
Business Processes Modelling
MPB (6 cfu, 295AA)

Roberto Bruni
http://www.di.unipi.it/~bruni

22 - Diagnosis for WF nets

 1

http://www.di.unipi.it/~bruni

Object

2

We study suitable diagnosis techniques
for unsound Workflow nets

Diagnosing workflow processes using Woflan (article, optional reading)
http://wwwis.win.tue.nl/~wvdaalst/publications/p135.pdf

http://wwwis.win.tue.nl/~wvdaalst/publications/p135.pdf

S-Coverability

3

4

what are S-components?
and why are they relevant?

Woped

5

Theorem:
A free-choice system (P,T,F,M0) is live and bounded

iff
1. it has at least one place and one transition
2. it is connected
3. M0 marks every proper siphon
4. it has a positive S-invariant
5. it has a positive T-invariant
6. rank(N) = |CN| - 1

(where CN is the set of clusters)

Rank Theorem
(main result, proof omitted)

A technique to find
a positive S-invariant

6

A case is often composed by parallel threads of control
(each thread imposing some order over its tasks)

Decompose the net N in suitable S-nets
so that any place of N belongs to some S-net
(the same place can appear in more S-nets)

Each S-net induces a uniform S-invariant

A positive S-invariant is obtained
as the sum of the S-invariants of each subnet

Subnet

7

Definition: Let N = (P, T, F) and ⇧ ⇤ X ⇥ P ⌃ T
Let N � = (P ⌥X,T ⌥X,F ⌥ (X �X)) be a subnet of N .
N � is an S-component if

1. it is a strongly connected S-net

2. for every place p ⌅ X ⌥ P , we have •p ⌃ p• ⇥ X

take a set of nodes

forget the arcs to other nodes

S-component

8

Definition: Let N = (P, T, F) and ⇧ ⇤ X ⇥ P ⌃ T
Let N � = (P ⌥X,T ⌥X,F ⌥ (X �X)) be a subnet of N .
N � is an S-component if

1. it is a strongly connected S-net

2. for every place p ⌅ X ⌥ P , we have •p ⌃ p• ⇥ X

take a set of nodes

if a place p is taken
then all transitions attached to p must be selected

forget the arcs to other nodes

S-component: example

9

!"# $%&'()*# +,# -%)# $./)*&0121(3# -%).*)45#

not an S-net

? ?

?

if a place p is taken
then all transitions attached to p must be selected

S-component: example

10

!"# $%&'()*# +,# -%)# $./)*&0121(3# -%).*)45#

!"# $%&'()*# +,# -%)# $./)*&0121(3# -%).*)45#

? ?

?

if a place p is taken
then all transitions attached to p must be selected

S-component: example

11

!"# $%&'()*# +,# -%)# $./)*&0121(3# -%).*)45#

!"# $%&'()*# +,# -%)# $./)*&0121(3# -%).*)45#

S-component

if a place p is taken
then all transitions attached to p must be selected

S-net
+

strongly connected

S-cover

12

Definition: an S-cover of a net N
is a set C of S-components of N such that

every place p of N belongs to one or more S-components in C

N is S-coverable if it has an S-cover

S-cover: example

13

!"# $%&'()*# +,# -%)# $./)*&0121(3# -%).*)45#
!"# $%&'()*# +,# -%)# $./)*&0121(3# -%).*)45#

!"# $%&'()*# +,# -%)# $./)*&0121(3# -%).*)45#

? ?

?

S-component

if a place p is taken
then all transitions attached to p must be selected

S-cover: example

14

!"# $%&'()*# +,# -%)# $./)*&0121(3# -%).*)45#
!"# $%&'()*# +,# -%)# $./)*&0121(3# -%).*)45#

!"# $%&'()*# +,# -%)# $./)*&0121(3# -%).*)45#

S-componentS-component

if a place p is taken
then all transitions attached to p must be selected

S-net
+

strongly connected

S-cover: example

15

!"# $%&'()*# +,# -%)# $./)*&0121(3# -%).*)45#
!"# $%&'()*# +,# -%)# $./)*&0121(3# -%).*)45#

