Places Transitions Total Transformation

1 11 2 9 2 31 34 16828 1234
2 7 4 4 4 23 21 13875 1297
3 9 8 3 2 2 35 39 14703 2031
4 4 2 2 10 10 13109 703
5 3 2 2 2 12 11 15375 734
6 4 8 4 4 24 20 13781 1218
7 5 12 4 5 31 25 13828 1265
8 2 2 4 11 12 13187 797
9 5 2 2 11 11 13000 641
10 5 2 2 11 9 15516 750
11 6 4 2 2 19 16 13891 1125
12 6 4 3 2 1 20 19 13625 1093
13 12 4 10 2 1 1 38 43 14657 2016

a This includes both data-based and event-based gateways.

1292 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

Example: Order process

145

6. Related work

To the best of our knowledge, the only other attempt to
define a comprehensive formal semantics of BPMN is that
of Wong and Gibbons [22], which uses Communicating
Sequential Processes (CSP) as the target formal model.
Like our semantics can be checked by Petri net checking
tools, their semantics can be checked by CSP checking
tools such as FDR [10]. In their work, a BPMN model is
mapped to a set of CSP processes and events. Each task
object is mapped to a CSP process while the flow relations
between task objects are captured through CSP events. The
conditions for initiation of a task are encoded as possible
combinations of CSP events that need to occur for the task
to be enabled. When a task completes, it generates event
occurrences that may then combine with other event occur-
rences to initiate other tasks. The CSP models produced in
this way may be large and complex, and they do not pre-
serve the structure of the BPMN model. For example, a

simple sequence of BPMN activities is not translated as a
sequence of processes. Also, Wong and Gibbons [22] do
not show how the CSP semantics can be used to detect var-
ious types of errors.

Puhlmann and Weske [20] present the foundations of a
tool for static analysis of BPMN process models. This tool
relies on a mapping from a subset of BPMN to p-calculus.
However, this mapping only covers a small subset of
BPMN. In particular, it does not take into account error
handling, which is a key feature of BPMN. Puhlmann
and Weske also show that the p-calculus expressions pro-
duced by this tool can be used to check the soundness of
BPMN models using existing reasoning tools based on
the p-calculus, in particular using the Mobility Workbench.
Experiments show however that this approach does not
scale beyond relatively small BPMN models (less than 10
nodes), whereas our approach can cope with models at
least three times larger without being affected by efficiency
issues.

Fig. 13. Examples of BPMN process models and transformations to Petri nets.

Table 1
Evaluation results of BPMN2PNML

Model No. BPMN model Petri net model Processing times (ms)

Tasks Events XORa AND Subprocesses Messages Exceptions Places Transitions Total Transformation

1 11 2 9 2 31 34 16828 1234
2 7 4 4 4 23 21 13875 1297
3 9 8 3 2 2 35 39 14703 2031
4 4 2 2 10 10 13109 703
5 3 2 2 2 12 11 15375 734
6 4 8 4 4 24 20 13781 1218
7 5 12 4 5 31 25 13828 1265
8 2 2 4 11 12 13187 797
9 5 2 2 11 11 13000 641
10 5 2 2 11 9 15516 750
11 6 4 2 2 19 16 13891 1125
12 6 4 3 2 1 20 19 13625 1093
13 12 4 10 2 1 1 38 43 14657 2016

a This includes both data-based and event-based gateways.

1292 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

6. Related work

To the best of our knowledge, the only other attempt to
define a comprehensive formal semantics of BPMN is that
of Wong and Gibbons [22], which uses Communicating
Sequential Processes (CSP) as the target formal model.
Like our semantics can be checked by Petri net checking
tools, their semantics can be checked by CSP checking
tools such as FDR [10]. In their work, a BPMN model is
mapped to a set of CSP processes and events. Each task
object is mapped to a CSP process while the flow relations
between task objects are captured through CSP events. The
conditions for initiation of a task are encoded as possible
combinations of CSP events that need to occur for the task
to be enabled. When a task completes, it generates event
occurrences that may then combine with other event occur-
rences to initiate other tasks. The CSP models produced in
this way may be large and complex, and they do not pre-
serve the structure of the BPMN model. For example, a

simple sequence of BPMN activities is not translated as a
sequence of processes. Also, Wong and Gibbons [22] do
not show how the CSP semantics can be used to detect var-
ious types of errors.

Puhlmann and Weske [20] present the foundations of a
tool for static analysis of BPMN process models. This tool
relies on a mapping from a subset of BPMN to p-calculus.
However, this mapping only covers a small subset of
BPMN. In particular, it does not take into account error
handling, which is a key feature of BPMN. Puhlmann
and Weske also show that the p-calculus expressions pro-
duced by this tool can be used to check the soundness of
BPMN models using existing reasoning tools based on
the p-calculus, in particular using the Mobility Workbench.
Experiments show however that this approach does not
scale beyond relatively small BPMN models (less than 10
nodes), whereas our approach can cope with models at
least three times larger without being affected by efficiency
issues.

Fig. 13. Examples of BPMN process models and transformations to Petri nets.

Table 1
Evaluation results of BPMN2PNML

Model No. BPMN model Petri net model Processing times (ms)

Tasks Events XORa AND Subprocesses Messages Exceptions Places Transitions Total Transformation

1 11 2 9 2 31 34 16828 1234
2 7 4 4 4 23 21 13875 1297
3 9 8 3 2 2 35 39 14703 2031
4 4 2 2 10 10 13109 703
5 3 2 2 2 12 11 15375 734
6 4 8 4 4 24 20 13781 1218
7 5 12 4 5 31 25 13828 1265
8 2 2 4 11 12 13187 797
9 5 2 2 11 11 13000 641
10 5 2 2 11 9 15516 750
11 6 4 2 2 19 16 13891 1125
12 6 4 3 2 1 20 19 13625 1093
13 12 4 10 2 1 1 38 43 14657 2016

a This includes both data-based and event-based gateways.

1292 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

Example: Order process

146

6. Related work

To the best of our knowledge, the only other attempt to
define a comprehensive formal semantics of BPMN is that
of Wong and Gibbons [22], which uses Communicating
Sequential Processes (CSP) as the target formal model.
Like our semantics can be checked by Petri net checking
tools, their semantics can be checked by CSP checking
tools such as FDR [10]. In their work, a BPMN model is
mapped to a set of CSP processes and events. Each task
object is mapped to a CSP process while the flow relations
between task objects are captured through CSP events. The
conditions for initiation of a task are encoded as possible
combinations of CSP events that need to occur for the task
to be enabled. When a task completes, it generates event
occurrences that may then combine with other event occur-
rences to initiate other tasks. The CSP models produced in
this way may be large and complex, and they do not pre-
serve the structure of the BPMN model. For example, a

simple sequence of BPMN activities is not translated as a
sequence of processes. Also, Wong and Gibbons [22] do
not show how the CSP semantics can be used to detect var-
ious types of errors.

Puhlmann and Weske [20] present the foundations of a
tool for static analysis of BPMN process models. This tool
relies on a mapping from a subset of BPMN to p-calculus.
However, this mapping only covers a small subset of
BPMN. In particular, it does not take into account error
handling, which is a key feature of BPMN. Puhlmann
and Weske also show that the p-calculus expressions pro-
duced by this tool can be used to check the soundness of
BPMN models using existing reasoning tools based on
the p-calculus, in particular using the Mobility Workbench.
Experiments show however that this approach does not
scale beyond relatively small BPMN models (less than 10
nodes), whereas our approach can cope with models at
least three times larger without being affected by efficiency
issues.

Fig. 13. Examples of BPMN process models and transformations to Petri nets.

Table 1
Evaluation results of BPMN2PNML

Model No. BPMN model Petri net model Processing times (ms)

Tasks Events XORa AND Subprocesses Messages Exceptions Places Transitions Total Transformation

1 11 2 9 2 31 34 16828 1234
2 7 4 4 4 23 21 13875 1297
3 9 8 3 2 2 35 39 14703 2031
4 4 2 2 10 10 13109 703
5 3 2 2 2 12 11 15375 734
6 4 8 4 4 24 20 13781 1218
7 5 12 4 5 31 25 13828 1265
8 2 2 4 11 12 13187 797
9 5 2 2 11 11 13000 641
10 5 2 2 11 9 15516 750
11 6 4 2 2 19 16 13891 1125
12 6 4 3 2 1 20 19 13625 1093
13 12 4 10 2 1 1 38 43 14657 2016

a This includes both data-based and event-based gateways.

1292 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

6. Related work

To the best of our knowledge, the only other attempt to
define a comprehensive formal semantics of BPMN is that
of Wong and Gibbons [22], which uses Communicating
Sequential Processes (CSP) as the target formal model.
Like our semantics can be checked by Petri net checking
tools, their semantics can be checked by CSP checking
tools such as FDR [10]. In their work, a BPMN model is
mapped to a set of CSP processes and events. Each task
object is mapped to a CSP process while the flow relations
between task objects are captured through CSP events. The
conditions for initiation of a task are encoded as possible
combinations of CSP events that need to occur for the task
to be enabled. When a task completes, it generates event
occurrences that may then combine with other event occur-
rences to initiate other tasks. The CSP models produced in
this way may be large and complex, and they do not pre-
serve the structure of the BPMN model. For example, a

simple sequence of BPMN activities is not translated as a
sequence of processes. Also, Wong and Gibbons [22] do
not show how the CSP semantics can be used to detect var-
ious types of errors.

Puhlmann and Weske [20] present the foundations of a
tool for static analysis of BPMN process models. This tool
relies on a mapping from a subset of BPMN to p-calculus.
However, this mapping only covers a small subset of
BPMN. In particular, it does not take into account error
handling, which is a key feature of BPMN. Puhlmann
and Weske also show that the p-calculus expressions pro-
duced by this tool can be used to check the soundness of
BPMN models using existing reasoning tools based on
the p-calculus, in particular using the Mobility Workbench.
Experiments show however that this approach does not
scale beyond relatively small BPMN models (less than 10
nodes), whereas our approach can cope with models at
least three times larger without being affected by efficiency
issues.

Fig. 13. Examples of BPMN process models and transformations to Petri nets.

Table 1
Evaluation results of BPMN2PNML

Model No. BPMN model Petri net model Processing times (ms)

Tasks Events XORa AND Subprocesses Messages Exceptions Places Transitions Total Transformation

1 11 2 9 2 31 34 16828 1234
2 7 4 4 4 23 21 13875 1297
3 9 8 3 2 2 35 39 14703 2031
4 4 2 2 10 10 13109 703
5 3 2 2 2 12 11 15375 734
6 4 8 4 4 24 20 13781 1218
7 5 12 4 5 31 25 13828 1265
8 2 2 4 11 12 13187 797
9 5 2 2 11 11 13000 641
10 5 2 2 11 9 15516 750
11 6 4 2 2 19 16 13891 1125
12 6 4 3 2 1 20 19 13625 1093
13 12 4 10 2 1 1 38 43 14657 2016

a This includes both data-based and event-based gateways.

1292 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

Example: Order process

147

6. Related work

To the best of our knowledge, the only other attempt to
define a comprehensive formal semantics of BPMN is that
of Wong and Gibbons [22], which uses Communicating
Sequential Processes (CSP) as the target formal model.
Like our semantics can be checked by Petri net checking
tools, their semantics can be checked by CSP checking
tools such as FDR [10]. In their work, a BPMN model is
mapped to a set of CSP processes and events. Each task
object is mapped to a CSP process while the flow relations
between task objects are captured through CSP events. The
conditions for initiation of a task are encoded as possible
combinations of CSP events that need to occur for the task
to be enabled. When a task completes, it generates event
occurrences that may then combine with other event occur-
rences to initiate other tasks. The CSP models produced in
this way may be large and complex, and they do not pre-
serve the structure of the BPMN model. For example, a

simple sequence of BPMN activities is not translated as a
sequence of processes. Also, Wong and Gibbons [22] do
not show how the CSP semantics can be used to detect var-
ious types of errors.

Puhlmann and Weske [20] present the foundations of a
tool for static analysis of BPMN process models. This tool
relies on a mapping from a subset of BPMN to p-calculus.
However, this mapping only covers a small subset of
BPMN. In particular, it does not take into account error
handling, which is a key feature of BPMN. Puhlmann
and Weske also show that the p-calculus expressions pro-
duced by this tool can be used to check the soundness of
BPMN models using existing reasoning tools based on
the p-calculus, in particular using the Mobility Workbench.
Experiments show however that this approach does not
scale beyond relatively small BPMN models (less than 10
nodes), whereas our approach can cope with models at
least three times larger without being affected by efficiency
issues.

