
Methods for the specification and
verification of business processes

MPB (6 cfu, 295AA)

Roberto Bruni
http://www.di.unipi.it/~bruni

23 - Business process execution
language

1

http://www.di.unipi.it/~bruni

Object

2

We overview the key features of BPEL

Material inspired in part to Antonio Brogi’s slides on Software Services: thanks!

Business process
execution language

3

Also known as:
Web Services Business Process Execution Language

(WS-BPEL)
Business Process Execution Language for Web Services

(BPEL4WS)

a standard executable language for the orchestration
of Web Service within business processes

it deals with import / export information, remote invocation,
correlation, fault handling, compensation

http://en.wikipedia.org/wiki/Business_process

Web services

4

Web services fix a standard for interoperability
between heterogeneous, loosely coupled, remote

software applications
(separately developed, running on different platforms)

over (not only) the HTTP protocol

Informally:
web services are for software
what web sites are for human

WS basics

5

Services must be made available on the web
(need a server)

Services must be advertised over the web
(need some repositories)

Service repositories must be queried
(need service descriptions)

Services must be invoked
(need standard communication format)

XMLification

6

Network

XML based messaging

Service description

Service publication

Service discovery

Service composition

HTTP, HTTPS, SMTP

SOAP

WSDL

UDDI

WSFL, BPEL, ...

{

Birth of BPEL

7

IBM was pushing for a standard called WSFL

Microsoft was pushing for a technology called XLANG

Intalio was pushing for BPML

IBM and Microsoft merged their efforts and pushed together
for BPEL (a hybrid WSFL+XLANG)
and BPEL was soon widely adopted

Life of BPEL

8

BPEL4WS 1.0 (2002) by BEA, IBM, Microsoft

SAP + Siebel joined the effort
BPEL 1.1 (2003)

submitted to OASIS

Adobe + HP + NEC + Oracle + Sun + many more joined
WS-BPEL 2.0 (2005)

The problem with BPEL

9

BPEL is not a graphical language

BPEL is an XML dialect

Machines like XML,
human beings not necessarily…

Turn to page 4 of any BPEL tutorial
(the first couple of pages are just a verbal introduction)

and you find the first small example...

... of about two pages of formatted XML code

10

BPELexample.xml Page 1 of 2

1

!

!

2

3

4

5

6

7

8

!

9

!

10

!

11

!

12

13

14

15

16

17

!

18

19

20

21

22

23

!

24

!

!

25

26

27

28

29

!

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

!

!

<process name="purchaseOrderProcess" targetNamespace="http://example.com/ws-bp/
purchase" xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/executable"
xmlns:lns="http://manufacturing.org/wsdl/purchase">

 <documentation xml:lang="EN">
 A simple example of a WS-BPEL process for handling a purchase order.
 </documentation>

 <partnerLinks>
 <partnerLink name="purchasing" partnerLinkType="lns:purchasingLT"
myRole="purchaseService" />
 <partnerLink name="invoicing" partnerLinkType="lns:invoicingLT"
myRole="invoiceRequester" partnerRole="invoiceService" />
 <partnerLink name="shipping" partnerLinkType="lns:shippingLT"
myRole="shippingRequester" partnerRole="shippingService" />
 <partnerLink name="scheduling" partnerLinkType="lns:schedulingLT"
partnerRole="schedulingService" />
 </partnerLinks>

 <variables>
 <variable name="PO" messageType="lns:POMessage" />
 <variable name="Invoice" messageType="lns:InvMessage" />
 <variable name="shippingRequest"
messageType="lns:shippingRequestMessage" />
 <variable name="shippingInfo" messageType="lns:shippingInfoMessage" />
 <variable name="shippingSchedule" messageType="lns:scheduleMessage" />
 </variables>

 <faultHandlers>
 <catch faultName="lns:cannotCompleteOrder" faultVariable="POFault"
faultMessageType="lns:orderFaultType">
 <reply partnerLink="purchasing" portType="lns:purchaseOrderPT"
operation="sendPurchaseOrder" variable="POFault"
faultName="cannotCompleteOrder" />
 </catch>
 </faultHandlers>

 <sequence>
 <receive partnerLink="purchasing" portType="lns:purchaseOrderPT"
operation="sendPurchaseOrder" variable="PO" createInstance="yes">
 <documentation>Receive Purchase Order</documentation>
 </receive>

 <flow>
 <documentation>
 A parallel flow to handle shipping, invoicing and scheduling
 </documentation>
 <links>
 <link name="ship-to-invoice" />
 <link name="ship-to-scheduling" />
 </links>
 <sequence>
 <assign>
 <copy>
 <from>$PO.customerInfo</from>
 <to>$shippingRequest.customerInfo</to>
 </copy>
 </assign>
 <invoke partnerLink="shipping" portType="lns:shippingPT"

BPELexample.xml Page 2 of 2

48

!