!"# $%&'()*# +,# -%)# $./)*&0121(3# -%).*)45#

S-componentS-component

covered by S-components

S-cover: example

16

!"# $%&'()*# +,# -%)# $./)*&0121(3# -%).*)45#
!"# $%&'()*# +,# -%)# $./)*&0121(3# -%).*)45#

S-componentS-component

S-cover

I1=[1 1 1 1] I2=[1 1 1 1]

S-invariants

17

Any S-invariant of an S-component
induces an S-invariant for the whole net

(it is enough to assign weight 0 to
all places not covered by the S-component)

S-cover: example

18

!"# $%&'()*# +,# -%)# $./)*&0121(3# -%).*)45#
!"# $%&'()*# +,# -%)# $./)*&0121(3# -%).*)45#

!"# $%&'()*# +,# -%)# $./)*&0121(3# -%).*)45#

I1=[1 0 1 0 1 0 1 0] I2=[0 1 0 1 0 1 0 1]

S-cover: example

19

!"# $%&'()*# +,# -%)# $./)*&0121(3# -%).*)45#

I1+I2=[1 1 1 1 1 1 1 1]

positive S-invariant

I1=[1 0 1 0 1 0 1 0] I2=[0 1 0 1 0 1 0 1]

S-coverability theorem

20

Theorem: If a free-choice system is live and bounded
then it is S-coverable

(proof omitted)

Consequence:
free-choice + not S-coverable => not (live and bounded)

S-Coverability diagnosis

21

N is sound iff N* is live and bounded (Main Theorem)
N is free-choice iff N* is free-choice

If N* is free-choice, live and bounded
it must be S-coverable (S-coverability theorem)

Corollary: If N is sound and free-choice,
then N* must be S-coverable

N free-choice + N* not S-coverable => N not sound

S-cover for N* ?

22

WoPeD Diagnosis

23

N* is free-choice
but not S-coverable

thus
N is not sound

Be careful

24

reset transition is implicit in WoPeD

WoPeD shows S-components for N*
(not for N)

Compositionality of
sound free-choice nets

25

Lemma:
If a free-choice workflow net N is sound

then it is safe

(because N* is S-coverable and M0=i has just one token)

Proposition:
If N and N’ are sound free-choice workflow nets
then N[N’/t] is a sound free-choice workflow net

(N, N’ are safe; we just need to show that N[N’/t] is free-choice)

Well-structuredness
(PT/TP-handles)

26

27

what are PT/TP-handles?
and why are they relevant?

Woped

28

Two parallel flows initiated by an AND-split
should not be joined by a XOR-join

(multiple tokens can appear in the same place)

TP-handles

t pAND-split XOR-join

TP-handles

29

Definition:
A transition and a place form a TP-handle

if there are
two distinct elementary paths and from to

such that the only nodes they have in common are ,

t p

π1 π2 t p
t p

Example: TP-handle

30

t

p

π1

π2

31

Two alternative flows created via a XOR-split
should not be synchronized by an AND-join

(the net could deadlock)

PT-handles

XOR-split AND-joinp t

PT-handles

32

Definition:
A place and a transition form a PT-handle

if there are
two distinct elementary paths and from to

such that the only nodes they have in common are ,

p t

π1 π2 p t
p t

Example: PT-handle

33

t

p π1

π2

Well-Structured Nets

34

Definition: A net is well-handled if
it has neither TP-handles nor PT-handles

Definition: A workflow net N is well-structured if
N* is well-handled

Be careful

35

N well-structured = N* well-handled

reset transition is implicit in WoPeD

WoPeD marks PT/TP-handles over N*
(not over N)

WoPeD Diagnosis

36

p

t

WoPeD Diagnosis

37

π1

p

t

WoPeD Diagnosis

38

reset π2

π1

p

t

Well-structuredness,
S-coverability and

Soundness

39

Theorem: If N is sound and well-structured,
then N* is S-coverable

(proof omitted)

Consequence:
N well-structured + N* not S-coverable => N not sound

Error sequences

40

Woflan
http://www.win.tue.nl/woflan/

41

WOrkFLow ANalyzer
(Microsoft Windows only)

Woflan tells us if N is a sound workflow net
(Is N a workflow net? Is N* bounded? Is N* live?)

if not, provides some diagnostic information

http://www.win.tue.nl/woflan/

Woflan now a ProM plugin
http://promtools.org/

42

http://promtools.org/

43

Woflan (in ProM)

what are the reasons for these suggestions?