Fig. 13. Examples of BPMN process models and transformations to Petri nets.

Table 1
Evaluation results of BPMN2PNML

Model No. BPMN model Petri net model Processing times (ms)

Tasks Events XORa AND Subprocesses Messages Exceptions Places Transitions Total Transformation

1 11 2 9 2 31 34 16828 1234
2 7 4 4 4 23 21 13875 1297
3 9 8 3 2 2 35 39 14703 2031
4 4 2 2 10 10 13109 703
5 3 2 2 2 12 11 15375 734
6 4 8 4 4 24 20 13781 1218
7 5 12 4 5 31 25 13828 1265
8 2 2 4 11 12 13187 797
9 5 2 2 11 11 13000 641
10 5 2 2 11 9 15516 750
11 6 4 2 2 19 16 13891 1125
12 6 4 3 2 1 20 19 13625 1093
13 12 4 10 2 1 1 38 43 14657 2016

a This includes both data-based and event-based gateways.

1292 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

6. Related work

To the best of our knowledge, the only other attempt to
define a comprehensive formal semantics of BPMN is that
of Wong and Gibbons [22], which uses Communicating
Sequential Processes (CSP) as the target formal model.
Like our semantics can be checked by Petri net checking
tools, their semantics can be checked by CSP checking
tools such as FDR [10]. In their work, a BPMN model is
mapped to a set of CSP processes and events. Each task
object is mapped to a CSP process while the flow relations
between task objects are captured through CSP events. The
conditions for initiation of a task are encoded as possible
combinations of CSP events that need to occur for the task
to be enabled. When a task completes, it generates event
occurrences that may then combine with other event occur-
rences to initiate other tasks. The CSP models produced in
this way may be large and complex, and they do not pre-
serve the structure of the BPMN model. For example, a

simple sequence of BPMN activities is not translated as a
sequence of processes. Also, Wong and Gibbons [22] do
not show how the CSP semantics can be used to detect var-
ious types of errors.

Puhlmann and Weske [20] present the foundations of a
tool for static analysis of BPMN process models. This tool
relies on a mapping from a subset of BPMN to p-calculus.
However, this mapping only covers a small subset of
BPMN. In particular, it does not take into account error
handling, which is a key feature of BPMN. Puhlmann
and Weske also show that the p-calculus expressions pro-
duced by this tool can be used to check the soundness of
BPMN models using existing reasoning tools based on
the p-calculus, in particular using the Mobility Workbench.
Experiments show however that this approach does not
scale beyond relatively small BPMN models (less than 10
nodes), whereas our approach can cope with models at
least three times larger without being affected by efficiency
issues.

Fig. 13. Examples of BPMN process models and transformations to Petri nets.

Table 1
Evaluation results of BPMN2PNML

Model No. BPMN model Petri net model Processing times (ms)

Tasks Events XORa AND Subprocesses Messages Exceptions Places Transitions Total Transformation

1 11 2 9 2 31 34 16828 1234
2 7 4 4 4 23 21 13875 1297
3 9 8 3 2 2 35 39 14703 2031
4 4 2 2 10 10 13109 703
5 3 2 2 2 12 11 15375 734
6 4 8 4 4 24 20 13781 1218
7 5 12 4 5 31 25 13828 1265
8 2 2 4 11 12 13187 797
9 5 2 2 11 11 13000 641
10 5 2 2 11 9 15516 750
11 6 4 2 2 19 16 13891 1125
12 6 4 3 2 1 20 19 13625 1093
13 12 4 10 2 1 1 38 43 14657 2016

a This includes both data-based and event-based gateways.

1292 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

Example: Order process

148

6. Related work

To the best of our knowledge, the only other attempt to
define a comprehensive formal semantics of BPMN is that
of Wong and Gibbons [22], which uses Communicating
Sequential Processes (CSP) as the target formal model.
Like our semantics can be checked by Petri net checking
tools, their semantics can be checked by CSP checking
tools such as FDR [10]. In their work, a BPMN model is
mapped to a set of CSP processes and events. Each task
object is mapped to a CSP process while the flow relations
between task objects are captured through CSP events. The
conditions for initiation of a task are encoded as possible
combinations of CSP events that need to occur for the task
to be enabled. When a task completes, it generates event
occurrences that may then combine with other event occur-
rences to initiate other tasks. The CSP models produced in
this way may be large and complex, and they do not pre-
serve the structure of the BPMN model. For example, a

simple sequence of BPMN activities is not translated as a
sequence of processes. Also, Wong and Gibbons [22] do
not show how the CSP semantics can be used to detect var-
ious types of errors.

Puhlmann and Weske [20] present the foundations of a
tool for static analysis of BPMN process models. This tool
relies on a mapping from a subset of BPMN to p-calculus.
However, this mapping only covers a small subset of
BPMN. In particular, it does not take into account error
handling, which is a key feature of BPMN. Puhlmann
and Weske also show that the p-calculus expressions pro-
duced by this tool can be used to check the soundness of
BPMN models using existing reasoning tools based on
the p-calculus, in particular using the Mobility Workbench.
Experiments show however that this approach does not
scale beyond relatively small BPMN models (less than 10
nodes), whereas our approach can cope with models at
least three times larger without being affected by efficiency
issues.

Fig. 13. Examples of BPMN process models and transformations to Petri nets.

Table 1
Evaluation results of BPMN2PNML

Model No. BPMN model Petri net model Processing times (ms)

Tasks Events XORa AND Subprocesses Messages Exceptions Places Transitions Total Transformation

1 11 2 9 2 31 34 16828 1234
2 7 4 4 4 23 21 13875 1297
3 9 8 3 2 2 35 39 14703 2031
4 4 2 2 10 10 13109 703
5 3 2 2 2 12 11 15375 734
6 4 8 4 4 24 20 13781 1218
7 5 12 4 5 31 25 13828 1265
8 2 2 4 11 12 13187 797
9 5 2 2 11 11 13000 641
10 5 2 2 11 9 15516 750
11 6 4 2 2 19 16 13891 1125
12 6 4 3 2 1 20 19 13625 1093
13 12 4 10 2 1 1 38 43 14657 2016

a This includes both data-based and event-based gateways.

1292 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

6. Related work

To the best of our knowledge, the only other attempt to
define a comprehensive formal semantics of BPMN is that
of Wong and Gibbons [22], which uses Communicating
Sequential Processes (CSP) as the target formal model.
Like our semantics can be checked by Petri net checking
tools, their semantics can be checked by CSP checking
tools such as FDR [10]. In their work, a BPMN model is
mapped to a set of CSP processes and events. Each task
object is mapped to a CSP process while the flow relations
between task objects are captured through CSP events. The
conditions for initiation of a task are encoded as possible
combinations of CSP events that need to occur for the task
to be enabled. When a task completes, it generates event
occurrences that may then combine with other event occur-
rences to initiate other tasks. The CSP models produced in
this way may be large and complex, and they do not pre-
serve the structure of the BPMN model. For example, a

simple sequence of BPMN activities is not translated as a
sequence of processes. Also, Wong and Gibbons [22] do
not show how the CSP semantics can be used to detect var-
ious types of errors.

Puhlmann and Weske [20] present the foundations of a
tool for static analysis of BPMN process models. This tool
relies on a mapping from a subset of BPMN to p-calculus.
However, this mapping only covers a small subset of
BPMN. In particular, it does not take into account error
handling, which is a key feature of BPMN. Puhlmann
and Weske also show that the p-calculus expressions pro-
duced by this tool can be used to check the soundness of
BPMN models using existing reasoning tools based on
the p-calculus, in particular using the Mobility Workbench.
Experiments show however that this approach does not
scale beyond relatively small BPMN models (less than 10
nodes), whereas our approach can cope with models at
least three times larger without being affected by efficiency
issues.

Fig. 13. Examples of BPMN process models and transformations to Petri nets.

Table 1
Evaluation results of BPMN2PNML

Model No. BPMN model Petri net model Processing times (ms)

Tasks Events XORa AND Subprocesses Messages Exceptions Places Transitions Total Transformation

1 11 2 9 2 31 34 16828 1234
2 7 4 4 4 23 21 13875 1297
3 9 8 3 2 2 35 39 14703 2031
4 4 2 2 10 10 13109 703
5 3 2 2 2 12 11 15375 734
6 4 8 4 4 24 20 13781 1218
7 5 12 4 5 31 25 13828 1265
8 2 2 4 11 12 13187 797
9 5 2 2 11 11 13000 641
10 5 2 2 11 9 15516 750
11 6 4 2 2 19 16 13891 1125
12 6 4 3 2 1 20 19 13625 1093
13 12 4 10 2 1 1 38 43 14657 2016

a This includes both data-based and event-based gateways.

1292 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

Example: Order process

149

6. Related work

To the best of our knowledge, the only other attempt to
define a comprehensive formal semantics of BPMN is that
of Wong and Gibbons [22], which uses Communicating
Sequential Processes (CSP) as the target formal model.
Like our semantics can be checked by Petri net checking
tools, their semantics can be checked by CSP checking
tools such as FDR [10]. In their work, a BPMN model is
mapped to a set of CSP processes and events. Each task
object is mapped to a CSP process while the flow relations
between task objects are captured through CSP events. The
conditions for initiation of a task are encoded as possible
combinations of CSP events that need to occur for the task
to be enabled. When a task completes, it generates event
occurrences that may then combine with other event occur-
rences to initiate other tasks. The CSP models produced in
this way may be large and complex, and they do not pre-
serve the structure of the BPMN model. For example, a

simple sequence of BPMN activities is not translated as a
sequence of processes. Also, Wong and Gibbons [22] do
not show how the CSP semantics can be used to detect var-
ious types of errors.

Puhlmann and Weske [20] present the foundations of a
tool for static analysis of BPMN process models. This tool
relies on a mapping from a subset of BPMN to p-calculus.
However, this mapping only covers a small subset of
BPMN. In particular, it does not take into account error
handling, which is a key feature of BPMN. Puhlmann
and Weske also show that the p-calculus expressions pro-
duced by this tool can be used to check the soundness of
BPMN models using existing reasoning tools based on
the p-calculus, in particular using the Mobility Workbench.
Experiments show however that this approach does not
scale beyond relatively small BPMN models (less than 10
nodes), whereas our approach can cope with models at
least three times larger without being affected by efficiency
issues.

Fig. 13. Examples of BPMN process models and transformations to Petri nets.

Table 1
Evaluation results of BPMN2PNML

Model No. BPMN model Petri net model Processing times (ms)

Tasks Events XORa AND Subprocesses Messages Exceptions Places Transitions Total Transformation

1 11 2 9 2 31 34 16828 1234
2 7 4 4 4 23 21 13875 1297
3 9 8 3 2 2 35 39 14703 2031
4 4 2 2 10 10 13109 703
5 3 2 2 2 12 11 15375 734
6 4 8 4 4 24 20 13781 1218
7 5 12 4 5 31 25 13828 1265
8 2 2 4 11 12 13187 797
9 5 2 2 11 11 13000 641
10 5 2 2 11 9 15516 750
11 6 4 2 2 19 16 13891 1125
12 6 4 3 2 1 20 19 13625 1093
13 12 4 10 2 1 1 38 43 14657 2016

a This includes both data-based and event-based gateways.

1292 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

6. Related work

To the best of our knowledge, the only other attempt to
define a comprehensive formal semantics of BPMN is that
of Wong and Gibbons [22], which uses Communicating
Sequential Processes (CSP) as the target formal model.
Like our semantics can be checked by Petri net checking
tools, their semantics can be checked by CSP checking
tools such as FDR [10]. In their work, a BPMN model is
mapped to a set of CSP processes and events. Each task
object is mapped to a CSP process while the flow relations
between task objects are captured through CSP events. The
conditions for initiation of a task are encoded as possible
combinations of CSP events that need to occur for the task
to be enabled. When a task completes, it generates event
occurrences that may then combine with other event occur-
rences to initiate other tasks. The CSP models produced in
this way may be large and complex, and they do not pre-
serve the structure of the BPMN model. For example, a

simple sequence of BPMN activities is not translated as a
sequence of processes. Also, Wong and Gibbons [22] do
not show how the CSP semantics can be used to detect var-
ious types of errors.