!

49

50

51

52

53

54

!

55

56

57

58

59

60

61

62

!

63

64

65

66

67

!

68

69

70

71

72

73

74

75

!

76

77

78

!

79

80

81

82

83

!

84

85

86

87

88

89

90

91

92

93

!

94

95

96

operation="requestShipping" inputVariable="shippingRequest"
outputVariable="shippingInfo">
 <documentation>Decide On Shipper</documentation>
 <sources>
 <source linkName="ship-to-invoice" />
 </sources>
 </invoke>
 <receive partnerLink="shipping" portType="lns:shippingCallbackPT"
operation="sendSchedule" variable="shippingSchedule">
 <documentation>Arrange Logistics</documentation>
 <sources>
 <source linkName="ship-to-scheduling" />
 </sources>
 </receive>
 </sequence>
 <sequence>
 <invoke partnerLink="invoicing" portType="lns:computePricePT"
operation="initiatePriceCalculation" inputVariable="PO">
 <documentation>
 Initial Price Calculation
 </documentation>
 </invoke>
 <invoke partnerLink="invoicing" portType="lns:computePricePT"
operation="sendShippingPrice" inputVariable="shippingInfo">
 <documentation>
 Complete Price Calculation
 </documentation>
 <targets>
 <target linkName="ship-to-invoice" />
 </targets>
 </invoke>
 <receive partnerLink="invoicing" portType="lns:invoiceCallbackPT"
operation="sendInvoice" variable="Invoice" />
 </sequence>
 <sequence>
 <invoke partnerLink="scheduling" portType="lns:schedulingPT"
operation="requestProductionScheduling" inputVariable="PO">
 <documentation>
 Initiate Production Scheduling
 </documentation>
 </invoke>
 <invoke partnerLink="scheduling" portType="lns:schedulingPT"
operation="sendShippingSchedule" inputVariable="shippingSchedule">
 <documentation>
 Complete Production Scheduling
 </documentation>
 <targets>
 <target linkName="ship-to-scheduling" />
 </targets>
 </invoke>
 </sequence>
 </flow>
 <reply partnerLink="purchasing" portType="lns:purchaseOrderPT"
operation="sendPurchaseOrder" variable="Invoice">
 <documentation>Invoice Processing</documentation>
 </reply>
 </sequence>
</process>

11

BPELexample.xml Page 1 of 2

1

!

!

2

3

4

5

6

7

8

!

9

!

10

!

11

!

12

13

14

15

16

17

!

18

19

20

21

22

23

!

24

!

!

25

26

27

28

29

!

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

!

!

<process name="purchaseOrderProcess" targetNamespace="http://example.com/ws-bp/
purchase" xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/executable"
xmlns:lns="http://manufacturing.org/wsdl/purchase">

 <documentation xml:lang="EN">
 A simple example of a WS-BPEL process for handling a purchase order.
 </documentation>

 <partnerLinks>
 <partnerLink name="purchasing" partnerLinkType="lns:purchasingLT"
myRole="purchaseService" />
 <partnerLink name="invoicing" partnerLinkType="lns:invoicingLT"
myRole="invoiceRequester" partnerRole="invoiceService" />
 <partnerLink name="shipping" partnerLinkType="lns:shippingLT"
myRole="shippingRequester" partnerRole="shippingService" />
 <partnerLink name="scheduling" partnerLinkType="lns:schedulingLT"
partnerRole="schedulingService" />
 </partnerLinks>

 <variables>
 <variable name="PO" messageType="lns:POMessage" />
 <variable name="Invoice" messageType="lns:InvMessage" />
 <variable name="shippingRequest"
messageType="lns:shippingRequestMessage" />
 <variable name="shippingInfo" messageType="lns:shippingInfoMessage" />
 <variable name="shippingSchedule" messageType="lns:scheduleMessage" />
 </variables>

 <faultHandlers>
 <catch faultName="lns:cannotCompleteOrder" faultVariable="POFault"
faultMessageType="lns:orderFaultType">
 <reply partnerLink="purchasing" portType="lns:purchaseOrderPT"
operation="sendPurchaseOrder" variable="POFault"
faultName="cannotCompleteOrder" />
 </catch>
 </faultHandlers>

 <sequence>
 <receive partnerLink="purchasing" portType="lns:purchaseOrderPT"
operation="sendPurchaseOrder" variable="PO" createInstance="yes">
 <documentation>Receive Purchase Order</documentation>
 </receive>

 <flow>
 <documentation>
 A parallel flow to handle shipping, invoicing and scheduling
 </documentation>
 <links>
 <link name="ship-to-invoice" />
 <link name="ship-to-scheduling" />
 </links>
 <sequence>
 <assign>
 <copy>
 <from>$PO.customerInfo</from>
 <to>$shippingRequest.customerInfo</to>
 </copy>
 </assign>
 <invoke partnerLink="shipping" portType="lns:shippingPT"

BPELexample.xml Page 2 of 2

48

!