Diagnostic information

44

The sets of:
unbounded places of N*

dead transitions of N*
non-live transitions of N*

may provide useful information for
the diagnosis of behavioural errors

Unfortunately, this information is not always sufficient
to determine the exact cause of the error

Behavioural error sequences help us to locate problems

Error sequences

45

Rationale:
We want to find firing sequences such that:

1. every continuation of such sequences will lead to an error

2. they are as short as possible
(none of their prefixes satisfies the above property)

Informally:
error sequences are scenarios that capture

the essence of errors made in the workflow design
(violate “option to complete” or “proper completion”)

Error sequences:
Non-live sequences

46

Non-Live sequences:
informally

47

A non-live sequence is a
firing sequence as short as possible

such that completion of the case is no longer possible

i.e. a witness for transition reset being non-live in N*

Non-Live sequences:
fundamental property

48

Let N be such that:
N* is bounded

N (or equivalently N*) has no dead task

Then, N* is live
iff

N has no non-live sequences

Non-Live sequences:
graphically

49

The analysis is possible in bounded systems only

Compute the RG of N*
Color in red all nodes from which there is no path to o

Color in green all nodes from which all paths lead to o

Color in yellow all remaining nodes
(some but not all paths lead to o)

Example: N

50

Example: RG (N)

51

DIAGNOSING WORKFLOW PROCESSES USING WOFLAN 17

iff Mn ⇥ HR and Mn�1 ⇥ HY . A firing sequence of a WF

system is called non-live iff it is derived from a non-live oc-

currence sequence.

The most valuable information in a non-live sequence is

the combination of its last two markings (Mn�1 ⇥ HY and

Mn ⇥ HR) and its last transition (tn�1). The only interest
we have in the sequence’s prefix ([i]t0M1 . . . tn�2) is that it
gives us a path which leads to the last-but-one marking. Note

that we have excluded firing sequences containing cycles (by

requiring that all markings in a non-live sequence must be

distinct); cycles do not provide any additional useful infor-

mation. Also note that it is possible that several non-live

sequences have the same suffix Mn�1tn�1Mn .

THEOREM 4.10. (Non-live sequences vs. liveness) Let S

be a WF system without dead transitions such that the short-

circuited system S is bounded. Then, S is live iff S has no

non-live sequences.

Proof. The theorem follows immediately from Theorem 4.9

(Liveness of bounded short-circuited WF systems) and Def-

inition 4.5 (Non-live sequences).

Note that, based on Theorem 4.1, Theorem 4.10 can alter-

natively be formulated as follows. If S = (N , [i]) is a WF

system without dead transitions such that the short-circuited

system S is bounded, then N is sound iff S has no non-live

sequences.

FIGURE 12. WF net N1

As an example, consider the WF net N1 of Figure 12. It

is a variant of WF net N of Figure 1 with an extra arc from

place c8 to transition archive. The OG of S1=(N1, [i])

is shown in Figure 13. The meaning of the thick arcs is ex-

plained in the next section. Clearly, S1 has no dead tran-

sitions. Since the OG of S1=(N1, [i]) is simply the graph

in Figure 13 extended with the arc ([o], shortcircuit,

[i]), where shortcircuit is the short-circuiting transi-

tion, we see that S1 is bounded. Figure 13 also shows the

partitioning of the OG of S1 according to Definition 4.4. We

FIGURE 13. The OG of S1 partitioned for non-live sequences

can deduce, among others, the following five non-live se-

quences:

(i). register send timeout,

(ii). register send dont timeout,

(iii). register send rec do,

(iv). register send do, and

(v). register do.

Since S1 has non-live sequences, we can deduce from The-

orem 4.10 that S1 is not live, which means that N1 is not

sound. It is also possible to arrive at this conclusion by in-

vestigating the OG of S1. Since it contains deadlock mark-

ing [c4,c5], it follows that all transitions of S1 are non-live.