Puhlmann and Weske [20] present the foundations of a
tool for static analysis of BPMN process models. This tool
relies on a mapping from a subset of BPMN to p-calculus.
However, this mapping only covers a small subset of
BPMN. In particular, it does not take into account error
handling, which is a key feature of BPMN. Puhlmann
and Weske also show that the p-calculus expressions pro-
duced by this tool can be used to check the soundness of
BPMN models using existing reasoning tools based on
the p-calculus, in particular using the Mobility Workbench.
Experiments show however that this approach does not
scale beyond relatively small BPMN models (less than 10
nodes), whereas our approach can cope with models at
least three times larger without being affected by efficiency
issues.

Fig. 13. Examples of BPMN process models and transformations to Petri nets.

Table 1
Evaluation results of BPMN2PNML

Model No. BPMN model Petri net model Processing times (ms)

Tasks Events XORa AND Subprocesses Messages Exceptions Places Transitions Total Transformation

1 11 2 9 2 31 34 16828 1234
2 7 4 4 4 23 21 13875 1297
3 9 8 3 2 2 35 39 14703 2031
4 4 2 2 10 10 13109 703
5 3 2 2 2 12 11 15375 734
6 4 8 4 4 24 20 13781 1218
7 5 12 4 5 31 25 13828 1265
8 2 2 4 11 12 13187 797
9 5 2 2 11 11 13000 641
10 5 2 2 11 9 15516 750
11 6 4 2 2 19 16 13891 1125
12 6 4 3 2 1 20 19 13625 1093
13 12 4 10 2 1 1 38 43 14657 2016

a This includes both data-based and event-based gateways.

1292 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

Example: Order process

150

6. Related work

To the best of our knowledge, the only other attempt to
define a comprehensive formal semantics of BPMN is that
of Wong and Gibbons [22], which uses Communicating
Sequential Processes (CSP) as the target formal model.
Like our semantics can be checked by Petri net checking
tools, their semantics can be checked by CSP checking
tools such as FDR [10]. In their work, a BPMN model is
mapped to a set of CSP processes and events. Each task
object is mapped to a CSP process while the flow relations
between task objects are captured through CSP events. The
conditions for initiation of a task are encoded as possible
combinations of CSP events that need to occur for the task
to be enabled. When a task completes, it generates event
occurrences that may then combine with other event occur-
rences to initiate other tasks. The CSP models produced in
this way may be large and complex, and they do not pre-
serve the structure of the BPMN model. For example, a

simple sequence of BPMN activities is not translated as a
sequence of processes. Also, Wong and Gibbons [22] do
not show how the CSP semantics can be used to detect var-
ious types of errors.

Puhlmann and Weske [20] present the foundations of a
tool for static analysis of BPMN process models. This tool
relies on a mapping from a subset of BPMN to p-calculus.
However, this mapping only covers a small subset of
BPMN. In particular, it does not take into account error
handling, which is a key feature of BPMN. Puhlmann
and Weske also show that the p-calculus expressions pro-
duced by this tool can be used to check the soundness of
BPMN models using existing reasoning tools based on
the p-calculus, in particular using the Mobility Workbench.
Experiments show however that this approach does not
scale beyond relatively small BPMN models (less than 10
nodes), whereas our approach can cope with models at
least three times larger without being affected by efficiency
issues.

Fig. 13. Examples of BPMN process models and transformations to Petri nets.

Table 1
Evaluation results of BPMN2PNML

Model No. BPMN model Petri net model Processing times (ms)

Tasks Events XORa AND Subprocesses Messages Exceptions Places Transitions Total Transformation

1 11 2 9 2 31 34 16828 1234
2 7 4 4 4 23 21 13875 1297
3 9 8 3 2 2 35 39 14703 2031
4 4 2 2 10 10 13109 703
5 3 2 2 2 12 11 15375 734
6 4 8 4 4 24 20 13781 1218
7 5 12 4 5 31 25 13828 1265
8 2 2 4 11 12 13187 797
9 5 2 2 11 11 13000 641
10 5 2 2 11 9 15516 750
11 6 4 2 2 19 16 13891 1125
12 6 4 3 2 1 20 19 13625 1093
13 12 4 10 2 1 1 38 43 14657 2016

a This includes both data-based and event-based gateways.

1292 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

6. Related work

To the best of our knowledge, the only other attempt to
define a comprehensive formal semantics of BPMN is that
of Wong and Gibbons [22], which uses Communicating
Sequential Processes (CSP) as the target formal model.
Like our semantics can be checked by Petri net checking
tools, their semantics can be checked by CSP checking
tools such as FDR [10]. In their work, a BPMN model is
mapped to a set of CSP processes and events. Each task
object is mapped to a CSP process while the flow relations
between task objects are captured through CSP events. The
conditions for initiation of a task are encoded as possible
combinations of CSP events that need to occur for the task
to be enabled. When a task completes, it generates event
occurrences that may then combine with other event occur-
rences to initiate other tasks. The CSP models produced in
this way may be large and complex, and they do not pre-
serve the structure of the BPMN model. For example, a

simple sequence of BPMN activities is not translated as a
sequence of processes. Also, Wong and Gibbons [22] do
not show how the CSP semantics can be used to detect var-
ious types of errors.

Puhlmann and Weske [20] present the foundations of a
tool for static analysis of BPMN process models. This tool
relies on a mapping from a subset of BPMN to p-calculus.
However, this mapping only covers a small subset of
BPMN. In particular, it does not take into account error
handling, which is a key feature of BPMN. Puhlmann
and Weske also show that the p-calculus expressions pro-
duced by this tool can be used to check the soundness of
BPMN models using existing reasoning tools based on
the p-calculus, in particular using the Mobility Workbench.
Experiments show however that this approach does not
scale beyond relatively small BPMN models (less than 10
nodes), whereas our approach can cope with models at
least three times larger without being affected by efficiency
issues.

Fig. 13. Examples of BPMN process models and transformations to Petri nets.

Table 1
Evaluation results of BPMN2PNML

Model No. BPMN model Petri net model Processing times (ms)

Tasks Events XORa AND Subprocesses Messages Exceptions Places Transitions Total Transformation

1 11 2 9 2 31 34 16828 1234
2 7 4 4 4 23 21 13875 1297
3 9 8 3 2 2 35 39 14703 2031
4 4 2 2 10 10 13109 703
5 3 2 2 2 12 11 15375 734
6 4 8 4 4 24 20 13781 1218
7 5 12 4 5 31 25 13828 1265
8 2 2 4 11 12 13187 797
9 5 2 2 11 11 13000 641
10 5 2 2 11 9 15516 750
11 6 4 2 2 19 16 13891 1125
12 6 4 3 2 1 20 19 13625 1093
13 12 4 10 2 1 1 38 43 14657 2016

a This includes both data-based and event-based gateways.

1292 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

Example: Order process

151

6. Related work

To the best of our knowledge, the only other attempt to
define a comprehensive formal semantics of BPMN is that
of Wong and Gibbons [22], which uses Communicating
Sequential Processes (CSP) as the target formal model.
Like our semantics can be checked by Petri net checking
tools, their semantics can be checked by CSP checking
tools such as FDR [10]. In their work, a BPMN model is
mapped to a set of CSP processes and events. Each task
object is mapped to a CSP process while the flow relations
between task objects are captured through CSP events. The
conditions for initiation of a task are encoded as possible
combinations of CSP events that need to occur for the task
to be enabled. When a task completes, it generates event
occurrences that may then combine with other event occur-
rences to initiate other tasks. The CSP models produced in
this way may be large and complex, and they do not pre-
serve the structure of the BPMN model. For example, a

simple sequence of BPMN activities is not translated as a
sequence of processes. Also, Wong and Gibbons [22] do
not show how the CSP semantics can be used to detect var-
ious types of errors.

Puhlmann and Weske [20] present the foundations of a
tool for static analysis of BPMN process models. This tool
relies on a mapping from a subset of BPMN to p-calculus.
However, this mapping only covers a small subset of
BPMN. In particular, it does not take into account error
handling, which is a key feature of BPMN. Puhlmann
and Weske also show that the p-calculus expressions pro-
duced by this tool can be used to check the soundness of
BPMN models using existing reasoning tools based on
the p-calculus, in particular using the Mobility Workbench.
Experiments show however that this approach does not
scale beyond relatively small BPMN models (less than 10
nodes), whereas our approach can cope with models at
least three times larger without being affected by efficiency
issues.

Fig. 13. Examples of BPMN process models and transformations to Petri nets.

Table 1
Evaluation results of BPMN2PNML

Model No. BPMN model Petri net model Processing times (ms)

Tasks Events XORa AND Subprocesses Messages Exceptions Places Transitions Total Transformation

1 11 2 9 2 31 34 16828 1234
2 7 4 4 4 23 21 13875 1297
3 9 8 3 2 2 35 39 14703 2031
4 4 2 2 10 10 13109 703
5 3 2 2 2 12 11 15375 734
6 4 8 4 4 24 20 13781 1218
7 5 12 4 5 31 25 13828 1265
8 2 2 4 11 12 13187 797
9 5 2 2 11 11 13000 641
10 5 2 2 11 9 15516 750
11 6 4 2 2 19 16 13891 1125
12 6 4 3 2 1 20 19 13625 1093
13 12 4 10 2 1 1 38 43 14657 2016

a This includes both data-based and event-based gateways.

1292 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

6. Related work

To the best of our knowledge, the only other attempt to
define a comprehensive formal semantics of BPMN is that
of Wong and Gibbons [22], which uses Communicating
Sequential Processes (CSP) as the target formal model.
Like our semantics can be checked by Petri net checking
tools, their semantics can be checked by CSP checking
tools such as FDR [10]. In their work, a BPMN model is
mapped to a set of CSP processes and events. Each task
object is mapped to a CSP process while the flow relations
between task objects are captured through CSP events. The
conditions for initiation of a task are encoded as possible
combinations of CSP events that need to occur for the task
to be enabled. When a task completes, it generates event
occurrences that may then combine with other event occur-
rences to initiate other tasks. The CSP models produced in
this way may be large and complex, and they do not pre-
serve the structure of the BPMN model. For example, a

simple sequence of BPMN activities is not translated as a
sequence of processes. Also, Wong and Gibbons [22] do
not show how the CSP semantics can be used to detect var-
ious types of errors.

Puhlmann and Weske [20] present the foundations of a
tool for static analysis of BPMN process models. This tool
relies on a mapping from a subset of BPMN to p-calculus.
However, this mapping only covers a small subset of
BPMN. In particular, it does not take into account error
handling, which is a key feature of BPMN. Puhlmann
and Weske also show that the p-calculus expressions pro-
duced by this tool can be used to check the soundness of
BPMN models using existing reasoning tools based on
the p-calculus, in particular using the Mobility Workbench.
Experiments show however that this approach does not
scale beyond relatively small BPMN models (less than 10
nodes), whereas our approach can cope with models at
least three times larger without being affected by efficiency
issues.

Fig. 13. Examples of BPMN process models and transformations to Petri nets.

Table 1
Evaluation results of BPMN2PNML

Model No. BPMN model Petri net model Processing times (ms)

Tasks Events XORa AND Subprocesses Messages Exceptions Places Transitions Total Transformation

1 11 2 9 2 31 34 16828 1234
2 7 4 4 4 23 21 13875 1297
3 9 8 3 2 2 35 39 14703 2031
4 4 2 2 10 10 13109 703
5 3 2 2 2 12 11 15375 734
6 4 8 4 4 24 20 13781 1218
7 5 12 4 5 31 25 13828 1265
8 2 2 4 11 12 13187 797
9 5 2 2 11 11 13000 641
10 5 2 2 11 9 15516 750
11 6 4 2 2 19 16 13891 1125
12 6 4 3 2 1 20 19 13625 1093
13 12 4 10 2 1 1 38 43 14657 2016

a This includes both data-based and event-based gateways.

1292 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

Example: Order process

152

6. Related work

To the best of our knowledge, the only other attempt to
define a comprehensive formal semantics of BPMN is that
of Wong and Gibbons [22], which uses Communicating
Sequential Processes (CSP) as the target formal model.
Like our semantics can be checked by Petri net checking
tools, their semantics can be checked by CSP checking
tools such as FDR [10]. In their work, a BPMN model is
mapped to a set of CSP processes and events. Each task
object is mapped to a CSP process while the flow relations
between task objects are captured through CSP events. The
conditions for initiation of a task are encoded as possible
combinations of CSP events that need to occur for the task
to be enabled. When a task completes, it generates event
occurrences that may then combine with other event occur-
rences to initiate other tasks. The CSP models produced in
this way may be large and complex, and they do not pre-
serve the structure of the BPMN model. For example, a

simple sequence of BPMN activities is not translated as a
sequence of processes. Also, Wong and Gibbons [22] do
not show how the CSP semantics can be used to detect var-
ious types of errors.