!

49

50

51

52

53

54

!

55

56

57

58

59

60

61

62

!

63

64

65

66

67

!

68

69

70

71

72

73

74

75

!

76

77

78

!

79

80

81

82

83

!

84

85

86

87

88

89

90

91

92

93

!

94

95

96

operation="requestShipping" inputVariable="shippingRequest"
outputVariable="shippingInfo">
 <documentation>Decide On Shipper</documentation>
 <sources>
 <source linkName="ship-to-invoice" />
 </sources>
 </invoke>
 <receive partnerLink="shipping" portType="lns:shippingCallbackPT"
operation="sendSchedule" variable="shippingSchedule">
 <documentation>Arrange Logistics</documentation>
 <sources>
 <source linkName="ship-to-scheduling" />
 </sources>
 </receive>
 </sequence>
 <sequence>
 <invoke partnerLink="invoicing" portType="lns:computePricePT"
operation="initiatePriceCalculation" inputVariable="PO">
 <documentation>
 Initial Price Calculation
 </documentation>
 </invoke>
 <invoke partnerLink="invoicing" portType="lns:computePricePT"
operation="sendShippingPrice" inputVariable="shippingInfo">
 <documentation>
 Complete Price Calculation
 </documentation>
 <targets>
 <target linkName="ship-to-invoice" />
 </targets>
 </invoke>
 <receive partnerLink="invoicing" portType="lns:invoiceCallbackPT"
operation="sendInvoice" variable="Invoice" />
 </sequence>
 <sequence>
 <invoke partnerLink="scheduling" portType="lns:schedulingPT"
operation="requestProductionScheduling" inputVariable="PO">
 <documentation>
 Initiate Production Scheduling
 </documentation>
 </invoke>
 <invoke partnerLink="scheduling" portType="lns:schedulingPT"
operation="sendShippingSchedule" inputVariable="shippingSchedule">
 <documentation>
 Complete Production Scheduling
 </documentation>
 <targets>
 <target linkName="ship-to-scheduling" />
 </targets>
 </invoke>
 </sequence>
 </flow>
 <reply partnerLink="purchasing" portType="lns:purchaseOrderPT"
operation="sendPurchaseOrder" variable="Invoice">
 <documentation>Invoice Processing</documentation>
 </reply>
 </sequence>
</process>

Learning the syntax

12

Learning BPEL by looking at XML documents

is like

learning Petri nets by looking at PNML documents

or similar to

learning Java by looking at the bytecode

13

PNMLnet.xml Page 1 of 4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

<?xml version="1.0" encoding="UTF-8"?><pnml>
 <net type="http://www.informatik.hu-berlin.de/top/pntd/ptNetb" id="noID">
 <place id="p6">
 <name>
 <text>p6</text>
 <graphics>
 <offset x="430" y="270"/>
 </graphics>
 </name>
 <graphics>
 <position x="430" y="230"/>
 <dimension x="40" y="40"/>
 </graphics>
 </place>
 <place id="p5">
 <name>
 <text>p5</text>
 <graphics>
 <offset x="300" y="320"/>
 </graphics>
 </name>
 <graphics>
 <position x="300" y="280"/>
 <dimension x="40" y="40"/>
 </graphics>
 </place>
 <place id="p4">
 <name>
 <text>p4</text>
 <graphics>
 <offset x="180" y="320"/>
 </graphics>
 </name>
 <graphics>
 <position x="180" y="280"/>
 <dimension x="40" y="40"/>
 </graphics>
 </place>
 <place id="p3">
 <name>
 <text>p3</text>
 <graphics>
 <offset x="300" y="220"/>
 </graphics>
 </name>
 <graphics>
 <position x="300" y="180"/>
 <dimension x="40" y="40"/>
 </graphics>
 </place>
 <place id="p2">
 <name>
 <text>p2</text>
 <graphics>
 <offset x="180" y="220"/>
 </graphics>
 </name>
 <graphics>
 <position x="180" y="180"/>
 <dimension x="40" y="40"/>
 </graphics>
 </place>
 <place id="p1">
 <name>
 <text>p1</text>
 <graphics>
 <offset x="40" y="270"/>
 </graphics>
 </name>
 <graphics>
 <position x="40" y="230"/>
 <dimension x="40" y="40"/>
 </graphics>
 <initialMarking>
 <text>1</text>
 </initialMarking>
 </place>