Unfortunately, the information that all transitions are non-

live is not sufficiently specific to be useful. By examining

the above five non-live sequences, we can obtain more de-

tailed information. Note that non-live sequence (ii) provides

almost the same information as sequence (i). Together, they

show that the combination send and timeout is the pos-

sible cause of an error and that dont is not important. From

sequence (i), we conclude that, whatever happens, place c8

does not get a token. As a result, transitions process and

archive cannot fire. The sequences (iii), (iv), and (v) pro-

vide the information that firing transition do always results

in an error. We may conclude that the cycle to which do

leads might cause a problem. For now, we do not go into

details about possible solutions to correct the errors.

4.4.5. Unbounded sequences

Intuitively, an unbounded sequence is a firing sequence of a

WF system of minimal length such that every continuation

implies a violation of the proper-completion requirement of

Definition 4.2. Such a violation can have two causes. The

first one is the most straightforward one. Clearly, proper

completion is violated if a reachable marking is strictly

greater than the marking [o] that signals proper completion.

The second cause is more implicit. If a WF system is un-

bounded, then the proper-completion requirement is also vi-

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

Non-live sequences:

register, do

register, send, do

register, send, timeout

register, send, rec, do

register, send, dont, timeout
register, dont, send, timeout

52

Woflan (in ProM)

Error sequences:
Unbounded sequences

53

Unbounded sequences:
informally

54

An unbounded sequence is a
firing sequence of minimal length such that

every continuation invalidates proper completion

i.e. a witness for unboundedness

Unbounded sequences:
fundamental property

55

N* is bounded
iff

N has no unbounded sequences

Undesired markings:
infinite-weighted markings or markings greater than o

Unbounded sequences:
graphically

56

Compute the CG of N*

Color in green all nodes from which
undesired markings are not reachable

Color in red all nodes from which
no green marking is reachable

(undesired markings are unavoidable)

Color in yellow all remaining nodes
(undesired markings are reachable but avoidable)

Example: N

57

Example: N*

58

8 H. VERBEEK, T. BASTEN AND W. VAN DER AALST

FIGURE 8. The CG for the short-circuited system S

workflow processes. Cases are often generated by an exter-

nal customer. However, it is also possible that a case is gen-

erated by another department within the same organization

(internal customer). A typical example of a process that is

not case-based, and hence not a workflow process, is a pro-

duction process such as the assembly of bicycles. The task

of putting a tire on a wheel is (generally) independent of the

specific bicycle for which the wheel will be used. Note that

the production of bicycles to order, i.e., procurement, pro-

duction, and assembly are driven by individual orders, can

be considered as a workflow process.

The goal of workflow management is to handle cases as

efficient and effective as possible. A workflow process is

designed to handle large numbers of similar cases. Handling

one customer complaint usually does not differ much from

handling another customer complaint. The basis of a work-

flow process is the workflow process definition. This process

definition specifies which tasks need to be executed in what

order. Alternative terms for workflow process definition are:

‘procedure’, ‘workflow schema’, ‘flow diagram’, and ‘rout-

ing definition’. Tasks are ordered by specifying for each task

the conditions that need to be fulfilled before it may be ex-

ecuted. In addition, it is specified which conditions are ful-

filled by executing a specific task. Thus, a partial ordering of

tasks is obtained. In a workflow process definition, standard

routing elements are used to describe sequential, alternative,

parallel, and iterative routing thus specifying the appropri-

ate route of a case. The workflow management coalition

(WfMC) has standardized a few basic building blocks for

constructing workflow process definitions [29]. A so-called

OR-split is used to specify a choice between several alter-

natives; an OR-join specifies that several alternatives in the

workflow process definition come together. An AND-split

and an AND-join can be used to specify the beginning and

the end of parallel branches in the workflow process defini-

tion. The routing decisions in OR-splits are often based on

data such as the age of a customer, the department responsi-

ble, or the contents of a letter from the customer.

Many cases can be handled by following the same work-

flow process definition. As a result, the same task has to

be executed for many cases. A task that needs to be exe-

cuted for a specific case is called a work item. An example

of a work item is the order to execute task ‘send refund form

to customer’ for case ‘complaint of customer Baker’. Most

work items need a resource in order to be executed. A re-

source is either a machine (e.g., a printer or a fax) or a per-

son (participant, worker, or employee). Besides a resource,

a work item often needs a trigger. A trigger specifies who

or what initiates the execution of a work item. Often, the

trigger for a work item is the resource that must execute the

work item. Other common triggers are external triggers and

time triggers. An example of an external trigger is an incom-

ing phone call of a customer; an example of a time trigger is

the expiration of a deadline. A work item that is being ex-

ecuted is called an activity. If we take a photograph of the

state of a workflow, we see cases, work items, and activities.