Puhlmann and Weske [20] present the foundations of a
tool for static analysis of BPMN process models. This tool
relies on a mapping from a subset of BPMN to p-calculus.
However, this mapping only covers a small subset of
BPMN. In particular, it does not take into account error
handling, which is a key feature of BPMN. Puhlmann
and Weske also show that the p-calculus expressions pro-
duced by this tool can be used to check the soundness of
BPMN models using existing reasoning tools based on
the p-calculus, in particular using the Mobility Workbench.
Experiments show however that this approach does not
scale beyond relatively small BPMN models (less than 10
nodes), whereas our approach can cope with models at
least three times larger without being affected by efficiency
issues.

Fig. 13. Examples of BPMN process models and transformations to Petri nets.

Table 1
Evaluation results of BPMN2PNML

Model No. BPMN model Petri net model Processing times (ms)

Tasks Events XORa AND Subprocesses Messages Exceptions Places Transitions Total Transformation

1 11 2 9 2 31 34 16828 1234
2 7 4 4 4 23 21 13875 1297
3 9 8 3 2 2 35 39 14703 2031
4 4 2 2 10 10 13109 703
5 3 2 2 2 12 11 15375 734
6 4 8 4 4 24 20 13781 1218
7 5 12 4 5 31 25 13828 1265
8 2 2 4 11 12 13187 797
9 5 2 2 11 11 13000 641
10 5 2 2 11 9 15516 750
11 6 4 2 2 19 16 13891 1125
12 6 4 3 2 1 20 19 13625 1093
13 12 4 10 2 1 1 38 43 14657 2016

a This includes both data-based and event-based gateways.

1292 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

6. Related work

To the best of our knowledge, the only other attempt to
define a comprehensive formal semantics of BPMN is that
of Wong and Gibbons [22], which uses Communicating
Sequential Processes (CSP) as the target formal model.
Like our semantics can be checked by Petri net checking
tools, their semantics can be checked by CSP checking
tools such as FDR [10]. In their work, a BPMN model is
mapped to a set of CSP processes and events. Each task
object is mapped to a CSP process while the flow relations
between task objects are captured through CSP events. The
conditions for initiation of a task are encoded as possible
combinations of CSP events that need to occur for the task
to be enabled. When a task completes, it generates event
occurrences that may then combine with other event occur-
rences to initiate other tasks. The CSP models produced in
this way may be large and complex, and they do not pre-
serve the structure of the BPMN model. For example, a

simple sequence of BPMN activities is not translated as a
sequence of processes. Also, Wong and Gibbons [22] do
not show how the CSP semantics can be used to detect var-
ious types of errors.

Puhlmann and Weske [20] present the foundations of a
tool for static analysis of BPMN process models. This tool
relies on a mapping from a subset of BPMN to p-calculus.
However, this mapping only covers a small subset of
BPMN. In particular, it does not take into account error
handling, which is a key feature of BPMN. Puhlmann
and Weske also show that the p-calculus expressions pro-
duced by this tool can be used to check the soundness of
BPMN models using existing reasoning tools based on
the p-calculus, in particular using the Mobility Workbench.
Experiments show however that this approach does not
scale beyond relatively small BPMN models (less than 10
nodes), whereas our approach can cope with models at
least three times larger without being affected by efficiency
issues.

Fig. 13. Examples of BPMN process models and transformations to Petri nets.

Table 1
Evaluation results of BPMN2PNML

Model No. BPMN model Petri net model Processing times (ms)

Tasks Events XORa AND Subprocesses Messages Exceptions Places Transitions Total Transformation

1 11 2 9 2 31 34 16828 1234
2 7 4 4 4 23 21 13875 1297
3 9 8 3 2 2 35 39 14703 2031
4 4 2 2 10 10 13109 703
5 3 2 2 2 12 11 15375 734
6 4 8 4 4 24 20 13781 1218
7 5 12 4 5 31 25 13828 1265
8 2 2 4 11 12 13187 797
9 5 2 2 11 11 13000 641
10 5 2 2 11 9 15516 750
11 6 4 2 2 19 16 13891 1125
12 6 4 3 2 1 20 19 13625 1093
13 12 4 10 2 1 1 38 43 14657 2016

a This includes both data-based and event-based gateways.

1292 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

Example: Order process

153

Example: Order process

154

6. Related work

To the best of our knowledge, the only other attempt to
define a comprehensive formal semantics of BPMN is that
of Wong and Gibbons [22], which uses Communicating
Sequential Processes (CSP) as the target formal model.
Like our semantics can be checked by Petri net checking
tools, their semantics can be checked by CSP checking
tools such as FDR [10]. In their work, a BPMN model is
mapped to a set of CSP processes and events. Each task
object is mapped to a CSP process while the flow relations
between task objects are captured through CSP events. The
conditions for initiation of a task are encoded as possible
combinations of CSP events that need to occur for the task
to be enabled. When a task completes, it generates event
occurrences that may then combine with other event occur-
rences to initiate other tasks. The CSP models produced in
this way may be large and complex, and they do not pre-
serve the structure of the BPMN model. For example, a

simple sequence of BPMN activities is not translated as a
sequence of processes. Also, Wong and Gibbons [22] do
not show how the CSP semantics can be used to detect var-
ious types of errors.

Puhlmann and Weske [20] present the foundations of a
tool for static analysis of BPMN process models. This tool
relies on a mapping from a subset of BPMN to p-calculus.
However, this mapping only covers a small subset of
BPMN. In particular, it does not take into account error
handling, which is a key feature of BPMN. Puhlmann
and Weske also show that the p-calculus expressions pro-
duced by this tool can be used to check the soundness of
BPMN models using existing reasoning tools based on
the p-calculus, in particular using the Mobility Workbench.
Experiments show however that this approach does not
scale beyond relatively small BPMN models (less than 10
nodes), whereas our approach can cope with models at
least three times larger without being affected by efficiency
issues.

Fig. 13. Examples of BPMN process models and transformations to Petri nets.

Table 1
Evaluation results of BPMN2PNML

Model No. BPMN model Petri net model Processing times (ms)

Tasks Events XORa AND Subprocesses Messages Exceptions Places Transitions Total Transformation

1 11 2 9 2 31 34 16828 1234
2 7 4 4 4 23 21 13875 1297
3 9 8 3 2 2 35 39 14703 2031
4 4 2 2 10 10 13109 703
5 3 2 2 2 12 11 15375 734
6 4 8 4 4 24 20 13781 1218
7 5 12 4 5 31 25 13828 1265
8 2 2 4 11 12 13187 797
9 5 2 2 11 11 13000 641
10 5 2 2 11 9 15516 750
11 6 4 2 2 19 16 13891 1125
12 6 4 3 2 1 20 19 13625 1093
13 12 4 10 2 1 1 38 43 14657 2016

a This includes both data-based and event-based gateways.

1292 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

Example: Travel itinerary

155

6. Related work

To the best of our knowledge, the only other attempt to
define a comprehensive formal semantics of BPMN is that
of Wong and Gibbons [22], which uses Communicating
Sequential Processes (CSP) as the target formal model.
Like our semantics can be checked by Petri net checking
tools, their semantics can be checked by CSP checking
tools such as FDR [10]. In their work, a BPMN model is
mapped to a set of CSP processes and events. Each task
object is mapped to a CSP process while the flow relations
between task objects are captured through CSP events. The
conditions for initiation of a task are encoded as possible
combinations of CSP events that need to occur for the task
to be enabled. When a task completes, it generates event
occurrences that may then combine with other event occur-
rences to initiate other tasks. The CSP models produced in
this way may be large and complex, and they do not pre-
serve the structure of the BPMN model. For example, a

simple sequence of BPMN activities is not translated as a
sequence of processes. Also, Wong and Gibbons [22] do
not show how the CSP semantics can be used to detect var-
ious types of errors.

Puhlmann and Weske [20] present the foundations of a
tool for static analysis of BPMN process models. This tool
relies on a mapping from a subset of BPMN to p-calculus.
However, this mapping only covers a small subset of
BPMN. In particular, it does not take into account error
handling, which is a key feature of BPMN. Puhlmann
and Weske also show that the p-calculus expressions pro-
duced by this tool can be used to check the soundness of
BPMN models using existing reasoning tools based on
the p-calculus, in particular using the Mobility Workbench.
Experiments show however that this approach does not
scale beyond relatively small BPMN models (less than 10
nodes), whereas our approach can cope with models at
least three times larger without being affected by efficiency
issues.

Fig. 13. Examples of BPMN process models and transformations to Petri nets.

Table 1
Evaluation results of BPMN2PNML

Model No. BPMN model Petri net model Processing times (ms)

Tasks Events XORa AND Subprocesses Messages Exceptions Places Transitions Total Transformation

1 11 2 9 2 31 34 16828 1234
2 7 4 4 4 23 21 13875 1297
3 9 8 3 2 2 35 39 14703 2031
4 4 2 2 10 10 13109 703
5 3 2 2 2 12 11 15375 734
6 4 8 4 4 24 20 13781 1218
7 5 12 4 5 31 25 13828 1265
8 2 2 4 11 12 13187 797
9 5 2 2 11 11 13000 641
10 5 2 2 11 9 15516 750
11 6 4 2 2 19 16 13891 1125
12 6 4 3 2 1 20 19 13625 1093
13 12 4 10 2 1 1 38 43 14657 2016

a This includes both data-based and event-based gateways.

1292 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

6. Related work

To the best of our knowledge, the only other attempt to
define a comprehensive formal semantics of BPMN is that
of Wong and Gibbons [22], which uses Communicating
Sequential Processes (CSP) as the target formal model.
Like our semantics can be checked by Petri net checking
tools, their semantics can be checked by CSP checking
tools such as FDR [10]. In their work, a BPMN model is
mapped to a set of CSP processes and events. Each task
object is mapped to a CSP process while the flow relations
between task objects are captured through CSP events. The
conditions for initiation of a task are encoded as possible
combinations of CSP events that need to occur for the task
to be enabled. When a task completes, it generates event
occurrences that may then combine with other event occur-
rences to initiate other tasks. The CSP models produced in
this way may be large and complex, and they do not pre-
serve the structure of the BPMN model. For example, a

simple sequence of BPMN activities is not translated as a
sequence of processes. Also, Wong and Gibbons [22] do
not show how the CSP semantics can be used to detect var-
ious types of errors.

Puhlmann and Weske [20] present the foundations of a
tool for static analysis of BPMN process models. This tool
relies on a mapping from a subset of BPMN to p-calculus.
However, this mapping only covers a small subset of
BPMN. In particular, it does not take into account error
handling, which is a key feature of BPMN. Puhlmann
and Weske also show that the p-calculus expressions pro-
duced by this tool can be used to check the soundness of
BPMN models using existing reasoning tools based on
the p-calculus, in particular using the Mobility Workbench.
Experiments show however that this approach does not
scale beyond relatively small BPMN models (less than 10
nodes), whereas our approach can cope with models at
least three times larger without being affected by efficiency
issues.

Fig. 13. Examples of BPMN process models and transformations to Petri nets.

Table 1
Evaluation results of BPMN2PNML

Model No. BPMN model Petri net model Processing times (ms)

Tasks Events XORa AND Subprocesses Messages Exceptions Places Transitions Total Transformation

1 11 2 9 2 31 34 16828 1234
2 7 4 4 4 23 21 13875 1297
3 9 8 3 2 2 35 39 14703 2031
4 4 2 2 10 10 13109 703
5 3 2 2 2 12 11 15375 734
6 4 8 4 4 24 20 13781 1218
7 5 12 4 5 31 25 13828 1265
8 2 2 4 11 12 13187 797
9 5 2 2 11 11 13000 641
10 5 2 2 11 9 15516 750
11 6 4 2 2 19 16 13891 1125
12 6 4 3 2 1 20 19 13625 1093
13 12 4 10 2 1 1 38 43 14657 2016

a This includes both data-based and event-based gateways.