Work items link cases and tasks. Activities link cases, tasks,

triggers, and resources.

A thorough investigation of the business processes in a

company that results in a complete set of efficient and ef-

fective workflow processes is the basis of the successful in-

troduction of a workflow system. Formal (qualitative and

quantitative) verification can be a useful aid in obtaining the

desired effectiveness and efficiency.

3.2. Workflow perspectives and abstraction

In the previous subsection, we introduced the workflow con-

cepts used in the remainder of this paper. Workflow man-

agement has many aspects and typically involves many dis-

ciplines. The verification tool presented in this paper fo-

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

Example: CG (N*)

59

Restricted coverability
graph (RCG)

60

CG can become very large

Basic observation:
infinite-weighted markings leads to infinite-weighted markings

and they will be all red

We can just avoid computing them!

Example:
Restricted CG vs CG

61

8 H. VERBEEK, T. BASTEN AND W. VAN DER AALST

FIGURE 8. The CG for the short-circuited system S

workflow processes. Cases are often generated by an exter-

nal customer. However, it is also possible that a case is gen-

erated by another department within the same organization

(internal customer). A typical example of a process that is

not case-based, and hence not a workflow process, is a pro-

duction process such as the assembly of bicycles. The task

of putting a tire on a wheel is (generally) independent of the

specific bicycle for which the wheel will be used. Note that

the production of bicycles to order, i.e., procurement, pro-

duction, and assembly are driven by individual orders, can

be considered as a workflow process.

The goal of workflow management is to handle cases as

efficient and effective as possible. A workflow process is

designed to handle large numbers of similar cases. Handling

one customer complaint usually does not differ much from

handling another customer complaint. The basis of a work-

flow process is the workflow process definition. This process

definition specifies which tasks need to be executed in what

order. Alternative terms for workflow process definition are:

‘procedure’, ‘workflow schema’, ‘flow diagram’, and ‘rout-

ing definition’. Tasks are ordered by specifying for each task

the conditions that need to be fulfilled before it may be ex-

ecuted. In addition, it is specified which conditions are ful-

filled by executing a specific task. Thus, a partial ordering of

tasks is obtained. In a workflow process definition, standard

routing elements are used to describe sequential, alternative,

parallel, and iterative routing thus specifying the appropri-

ate route of a case. The workflow management coalition

(WfMC) has standardized a few basic building blocks for

constructing workflow process definitions [29]. A so-called

OR-split is used to specify a choice between several alter-

natives; an OR-join specifies that several alternatives in the

workflow process definition come together. An AND-split

and an AND-join can be used to specify the beginning and

the end of parallel branches in the workflow process defini-

tion. The routing decisions in OR-splits are often based on

data such as the age of a customer, the department responsi-

ble, or the contents of a letter from the customer.

Many cases can be handled by following the same work-

flow process definition. As a result, the same task has to

be executed for many cases. A task that needs to be exe-

cuted for a specific case is called a work item. An example

of a work item is the order to execute task ‘send refund form

to customer’ for case ‘complaint of customer Baker’. Most

work items need a resource in order to be executed. A re-

source is either a machine (e.g., a printer or a fax) or a per-

son (participant, worker, or employee). Besides a resource,

a work item often needs a trigger. A trigger specifies who

or what initiates the execution of a work item. Often, the

trigger for a work item is the resource that must execute the

work item. Other common triggers are external triggers and

time triggers. An example of an external trigger is an incom-

ing phone call of a customer; an example of a time trigger is

the expiration of a deadline. A work item that is being ex-

ecuted is called an activity. If we take a photograph of the

state of a workflow, we see cases, work items, and activities.

Work items link cases and tasks. Activities link cases, tasks,

triggers, and resources.

A thorough investigation of the business processes in a

company that results in a complete set of efficient and ef-

fective workflow processes is the basis of the successful in-

troduction of a workflow system. Formal (qualitative and

quantitative) verification can be a useful aid in obtaining the

desired effectiveness and efficiency.

3.2. Workflow perspectives and abstraction

In the previous subsection, we introduced the workflow con-

cepts used in the remainder of this paper. Workflow man-

agement has many aspects and typically involves many dis-

ciplines. The verification tool presented in this paper fo-

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

DIAGNOSING WORKFLOW PROCESSES USING WOFLAN 19

Figure 3 depicted in Figure 8 with the RCG of Figure 14.

For this simple example, the RCG is approximately half the

size of the CG. Note that if a system is bounded the RCG-

generation algorithm and the CG-generation algorithm both

yield the OG of the system.

FIGURE 14. The RCG of the short-circuited example net

It is straightforward to see that an RCG can be used to

compute the unbounded sequences of a WF system. Con-

sider the partitioning of a CG given in Definition 4.6. Since

infinite markings are always red, it is clear that successors of

infinite markings are also red. Therefore, the part of a CG

that is omitted in an RCG is not used when constructing un-

bounded sequences. This means that unbounded sequences

can be computed by applying the partitioning of Definition

4.6 to an RCG.

The idea to restrict a CG of a system to an RCG is similar

to one of the ideas behind the notion of an MCG (minimal

CG) of [21]. In general, an RCG of a system is still larger

than its MCG. Unfortunately, the MCG of a WF system is

not suitable for computing unbounded sequences. For more

details, the interested reader is referred to [21].

Figure 15 shows the partitioned RCG of the example sys-

tem S of Figure 2. Note that this RCG is the OG of S, be-

cause S is bounded. S has among others the following un-

bounded sequences:

(i). register send rec dont and

(ii). register send dont rec.

These two sequences show that firing the combination of

rec and dont inevitably leads to unboundedness of the

short-circuited system. The reason is that rec puts a to-

ken in place c8, whereas firing dont removes the option to

remove this token via transition process.

5. WOFLAN

This section describes Woflan (WOrkFLow ANalyzer, see

http://www.tm.tue.nl/it/woflan) version 2.1. Woflan is a tool

FIGURE 15. The RCG partitioned for unboundedness

that analyzes workflow process definitions specified in terms

of Petri nets. It has been designed to verify process defi-

nitions that are downloaded from a workflow management

system, as explained in Section 3.3. As indicated in the in-

troduction, there is a clear need for such a verification tool.

Based on some of the results presented in the previous sec-

tion, the development of the tool Woflan started at the end of

1996 and the first version was released in 1997 [8]. Basi-

cally, Woflan takes a workflow process definition imported

from some workflow product, translates it into a P/T net, and

tells whether or not the net is a sound WF net. Furthermore,

using some standard P/T net-analysis techniques as well as

those tailored to WF nets presented in the previous section,

the tool provides diagnostic information about the net in case

it is not a soundWF net. Woflan implements a predefined di-

agnosis process illustrated in Figure 16. The diagnosis pro-

cess is in fact a workflow process modeled in Protos [31]. In

the next subsection, the diagnosis process of Figure 16 is ex-

plained in detail. In Section 5.2, the P/T net of Figure 1 is

analyzed by means ofWoflan. Version 2.1 ofWoflan extends

version 1.0 as described in [8] with some new analysis tech-

niques of which the technique of behavioral error sequences

is the most important one, with a predefined, detailed diag-

nosis process that uses a new, workflow-oriented nomencla-

ture, and with an import facility for COSA, Staffware, ME-

TEOR, and Protos. A brief overview of the material of this

section was presented at the 2000 International Conference

on Application and Theory of Petri nets [45].

5.1. Diagnosis process

In Sections 2 and 4, we have seen a wide range of analysis

techniques for P/T nets in general and WF nets in particu-

lar. The goal is to apply these techniques in the analysis of

workflow processes in a logical and meaningful order, and

to distill useful diagnostic information from the analysis re-

sults in case of errors in the workflow. The diagnosis process

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????

Example: RCG (N*)

62

Unbounded sequences:

register, dont, send, rec
register, send, dont, rec

register, send, rec, dont

63

Woflan (in ProM)

Practice with WoPeD
(and Woflan)

64

Analyse this net

65

Analyse this net

66

Is this net free-choice?

67

Is this net S-coverable?

68

Is this net sound?

69