1292 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

Example: Travel itinerary

156

6. Related work

To the best of our knowledge, the only other attempt to
define a comprehensive formal semantics of BPMN is that
of Wong and Gibbons [22], which uses Communicating
Sequential Processes (CSP) as the target formal model.
Like our semantics can be checked by Petri net checking
tools, their semantics can be checked by CSP checking
tools such as FDR [10]. In their work, a BPMN model is
mapped to a set of CSP processes and events. Each task
object is mapped to a CSP process while the flow relations
between task objects are captured through CSP events. The
conditions for initiation of a task are encoded as possible
combinations of CSP events that need to occur for the task
to be enabled. When a task completes, it generates event
occurrences that may then combine with other event occur-
rences to initiate other tasks. The CSP models produced in
this way may be large and complex, and they do not pre-
serve the structure of the BPMN model. For example, a

simple sequence of BPMN activities is not translated as a
sequence of processes. Also, Wong and Gibbons [22] do
not show how the CSP semantics can be used to detect var-
ious types of errors.

Puhlmann and Weske [20] present the foundations of a
tool for static analysis of BPMN process models. This tool
relies on a mapping from a subset of BPMN to p-calculus.
However, this mapping only covers a small subset of
BPMN. In particular, it does not take into account error
handling, which is a key feature of BPMN. Puhlmann
and Weske also show that the p-calculus expressions pro-
duced by this tool can be used to check the soundness of
BPMN models using existing reasoning tools based on
the p-calculus, in particular using the Mobility Workbench.
Experiments show however that this approach does not
scale beyond relatively small BPMN models (less than 10
nodes), whereas our approach can cope with models at
least three times larger without being affected by efficiency
issues.

Fig. 13. Examples of BPMN process models and transformations to Petri nets.

Table 1
Evaluation results of BPMN2PNML

Model No. BPMN model Petri net model Processing times (ms)

Tasks Events XORa AND Subprocesses Messages Exceptions Places Transitions Total Transformation

1 11 2 9 2 31 34 16828 1234
2 7 4 4 4 23 21 13875 1297
3 9 8 3 2 2 35 39 14703 2031
4 4 2 2 10 10 13109 703
5 3 2 2 2 12 11 15375 734
6 4 8 4 4 24 20 13781 1218
7 5 12 4 5 31 25 13828 1265
8 2 2 4 11 12 13187 797
9 5 2 2 11 11 13000 641
10 5 2 2 11 9 15516 750
11 6 4 2 2 19 16 13891 1125
12 6 4 3 2 1 20 19 13625 1093
13 12 4 10 2 1 1 38 43 14657 2016

a This includes both data-based and event-based gateways.

1292 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

6. Related work

To the best of our knowledge, the only other attempt to
define a comprehensive formal semantics of BPMN is that
of Wong and Gibbons [22], which uses Communicating
Sequential Processes (CSP) as the target formal model.
Like our semantics can be checked by Petri net checking
tools, their semantics can be checked by CSP checking
tools such as FDR [10]. In their work, a BPMN model is
mapped to a set of CSP processes and events. Each task
object is mapped to a CSP process while the flow relations
between task objects are captured through CSP events. The
conditions for initiation of a task are encoded as possible
combinations of CSP events that need to occur for the task
to be enabled. When a task completes, it generates event
occurrences that may then combine with other event occur-
rences to initiate other tasks. The CSP models produced in
this way may be large and complex, and they do not pre-
serve the structure of the BPMN model. For example, a

simple sequence of BPMN activities is not translated as a
sequence of processes. Also, Wong and Gibbons [22] do
not show how the CSP semantics can be used to detect var-
ious types of errors.

Puhlmann and Weske [20] present the foundations of a
tool for static analysis of BPMN process models. This tool
relies on a mapping from a subset of BPMN to p-calculus.
However, this mapping only covers a small subset of
BPMN. In particular, it does not take into account error
handling, which is a key feature of BPMN. Puhlmann
and Weske also show that the p-calculus expressions pro-
duced by this tool can be used to check the soundness of
BPMN models using existing reasoning tools based on
the p-calculus, in particular using the Mobility Workbench.
Experiments show however that this approach does not
scale beyond relatively small BPMN models (less than 10
nodes), whereas our approach can cope with models at
least three times larger without being affected by efficiency
issues.

Fig. 13. Examples of BPMN process models and transformations to Petri nets.

Table 1
Evaluation results of BPMN2PNML

Model No. BPMN model Petri net model Processing times (ms)

Tasks Events XORa AND Subprocesses Messages Exceptions Places Transitions Total Transformation

1 11 2 9 2 31 34 16828 1234
2 7 4 4 4 23 21 13875 1297
3 9 8 3 2 2 35 39 14703 2031
4 4 2 2 10 10 13109 703
5 3 2 2 2 12 11 15375 734
6 4 8 4 4 24 20 13781 1218
7 5 12 4 5 31 25 13828 1265
8 2 2 4 11 12 13187 797
9 5 2 2 11 11 13000 641
10 5 2 2 11 9 15516 750
11 6 4 2 2 19 16 13891 1125
12 6 4 3 2 1 20 19 13625 1093
13 12 4 10 2 1 1 38 43 14657 2016

a This includes both data-based and event-based gateways.

1292 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

Example: Travel itinerary

157

6. Related work

To the best of our knowledge, the only other attempt to
define a comprehensive formal semantics of BPMN is that
of Wong and Gibbons [22], which uses Communicating
Sequential Processes (CSP) as the target formal model.
Like our semantics can be checked by Petri net checking
tools, their semantics can be checked by CSP checking
tools such as FDR [10]. In their work, a BPMN model is
mapped to a set of CSP processes and events. Each task
object is mapped to a CSP process while the flow relations
between task objects are captured through CSP events. The
conditions for initiation of a task are encoded as possible
combinations of CSP events that need to occur for the task
to be enabled. When a task completes, it generates event
occurrences that may then combine with other event occur-
rences to initiate other tasks. The CSP models produced in
this way may be large and complex, and they do not pre-
serve the structure of the BPMN model. For example, a

simple sequence of BPMN activities is not translated as a
sequence of processes. Also, Wong and Gibbons [22] do
not show how the CSP semantics can be used to detect var-
ious types of errors.

Puhlmann and Weske [20] present the foundations of a
tool for static analysis of BPMN process models. This tool
relies on a mapping from a subset of BPMN to p-calculus.
However, this mapping only covers a small subset of
BPMN. In particular, it does not take into account error
handling, which is a key feature of BPMN. Puhlmann
and Weske also show that the p-calculus expressions pro-
duced by this tool can be used to check the soundness of
BPMN models using existing reasoning tools based on
the p-calculus, in particular using the Mobility Workbench.
Experiments show however that this approach does not
scale beyond relatively small BPMN models (less than 10
nodes), whereas our approach can cope with models at
least three times larger without being affected by efficiency
issues.

Fig. 13. Examples of BPMN process models and transformations to Petri nets.

Table 1
Evaluation results of BPMN2PNML

Model No. BPMN model Petri net model Processing times (ms)

Tasks Events XORa AND Subprocesses Messages Exceptions Places Transitions Total Transformation

1 11 2 9 2 31 34 16828 1234
2 7 4 4 4 23 21 13875 1297
3 9 8 3 2 2 35 39 14703 2031
4 4 2 2 10 10 13109 703
5 3 2 2 2 12 11 15375 734
6 4 8 4 4 24 20 13781 1218
7 5 12 4 5 31 25 13828 1265
8 2 2 4 11 12 13187 797
9 5 2 2 11 11 13000 641
10 5 2 2 11 9 15516 750
11 6 4 2 2 19 16 13891 1125
12 6 4 3 2 1 20 19 13625 1093
13 12 4 10 2 1 1 38 43 14657 2016

a This includes both data-based and event-based gateways.

1292 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

6. Related work

To the best of our knowledge, the only other attempt to
define a comprehensive formal semantics of BPMN is that
of Wong and Gibbons [22], which uses Communicating
Sequential Processes (CSP) as the target formal model.
Like our semantics can be checked by Petri net checking
tools, their semantics can be checked by CSP checking
tools such as FDR [10]. In their work, a BPMN model is
mapped to a set of CSP processes and events. Each task
object is mapped to a CSP process while the flow relations
between task objects are captured through CSP events. The
conditions for initiation of a task are encoded as possible
combinations of CSP events that need to occur for the task
to be enabled. When a task completes, it generates event
occurrences that may then combine with other event occur-
rences to initiate other tasks. The CSP models produced in
this way may be large and complex, and they do not pre-
serve the structure of the BPMN model. For example, a

simple sequence of BPMN activities is not translated as a
sequence of processes. Also, Wong and Gibbons [22] do
not show how the CSP semantics can be used to detect var-
ious types of errors.

Puhlmann and Weske [20] present the foundations of a
tool for static analysis of BPMN process models. This tool
relies on a mapping from a subset of BPMN to p-calculus.
However, this mapping only covers a small subset of
BPMN. In particular, it does not take into account error
handling, which is a key feature of BPMN. Puhlmann
and Weske also show that the p-calculus expressions pro-
duced by this tool can be used to check the soundness of
BPMN models using existing reasoning tools based on
the p-calculus, in particular using the Mobility Workbench.
Experiments show however that this approach does not
scale beyond relatively small BPMN models (less than 10
nodes), whereas our approach can cope with models at
least three times larger without being affected by efficiency
issues.

Fig. 13. Examples of BPMN process models and transformations to Petri nets.

Table 1
Evaluation results of BPMN2PNML

Model No. BPMN model Petri net model Processing times (ms)

Tasks Events XORa AND Subprocesses Messages Exceptions Places Transitions Total Transformation

1 11 2 9 2 31 34 16828 1234
2 7 4 4 4 23 21 13875 1297
3 9 8 3 2 2 35 39 14703 2031
4 4 2 2 10 10 13109 703
5 3 2 2 2 12 11 15375 734
6 4 8 4 4 24 20 13781 1218
7 5 12 4 5 31 25 13828 1265
8 2 2 4 11 12 13187 797
9 5 2 2 11 11 13000 641
10 5 2 2 11 9 15516 750
11 6 4 2 2 19 16 13891 1125
12 6 4 3 2 1 20 19 13625 1093
13 12 4 10 2 1 1 38 43 14657 2016

a This includes both data-based and event-based gateways.

1292 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

Example: Travel itinerary

158

6. Related work

To the best of our knowledge, the only other attempt to
define a comprehensive formal semantics of BPMN is that
of Wong and Gibbons [22], which uses Communicating
Sequential Processes (CSP) as the target formal model.
Like our semantics can be checked by Petri net checking
tools, their semantics can be checked by CSP checking
tools such as FDR [10]. In their work, a BPMN model is
mapped to a set of CSP processes and events. Each task
object is mapped to a CSP process while the flow relations
between task objects are captured through CSP events. The
conditions for initiation of a task are encoded as possible
combinations of CSP events that need to occur for the task
to be enabled. When a task completes, it generates event
occurrences that may then combine with other event occur-
rences to initiate other tasks. The CSP models produced in
this way may be large and complex, and they do not pre-
serve the structure of the BPMN model. For example, a

simple sequence of BPMN activities is not translated as a
sequence of processes. Also, Wong and Gibbons [22] do
not show how the CSP semantics can be used to detect var-
ious types of errors.

Puhlmann and Weske [20] present the foundations of a
tool for static analysis of BPMN process models. This tool
relies on a mapping from a subset of BPMN to p-calculus.
However, this mapping only covers a small subset of
BPMN. In particular, it does not take into account error
handling, which is a key feature of BPMN. Puhlmann
and Weske also show that the p-calculus expressions pro-
duced by this tool can be used to check the soundness of
BPMN models using existing reasoning tools based on
the p-calculus, in particular using the Mobility Workbench.
Experiments show however that this approach does not
scale beyond relatively small BPMN models (less than 10
nodes), whereas our approach can cope with models at
least three times larger without being affected by efficiency
issues.

Fig. 13. Examples of BPMN process models and transformations to Petri nets.

Table 1
Evaluation results of BPMN2PNML

Model No. BPMN model Petri net model Processing times (ms)

Tasks Events XORa AND Subprocesses Messages Exceptions Places Transitions Total Transformation

1 11 2 9 2 31 34 16828 1234
2 7 4 4 4 23 21 13875 1297
3 9 8 3 2 2 35 39 14703 2031
4 4 2 2 10 10 13109 703
5 3 2 2 2 12 11 15375 734
6 4 8 4 4 24 20 13781 1218
7 5 12 4 5 31 25 13828 1265
8 2 2 4 11 12 13187 797
9 5 2 2 11 11 13000 641
10 5 2 2 11 9 15516 750
11 6 4 2 2 19 16 13891 1125
12 6 4 3 2 1 20 19 13625 1093
13 12 4 10 2 1 1 38 43 14657 2016

a This includes both data-based and event-based gateways.

1292 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

6. Related work

To the best of our knowledge, the only other attempt to
define a comprehensive formal semantics of BPMN is that
of Wong and Gibbons [22], which uses Communicating
Sequential Processes (CSP) as the target formal model.
Like our semantics can be checked by Petri net checking
tools, their semantics can be checked by CSP checking
tools such as FDR [10]. In their work, a BPMN model is
mapped to a set of CSP processes and events. Each task
object is mapped to a CSP process while the flow relations
between task objects are captured through CSP events. The
conditions for initiation of a task are encoded as possible
combinations of CSP events that need to occur for the task
to be enabled. When a task completes, it generates event
occurrences that may then combine with other event occur-
rences to initiate other tasks. The CSP models produced in
this way may be large and complex, and they do not pre-
serve the structure of the BPMN model. For example, a

simple sequence of BPMN activities is not translated as a
sequence of processes. Also, Wong and Gibbons [22] do
not show how the CSP semantics can be used to detect var-
ious types of errors.

Puhlmann and Weske [20] present the foundations of a
tool for static analysis of BPMN process models. This tool
relies on a mapping from a subset of BPMN to p-calculus.
However, this mapping only covers a small subset of
BPMN. In particular, it does not take into account error
handling, which is a key feature of BPMN. Puhlmann
and Weske also show that the p-calculus expressions pro-
duced by this tool can be used to check the soundness of
BPMN models using existing reasoning tools based on
the p-calculus, in particular using the Mobility Workbench.
Experiments show however that this approach does not
scale beyond relatively small BPMN models (less than 10
nodes), whereas our approach can cope with models at
least three times larger without being affected by efficiency
issues.

Fig. 13. Examples of BPMN process models and transformations to Petri nets.

Table 1
Evaluation results of BPMN2PNML

Model No. BPMN model Petri net model Processing times (ms)

Tasks Events XORa AND Subprocesses Messages Exceptions Places Transitions Total Transformation

1 11 2 9 2 31 34 16828 1234
2 7 4 4 4 23 21 13875 1297
3 9 8 3 2 2 35 39 14703 2031
4 4 2 2 10 10 13109 703
5 3 2 2 2 12 11 15375 734
6 4 8 4 4 24 20 13781 1218
7 5 12 4 5 31 25 13828 1265
8 2 2 4 11 12 13187 797
9 5 2 2 11 11 13000 641
10 5 2 2 11 9 15516 750
11 6 4 2 2 19 16 13891 1125
12 6 4 3 2 1 20 19 13625 1093
13 12 4 10 2 1 1 38 43 14657 2016

a This includes both data-based and event-based gateways.

1292 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

Example: Travel itinerary

159

6. Related work

To the best of our knowledge, the only other attempt to
define a comprehensive formal semantics of BPMN is that
of Wong and Gibbons [22], which uses Communicating
Sequential Processes (CSP) as the target formal model.
Like our semantics can be checked by Petri net checking
tools, their semantics can be checked by CSP checking
tools such as FDR [10]. In their work, a BPMN model is
mapped to a set of CSP processes and events. Each task
object is mapped to a CSP process while the flow relations
between task objects are captured through CSP events. The
conditions for initiation of a task are encoded as possible
combinations of CSP events that need to occur for the task
to be enabled. When a task completes, it generates event
occurrences that may then combine with other event occur-
rences to initiate other tasks. The CSP models produced in
this way may be large and complex, and they do not pre-
serve the structure of the BPMN model. For example, a

simple sequence of BPMN activities is not translated as a
sequence of processes. Also, Wong and Gibbons [22] do
not show how the CSP semantics can be used to detect var-
ious types of errors.

Puhlmann and Weske [20] present the foundations of a
tool for static analysis of BPMN process models. This tool
relies on a mapping from a subset of BPMN to p-calculus.
However, this mapping only covers a small subset of
BPMN. In particular, it does not take into account error
handling, which is a key feature of BPMN. Puhlmann
and Weske also show that the p-calculus expressions pro-
duced by this tool can be used to check the soundness of
BPMN models using existing reasoning tools based on
the p-calculus, in particular using the Mobility Workbench.
Experiments show however that this approach does not
scale beyond relatively small BPMN models (less than 10
nodes), whereas our approach can cope with models at
least three times larger without being affected by efficiency
issues.

Fig. 13. Examples of BPMN process models and transformations to Petri nets.

Table 1
Evaluation results of BPMN2PNML

Model No. BPMN model Petri net model Processing times (ms)

Tasks Events XORa AND Subprocesses Messages Exceptions Places Transitions Total Transformation

1 11 2 9 2 31 34 16828 1234
2 7 4 4 4 23 21 13875 1297
3 9 8 3 2 2 35 39 14703 2031
4 4 2 2 10 10 13109 703
5 3 2 2 2 12 11 15375 734
6 4 8 4 4 24 20 13781 1218
7 5 12 4 5 31 25 13828 1265
8 2 2 4 11 12 13187 797
9 5 2 2 11 11 13000 641
10 5 2 2 11 9 15516 750
11 6 4 2 2 19 16 13891 1125
12 6 4 3 2 1 20 19 13625 1093
13 12 4 10 2 1 1 38 43 14657 2016

a This includes both data-based and event-based gateways.

1292 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

6. Related work

To the best of our knowledge, the only other attempt to
define a comprehensive formal semantics of BPMN is that
of Wong and Gibbons [22], which uses Communicating
Sequential Processes (CSP) as the target formal model.
Like our semantics can be checked by Petri net checking
tools, their semantics can be checked by CSP checking
tools such as FDR [10]. In their work, a BPMN model is
mapped to a set of CSP processes and events. Each task
object is mapped to a CSP process while the flow relations
between task objects are captured through CSP events. The
conditions for initiation of a task are encoded as possible
combinations of CSP events that need to occur for the task
to be enabled. When a task completes, it generates event
occurrences that may then combine with other event occur-
rences to initiate other tasks. The CSP models produced in
this way may be large and complex, and they do not pre-
serve the structure of the BPMN model. For example, a

simple sequence of BPMN activities is not translated as a
sequence of processes. Also, Wong and Gibbons [22] do
not show how the CSP semantics can be used to detect var-
ious types of errors.

Puhlmann and Weske [20] present the foundations of a
tool for static analysis of BPMN process models. This tool
relies on a mapping from a subset of BPMN to p-calculus.
However, this mapping only covers a small subset of
BPMN. In particular, it does not take into account error
handling, which is a key feature of BPMN. Puhlmann
and Weske also show that the p-calculus expressions pro-
duced by this tool can be used to check the soundness of
BPMN models using existing reasoning tools based on
the p-calculus, in particular using the Mobility Workbench.
Experiments show however that this approach does not
scale beyond relatively small BPMN models (less than 10
nodes), whereas our approach can cope with models at
least three times larger without being affected by efficiency
issues.

Fig. 13. Examples of BPMN process models and transformations to Petri nets.

Table 1
Evaluation results of BPMN2PNML

Model No. BPMN model Petri net model Processing times (ms)

Tasks Events XORa AND Subprocesses Messages Exceptions Places Transitions Total Transformation

1 11 2 9 2 31 34 16828 1234
2 7 4 4 4 23 21 13875 1297
3 9 8 3 2 2 35 39 14703 2031
4 4 2 2 10 10 13109 703
5 3 2 2 2 12 11 15375 734
6 4 8 4 4 24 20 13781 1218
7 5 12 4 5 31 25 13828 1265
8 2 2 4 11 12 13187 797
9 5 2 2 11 11 13000 641
10 5 2 2 11 9 15516 750
11 6 4 2 2 19 16 13891 1125
12 6 4 3 2 1 20 19 13625 1093
13 12 4 10 2 1 1 38 43 14657 2016

a This includes both data-based and event-based gateways.

1292 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

Example: Travel itinerary

160

6. Related work

To the best of our knowledge, the only other attempt to
define a comprehensive formal semantics of BPMN is that
of Wong and Gibbons [22], which uses Communicating
Sequential Processes (CSP) as the target formal model.
Like our semantics can be checked by Petri net checking
tools, their semantics can be checked by CSP checking
tools such as FDR [10]. In their work, a BPMN model is
mapped to a set of CSP processes and events. Each task
object is mapped to a CSP process while the flow relations
between task objects are captured through CSP events. The
conditions for initiation of a task are encoded as possible
combinations of CSP events that need to occur for the task
to be enabled. When a task completes, it generates event
occurrences that may then combine with other event occur-
rences to initiate other tasks. The CSP models produced in
this way may be large and complex, and they do not pre-
serve the structure of the BPMN model. For example, a

simple sequence of BPMN activities is not translated as a
sequence of processes. Also, Wong and Gibbons [22] do
not show how the CSP semantics can be used to detect var-
ious types of errors.

Puhlmann and Weske [20] present the foundations of a
tool for static analysis of BPMN process models. This tool
relies on a mapping from a subset of BPMN to p-calculus.
However, this mapping only covers a small subset of
BPMN. In particular, it does not take into account error
handling, which is a key feature of BPMN. Puhlmann
and Weske also show that the p-calculus expressions pro-
duced by this tool can be used to check the soundness of
BPMN models using existing reasoning tools based on
the p-calculus, in particular using the Mobility Workbench.
Experiments show however that this approach does not
scale beyond relatively small BPMN models (less than 10
nodes), whereas our approach can cope with models at
least three times larger without being affected by efficiency
issues.

Fig. 13. Examples of BPMN process models and transformations to Petri nets.

Table 1
Evaluation results of BPMN2PNML

Model No. BPMN model Petri net model Processing times (ms)

Tasks Events XORa AND Subprocesses Messages Exceptions Places Transitions Total Transformation

1 11 2 9 2 31 34 16828 1234
2 7 4 4 4 23 21 13875 1297
3 9 8 3 2 2 35 39 14703 2031
4 4 2 2 10 10 13109 703
5 3 2 2 2 12 11 15375 734
6 4 8 4 4 24 20 13781 1218
7 5 12 4 5 31 25 13828 1265
8 2 2 4 11 12 13187 797
9 5 2 2 11 11 13000 641
10 5 2 2 11 9 15516 750
11 6 4 2 2 19 16 13891 1125
12 6 4 3 2 1 20 19 13625 1093
13 12 4 10 2 1 1 38 43 14657 2016

a This includes both data-based and event-based gateways.

1292 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

6. Related work

To the best of our knowledge, the only other attempt to
define a comprehensive formal semantics of BPMN is that
of Wong and Gibbons [22], which uses Communicating
Sequential Processes (CSP) as the target formal model.
Like our semantics can be checked by Petri net checking
tools, their semantics can be checked by CSP checking
tools such as FDR [10]. In their work, a BPMN model is
mapped to a set of CSP processes and events. Each task
object is mapped to a CSP process while the flow relations
between task objects are captured through CSP events. The
conditions for initiation of a task are encoded as possible
combinations of CSP events that need to occur for the task
to be enabled. When a task completes, it generates event
occurrences that may then combine with other event occur-
rences to initiate other tasks. The CSP models produced in
this way may be large and complex, and they do not pre-
serve the structure of the BPMN model. For example, a

simple sequence of BPMN activities is not translated as a
sequence of processes. Also, Wong and Gibbons [22] do
not show how the CSP semantics can be used to detect var-
ious types of errors.

Puhlmann and Weske [20] present the foundations of a
tool for static analysis of BPMN process models. This tool
relies on a mapping from a subset of BPMN to p-calculus.
However, this mapping only covers a small subset of
BPMN. In particular, it does not take into account error
handling, which is a key feature of BPMN. Puhlmann
and Weske also show that the p-calculus expressions pro-
duced by this tool can be used to check the soundness of
BPMN models using existing reasoning tools based on
the p-calculus, in particular using the Mobility Workbench.
Experiments show however that this approach does not
scale beyond relatively small BPMN models (less than 10
nodes), whereas our approach can cope with models at
least three times larger without being affected by efficiency
issues.

Fig. 13. Examples of BPMN process models and transformations to Petri nets.

Table 1
Evaluation results of BPMN2PNML

Model No. BPMN model Petri net model Processing times (ms)

Tasks Events XORa AND Subprocesses Messages Exceptions Places Transitions Total Transformation

1 11 2 9 2 31 34 16828 1234
2 7 4 4 4 23 21 13875 1297
3 9 8 3 2 2 35 39 14703 2031
4 4 2 2 10 10 13109 703
5 3 2 2 2 12 11 15375 734
6 4 8 4 4 24 20 13781 1218
7 5 12 4 5 31 25 13828 1265
8 2 2 4 11 12 13187 797
9 5 2 2 11 11 13000 641
10 5 2 2 11 9 15516 750
11 6 4 2 2 19 16 13891 1125
12 6 4 3 2 1 20 19 13625 1093
13 12 4 10 2 1 1 38 43 14657 2016

a This includes both data-based and event-based gateways.

1292 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

Example: Travel itinerary

161

6. Related work

To the best of our knowledge, the only other attempt to
define a comprehensive formal semantics of BPMN is that
of Wong and Gibbons [22], which uses Communicating
Sequential Processes (CSP) as the target formal model.
Like our semantics can be checked by Petri net checking
tools, their semantics can be checked by CSP checking
tools such as FDR [10]. In their work, a BPMN model is
mapped to a set of CSP processes and events. Each task
object is mapped to a CSP process while the flow relations
between task objects are captured through CSP events. The
conditions for initiation of a task are encoded as possible
combinations of CSP events that need to occur for the task
to be enabled. When a task completes, it generates event
occurrences that may then combine with other event occur-
rences to initiate other tasks. The CSP models produced in
this way may be large and complex, and they do not pre-
serve the structure of the BPMN model. For example, a

simple sequence of BPMN activities is not translated as a
sequence of processes. Also, Wong and Gibbons [22] do
not show how the CSP semantics can be used to detect var-
ious types of errors.

Puhlmann and Weske [20] present the foundations of a
tool for static analysis of BPMN process models. This tool
relies on a mapping from a subset of BPMN to p-calculus.
However, this mapping only covers a small subset of
BPMN. In particular, it does not take into account error
handling, which is a key feature of BPMN. Puhlmann
and Weske also show that the p-calculus expressions pro-
duced by this tool can be used to check the soundness of
BPMN models using existing reasoning tools based on
the p-calculus, in particular using the Mobility Workbench.
Experiments show however that this approach does not
scale beyond relatively small BPMN models (less than 10
nodes), whereas our approach can cope with models at
least three times larger without being affected by efficiency
issues.

Fig. 13. Examples of BPMN process models and transformations to Petri nets.

Table 1
Evaluation results of BPMN2PNML

Model No. BPMN model Petri net model Processing times (ms)

Tasks Events XORa AND Subprocesses Messages Exceptions Places Transitions Total Transformation

1 11 2 9 2 31 34 16828 1234
2 7 4 4 4 23 21 13875 1297
3 9 8 3 2 2 35 39 14703 2031
4 4 2 2 10 10 13109 703
5 3 2 2 2 12 11 15375 734
6 4 8 4 4 24 20 13781 1218
7 5 12 4 5 31 25 13828 1265
8 2 2 4 11 12 13187 797
9 5 2 2 11 11 13000 641
10 5 2 2 11 9 15516 750
11 6 4 2 2 19 16 13891 1125
12 6 4 3 2 1 20 19 13625 1093
13 12 4 10 2 1 1 38 43 14657 2016

a This includes both data-based and event-based gateways.

1292 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

6. Related work

To the best of our knowledge, the only other attempt to
define a comprehensive formal semantics of BPMN is that
of Wong and Gibbons [22], which uses Communicating
Sequential Processes (CSP) as the target formal model.
Like our semantics can be checked by Petri net checking
tools, their semantics can be checked by CSP checking
tools such as FDR [10]. In their work, a BPMN model is
mapped to a set of CSP processes and events. Each task
object is mapped to a CSP process while the flow relations
between task objects are captured through CSP events. The
conditions for initiation of a task are encoded as possible
combinations of CSP events that need to occur for the task
to be enabled. When a task completes, it generates event
occurrences that may then combine with other event occur-
rences to initiate other tasks. The CSP models produced in
this way may be large and complex, and they do not pre-
serve the structure of the BPMN model. For example, a

simple sequence of BPMN activities is not translated as a
sequence of processes. Also, Wong and Gibbons [22] do
not show how the CSP semantics can be used to detect var-
ious types of errors.

Puhlmann and Weske [20] present the foundations of a
tool for static analysis of BPMN process models. This tool
relies on a mapping from a subset of BPMN to p-calculus.
However, this mapping only covers a small subset of
BPMN. In particular, it does not take into account error
handling, which is a key feature of BPMN. Puhlmann
and Weske also show that the p-calculus expressions pro-
duced by this tool can be used to check the soundness of
BPMN models using existing reasoning tools based on
the p-calculus, in particular using the Mobility Workbench.
Experiments show however that this approach does not
scale beyond relatively small BPMN models (less than 10
nodes), whereas our approach can cope with models at
least three times larger without being affected by efficiency
issues.

Fig. 13. Examples of BPMN process models and transformations to Petri nets.

Table 1
Evaluation results of BPMN2PNML

Model No. BPMN model Petri net model Processing times (ms)

Tasks Events XORa AND Subprocesses Messages Exceptions Places Transitions Total Transformation

1 11 2 9 2 31 34 16828 1234
2 7 4 4 4 23 21 13875 1297
3 9 8 3 2 2 35 39 14703 2031
4 4 2 2 10 10 13109 703
5 3 2 2 2 12 11 15375 734
6 4 8 4 4 24 20 13781 1218
7 5 12 4 5 31 25 13828 1265
8 2 2 4 11 12 13187 797
9 5 2 2 11 11 13000 641
10 5 2 2 11 9 15516 750
11 6 4 2 2 19 16 13891 1125
12 6 4 3 2 1 20 19 13625 1093
13 12 4 10 2 1 1 38 43 14657 2016

a This includes both data-based and event-based gateways.

1292 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

Example: Travel itinerary

162

6. Related work

To the best of our knowledge, the only other attempt to
define a comprehensive formal semantics of BPMN is that
of Wong and Gibbons [22], which uses Communicating
Sequential Processes (CSP) as the target formal model.
Like our semantics can be checked by Petri net checking
tools, their semantics can be checked by CSP checking
tools such as FDR [10]. In their work, a BPMN model is
mapped to a set of CSP processes and events. Each task
object is mapped to a CSP process while the flow relations
between task objects are captured through CSP events. The
conditions for initiation of a task are encoded as possible
combinations of CSP events that need to occur for the task
to be enabled. When a task completes, it generates event
occurrences that may then combine with other event occur-
rences to initiate other tasks. The CSP models produced in
this way may be large and complex, and they do not pre-
serve the structure of the BPMN model. For example, a

simple sequence of BPMN activities is not translated as a
sequence of processes. Also, Wong and Gibbons [22] do
not show how the CSP semantics can be used to detect var-
ious types of errors.

Puhlmann and Weske [20] present the foundations of a
tool for static analysis of BPMN process models. This tool
relies on a mapping from a subset of BPMN to p-calculus.
However, this mapping only covers a small subset of
BPMN. In particular, it does not take into account error
handling, which is a key feature of BPMN. Puhlmann
and Weske also show that the p-calculus expressions pro-
duced by this tool can be used to check the soundness of
BPMN models using existing reasoning tools based on
the p-calculus, in particular using the Mobility Workbench.
Experiments show however that this approach does not
scale beyond relatively small BPMN models (less than 10
nodes), whereas our approach can cope with models at
least three times larger without being affected by efficiency
issues.

Fig. 13. Examples of BPMN process models and transformations to Petri nets.

Table 1
Evaluation results of BPMN2PNML

Model No. BPMN model Petri net model Processing times (ms)

Tasks Events XORa AND Subprocesses Messages Exceptions Places Transitions Total Transformation

1 11 2 9 2 31 34 16828 1234
2 7 4 4 4 23 21 13875 1297
3 9 8 3 2 2 35 39 14703 2031
4 4 2 2 10 10 13109 703
5 3 2 2 2 12 11 15375 734
6 4 8 4 4 24 20 13781 1218
7 5 12 4 5 31 25 13828 1265
8 2 2 4 11 12 13187 797
9 5 2 2 11 11 13000 641
10 5 2 2 11 9 15516 750
11 6 4 2 2 19 16 13891 1125
12 6 4 3 2 1 20 19 13625 1093
13 12 4 10 2 1 1 38 43 14657 2016

a This includes both data-based and event-based gateways.

1292 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

6. Related work

To the best of our knowledge, the only other attempt to
define a comprehensive formal semantics of BPMN is that
of Wong and Gibbons [22], which uses Communicating
Sequential Processes (CSP) as the target formal model.
Like our semantics can be checked by Petri net checking
tools, their semantics can be checked by CSP checking
tools such as FDR [10]. In their work, a BPMN model is
mapped to a set of CSP processes and events. Each task
object is mapped to a CSP process while the flow relations
between task objects are captured through CSP events. The
conditions for initiation of a task are encoded as possible
combinations of CSP events that need to occur for the task
to be enabled. When a task completes, it generates event
occurrences that may then combine with other event occur-
rences to initiate other tasks. The CSP models produced in
this way may be large and complex, and they do not pre-
serve the structure of the BPMN model. For example, a

simple sequence of BPMN activities is not translated as a
sequence of processes. Also, Wong and Gibbons [22] do
not show how the CSP semantics can be used to detect var-
ious types of errors.

Puhlmann and Weske [20] present the foundations of a
tool for static analysis of BPMN process models. This tool
relies on a mapping from a subset of BPMN to p-calculus.
However, this mapping only covers a small subset of
BPMN. In particular, it does not take into account error
handling, which is a key feature of BPMN. Puhlmann
and Weske also show that the p-calculus expressions pro-
duced by this tool can be used to check the soundness of
BPMN models using existing reasoning tools based on
the p-calculus, in particular using the Mobility Workbench.
Experiments show however that this approach does not
scale beyond relatively small BPMN models (less than 10
nodes), whereas our approach can cope with models at
least three times larger without being affected by efficiency
issues.

Fig. 13. Examples of BPMN process models and transformations to Petri nets.

Table 1
Evaluation results of BPMN2PNML

Model No. BPMN model Petri net model Processing times (ms)

Tasks Events XORa AND Subprocesses Messages Exceptions Places Transitions Total Transformation

1 11 2 9 2 31 34 16828 1234
2 7 4 4 4 23 21 13875 1297
3 9 8 3 2 2 35 39 14703 2031
4 4 2 2 10 10 13109 703
5 3 2 2 2 12 11 15375 734
6 4 8 4 4 24 20 13781 1218
7 5 12 4 5 31 25 13828 1265
8 2 2 4 11 12 13187 797
9 5 2 2 11 11 13000 641
10 5 2 2 11 9 15516 750
11 6 4 2 2 19 16 13891 1125
12 6 4 3 2 1 20 19 13625 1093
13 12 4 10 2 1 1 38 43 14657 2016

a This includes both data-based and event-based gateways.

1292 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

Example: Travel itinerary

163

6. Related work

To the best of our knowledge, the only other attempt to
define a comprehensive formal semantics of BPMN is that
of Wong and Gibbons [22], which uses Communicating
Sequential Processes (CSP) as the target formal model.
Like our semantics can be checked by Petri net checking
tools, their semantics can be checked by CSP checking
tools such as FDR [10]. In their work, a BPMN model is
mapped to a set of CSP processes and events. Each task
object is mapped to a CSP process while the flow relations
between task objects are captured through CSP events. The
conditions for initiation of a task are encoded as possible
combinations of CSP events that need to occur for the task
to be enabled. When a task completes, it generates event
occurrences that may then combine with other event occur-
rences to initiate other tasks. The CSP models produced in
this way may be large and complex, and they do not pre-
serve the structure of the BPMN model. For example, a

simple sequence of BPMN activities is not translated as a
sequence of processes. Also, Wong and Gibbons [22] do
not show how the CSP semantics can be used to detect var-
ious types of errors.

Puhlmann and Weske [20] present the foundations of a
tool for static analysis of BPMN process models. This tool
relies on a mapping from a subset of BPMN to p-calculus.
However, this mapping only covers a small subset of
BPMN. In particular, it does not take into account error
handling, which is a key feature of BPMN. Puhlmann
and Weske also show that the p-calculus expressions pro-
duced by this tool can be used to check the soundness of
BPMN models using existing reasoning tools based on
the p-calculus, in particular using the Mobility Workbench.
Experiments show however that this approach does not
scale beyond relatively small BPMN models (less than 10
nodes), whereas our approach can cope with models at
least three times larger without being affected by efficiency
issues.

Fig. 13. Examples of BPMN process models and transformations to Petri nets.

Table 1
Evaluation results of BPMN2PNML

Model No. BPMN model Petri net model Processing times (ms)

Tasks Events XORa AND Subprocesses Messages Exceptions Places Transitions Total Transformation

1 11 2 9 2 31 34 16828 1234
2 7 4 4 4 23 21 13875 1297
3 9 8 3 2 2 35 39 14703 2031
4 4 2 2 10 10 13109 703
5 3 2 2 2 12 11 15375 734
6 4 8 4 4 24 20 13781 1218
7 5 12 4 5 31 25 13828 1265
8 2 2 4 11 12 13187 797
9 5 2 2 11 11 13000 641
10 5 2 2 11 9 15516 750
11 6 4 2 2 19 16 13891 1125
12 6 4 3 2 1 20 19 13625 1093
13 12 4 10 2 1 1 38 43 14657 2016

a This includes both data-based and event-based gateways.

1292 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

6. Related work

To the best of our knowledge, the only other attempt to
define a comprehensive formal semantics of BPMN is that
of Wong and Gibbons [22], which uses Communicating
Sequential Processes (CSP) as the target formal model.
Like our semantics can be checked by Petri net checking
tools, their semantics can be checked by CSP checking
tools such as FDR [10]. In their work, a BPMN model is
mapped to a set of CSP processes and events. Each task
object is mapped to a CSP process while the flow relations
between task objects are captured through CSP events. The
conditions for initiation of a task are encoded as possible
combinations of CSP events that need to occur for the task
to be enabled. When a task completes, it generates event
occurrences that may then combine with other event occur-
rences to initiate other tasks. The CSP models produced in
this way may be large and complex, and they do not pre-
serve the structure of the BPMN model. For example, a

simple sequence of BPMN activities is not translated as a
sequence of processes. Also, Wong and Gibbons [22] do
not show how the CSP semantics can be used to detect var-
ious types of errors.

Puhlmann and Weske [20] present the foundations of a
tool for static analysis of BPMN process models. This tool
relies on a mapping from a subset of BPMN to p-calculus.
However, this mapping only covers a small subset of
BPMN. In particular, it does not take into account error
handling, which is a key feature of BPMN. Puhlmann
and Weske also show that the p-calculus expressions pro-
duced by this tool can be used to check the soundness of
BPMN models using existing reasoning tools based on
the p-calculus, in particular using the Mobility Workbench.
Experiments show however that this approach does not
scale beyond relatively small BPMN models (less than 10
nodes), whereas our approach can cope with models at
least three times larger without being affected by efficiency
issues.

Fig. 13. Examples of BPMN process models and transformations to Petri nets.

Table 1
Evaluation results of BPMN2PNML

Model No. BPMN model Petri net model Processing times (ms)

Tasks Events XORa AND Subprocesses Messages Exceptions Places Transitions Total Transformation

1 11 2 9 2 31 34 16828 1234
2 7 4 4 4 23 21 13875 1297
3 9 8 3 2 2 35 39 14703 2031
4 4 2 2 10 10 13109 703
5 3 2 2 2 12 11 15375 734
6 4 8 4 4 24 20 13781 1218
7 5 12 4 5 31 25 13828 1265
8 2 2 4 11 12 13187 797
9 5 2 2 11 11 13000 641
10 5 2 2 11 9 15516 750
11 6 4 2 2 19 16 13891 1125
12 6 4 3 2 1 20 19 13625 1093
13 12 4 10 2 1 1 38 43 14657 2016

a This includes both data-based and event-based gateways.

1292 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

Example: Travel itinerary

164

6. Related work

To the best of our knowledge, the only other attempt to
define a comprehensive formal semantics of BPMN is that
of Wong and Gibbons [22], which uses Communicating
Sequential Processes (CSP) as the target formal model.
Like our semantics can be checked by Petri net checking
tools, their semantics can be checked by CSP checking
tools such as FDR [10]. In their work, a BPMN model is
mapped to a set of CSP processes and events. Each task
object is mapped to a CSP process while the flow relations
between task objects are captured through CSP events. The
conditions for initiation of a task are encoded as possible
combinations of CSP events that need to occur for the task
to be enabled. When a task completes, it generates event
occurrences that may then combine with other event occur-
rences to initiate other tasks. The CSP models produced in
this way may be large and complex, and they do not pre-
serve the structure of the BPMN model. For example, a

simple sequence of BPMN activities is not translated as a
sequence of processes. Also, Wong and Gibbons [22] do
not show how the CSP semantics can be used to detect var-
ious types of errors.

Puhlmann and Weske [20] present the foundations of a
tool for static analysis of BPMN process models. This tool
relies on a mapping from a subset of BPMN to p-calculus.
However, this mapping only covers a small subset of
BPMN. In particular, it does not take into account error
handling, which is a key feature of BPMN. Puhlmann
and Weske also show that the p-calculus expressions pro-
duced by this tool can be used to check the soundness of
BPMN models using existing reasoning tools based on
the p-calculus, in particular using the Mobility Workbench.
Experiments show however that this approach does not
scale beyond relatively small BPMN models (less than 10
nodes), whereas our approach can cope with models at
least three times larger without being affected by efficiency
issues.

Fig. 13. Examples of BPMN process models and transformations to Petri nets.

Table 1
Evaluation results of BPMN2PNML

Model No. BPMN model Petri net model Processing times (ms)

Tasks Events XORa AND Subprocesses Messages Exceptions Places Transitions Total Transformation

1 11 2 9 2 31 34 16828 1234
2 7 4 4 4 23 21 13875 1297
3 9 8 3 2 2 35 39 14703 2031
4 4 2 2 10 10 13109 703
5 3 2 2 2 12 11 15375 734
6 4 8 4 4 24 20 13781 1218
7 5 12 4 5 31 25 13828 1265
8 2 2 4 11 12 13187 797
9 5 2 2 11 11 13000 641
10 5 2 2 11 9 15516 750
11 6 4 2 2 19 16 13891 1125
12 6 4 3 2 1 20 19 13625 1093
13 12 4 10 2 1 1 38 43 14657 2016

a This includes both data-based and event-based gateways.

1292 R.M. Dijkman et al. / Information and Software Technology 50 (2008) 1281–1294

Example: Travel itinerary

165

Example: Travel itinerary

166

Exercise

167

!"#$%!"&'()*"(+,-%.)%/.(0121-"!(*1.(),()13"(,$)()*1)(%2.$!12/"4(52(126(/1."'()*"(/+"!3(*1.(),(7%++(%2(1(8,.)1+(+19"+(7,!()*"(

.*%80"2)4(:,!()*%.(./"21!%,'()*"(.*,;2(%2/+$.%<"(-1)";16(%.(*"+87$+'(9"/1$."(;"(/12(.*,;()*1)(,2"(9!12/*(%.(1+;16.(

)13"2'(;*%+"()*"(,)*"!(,2"(,2+6(%7()*"("=)!1(%2.$!12/"(%.(!"#$%!"&'(9$)(5:(%)(%.()13"2'()*%.(/12(*188"2(%2(81!1++"+(),()*"(7%!.)(

9!12/*4(>"/1$."(,7()*%.(81!1++"+%.0'(;"(2""&()*"(.62/*!,2%?%2-(%2/+$.%<"(-1)";16(!%-*)(9"*%2&(@:%++(%2(1(A,.)(+19"+B(12&(

@C13"(,$)("=)!1(%2.$!12/"B4(52()*%.(./"21!%,'()*"(%2/+$.%<"(-1)";16(;%++(1+;16.(;1%)(7,!(@:%++(%2(1(A,.)(+19"+B(),(9"(

/,08+")"&'(9"/1$."()*1)(%.(1+;16.(.)1!)"&4(57(12("=)!1(%2.$!12/"(;1.(!"#$%!"&'()*"(%2/+$.%<"(-1)";16(;%++(1+.,(;1%)(7,!(

@C13"(,$)("=)!1(%2.$!12/"B(),(9"(7%2%.*"&4(:$!)*"!0,!"'(;"(1+.,(2""&()*"(.62/*!,2%?%2-(81!1++"+(-1)";16(9"7,!"()*"(+1.)(

)1.3(@1&&(818"!;,!3(12&(0,<"(81/31-"(),(8%/3(1!"1B'(9"/1$."(;"(;12)(),(013"(.$!"()*1)("<"!6)*%2-(*1.(9""2(7$+7%++"&(

9"7,!"()*"(+1.)()1.3(%.("="/$)"&4

!"# $%&'()**+',-..+/-0+1)-2

C*%.("=108+"(%.(19,$)(>$.%2"..DC,D>$.%2"..DE,++19,!1)%,24(>"/1$."(;"(;12)(),(0,&"+()*"(%2)"!1/)%,2(9");""2(1(8%??1(

/$.),0"!(12&()*"(<"2&,!("=8+%/%)+6'(;"(*1<"(/+1..%7%"&()*"0(1.(@81!)%/%812).B'()*"!"7,!"(8!,<%&%2-()*"0(;%)*(&"&%/1)"&(

8,,+.4(A+"1."(2,)"()*1)()*"!"(%.(2,(&"71$+)(."012)%/.(%2()*%.()68"(,7(0,&"+%2-'(;*%/*(0"12.(6,$(/12(0,&"+(/,++19,!1)%,2(

&%1-!10.(),(.*,;()*"(%2)"!1/)%,2(9");""2(9$.%2"..(81!)2"!.'(9$)(1+.,(?,,0(%2),(,2"(/,08126'(0,&"+%2-()*"(%2)"!1/)%,2(

9");""2(&%77"!"2)(&"81!)0"2).'()"10.(,!("<"2(.%2-+"(;,!3"!.(12&(.,7);1!"(.6.)"0.(%2(/,++19,!1)%,2(&%1-!10.4(5)(%.(),)1++6(

$8(),()*"(8$!8,."(,7()*"(0,&"+(12&()*"!"7,!"(1(&"/%.%,2()*"(0,&"+"!(*1.(),(013"'(;*")*"!(1(/,++19,!1)%,2(&%1-!10(;%)*(

&%77"!"2)(8,,+.(%.($."7$+'(,!(;*")*"!(,2"(.*,$+&(.)%/3(),(,2"(8,,+(;%)*(&%77"!"2)(+12".'(1.(.*,;2(%2()*"(8!"<%,$.(/*18)"!4(

57(;"(.)"8()*!,$-*()*"(&%1-!10'(;"(.*,$+&(.)1!)(;%)*()*"(8%??1(/$.),0"!'(;*,(*1.(2,)%/"&(*"!(.),01/*(-!,;+%2-4(C*"(

/$.),0"!()*"!"7,!"(."+"/).(1(8%??1(12&(,!&"!.(%)4(F7)"!()*1)'()*"(/$.),0"!(;1%).(7,!()*"(8%??1(),(9"(&"+%<"!"&4(C*"("<"2)(

91."&(-1)";16(17)"!()*"()1.3(@,!&"!(1(8%??1B(%2&%/1)".()*1)()*"(/$.),0"!(1/)$1++6(;1%).(7,!();,(&%77"!"2)("<"2).()*1)(/,$+&(

188"2(2"=)G(H%)"!()*"(8%??1(%.(&"+%<"!"&'(1.(%2&%/1)"&(;%)*()*"(7,++,;%2-(0"..1-"("<"2)'(,!()*"!"(%.(2,(&"+%<"!6(7,!(IJ(

''3''!!"#$%!&'(!)*!+,-./012!3145678!9'(!

4)560&'!"#7'809&0)25'+29'9&.):&0)25';)**+

#
6:
:
-
!;
<
5
=7
.
1
4

><8?4*

@74!/6::-

A101B=!-!/6::- C4D14!-!/6::-

/6::-

41B16E1D

F(!.68<=15

G5H!@74!=I1!

/6::-

#-*!=I1!/6::- +-=!=I1!/6::-

><8?14

5-=65@61D

#
6:
:
-
!E
1
8
D
7
4

/
6:
:
-
!B
I
1
@

D
1
06E
1
4*
!)
7
*

C4D14

41B16E1D

"-H1!=I1!/6::-

J106E14!=I1!

/6::-

K1B16E1!

/-*.18=

/6::-!74D14

41B16/=

.781*

/6::-

B
01
4H

LMI141!65!.*!

/6::-NO

;-0.

B<5=7.14

Translate the BPMN collaboration diagram to nets and discuss problematic issues