PNMLnet.xml Page 2 of 4

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

 <transition id="t3">
 <name>
 <text>t3</text>
 <graphics>
 <offset x="240" y="320"/>
 </graphics>
 </name>
 <graphics>
 <position x="240" y="280"/>
 <dimension x="40" y="40"/>
 </graphics>
 <toolspecific tool="WoPeD" version="1.0">
 <time>0</time>
 <timeUnit>1</timeUnit>
 <orientation>1</orientation>
 </toolspecific>
 </transition>
 <transition id="t2">
 <name>
 <text>t2</text>
 <graphics>
 <offset x="240" y="220"/>
 </graphics>
 </name>
 <graphics>
 <position x="240" y="180"/>
 <dimension x="40" y="40"/>
 </graphics>
 <toolspecific tool="WoPeD" version="1.0">
 <time>0</time>
 <timeUnit>1</timeUnit>
 <orientation>1</orientation>
 </toolspecific>
 </transition>
 <transition id="t1">
 <name>
 <text>t1</text>
 <graphics>
 <offset x="120" y="270"/>
 </graphics>
 </name>
 <graphics>
 <position x="120" y="230"/>
 <dimension x="40" y="40"/>
 </graphics>
 <toolspecific tool="WoPeD" version="1.0">
 <time>0</time>
 <timeUnit>1</timeUnit>
 <orientation>1</orientation>
 </toolspecific>
 </transition>
 <transition id="t4">
 <name>
 <text>t4</text>
 <graphics>
 <offset x="360" y="270"/>
 </graphics>
 </name>
 <graphics>
 <position x="360" y="230"/>
 <dimension x="40" y="40"/>
 </graphics>
 <toolspecific tool="WoPeD" version="1.0">
 <time>0</time>
 <timeUnit>1</timeUnit>
 <orientation>1</orientation>
 </toolspecific>
 </transition>
 <transition id="t5">
 <name>
 <text>t5</text>
 <graphics>
 <offset x="240" y="150"/>
 </graphics>
 </name>
 <graphics>
 <position x="240" y="110"/>

PNMLnet.xml Page 3 of 4

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

 <dimension x="40" y="40"/>
 </graphics>
 <toolspecific tool="WoPeD" version="1.0">
 <time>0</time>
 <timeUnit>1</timeUnit>
 <orientation>1</orientation>
 </toolspecific>
 </transition>
 <arc id="a9" source="t1" target="p4">
 <inscription>
 <text>1</text>
 </inscription>
 <graphics/>
 <toolspecific tool="WoPeD" version="1.0">
 <probability>1.0</probability>
 <displayProbabilityOn>false</displayProbabilityOn>
 <displayProbabilityPosition x="500.0" y="0.0"/>
 </toolspecific>
 </arc>
 <arc id="a17" source="p3" target="t4">
 <inscription>
 <text>1</text>
 </inscription>
 <graphics/>
 <toolspecific tool="WoPeD" version="1.0">
 <probability>1.0</probability>
 <displayProbabilityOn>false</displayProbabilityOn>
 <displayProbabilityPosition x="500.0" y="0.0"/>
 </toolspecific>
 </arc>
 <arc id="a14" source="p5" target="t4">
 <inscription>
 <text>1</text>
 </inscription>
 <graphics/>
 <toolspecific tool="WoPeD" version="1.0">
 <probability>1.0</probability>
 <displayProbabilityOn>false</displayProbabilityOn>
 <displayProbabilityPosition x="500.0" y="0.0"/>
 </toolspecific>
 </arc>
 <arc id="a21" source="p3" target="t5">
 <inscription>
 <text>1</text>
 </inscription>
 <graphics/>
 <toolspecific tool="WoPeD" version="1.0">
 <probability>1.0</probability>
 <displayProbabilityOn>false</displayProbabilityOn>
 <displayProbabilityPosition x="500.0" y="0.0"/>
 </toolspecific>
 </arc>
 <arc id="a13" source="t3" target="p5">
 <inscription>
 <text>1</text>
 </inscription>
 <graphics/>
 <toolspecific tool="WoPeD" version="1.0">
 <probability>1.0</probability>
 <displayProbabilityOn>false</displayProbabilityOn>
 <displayProbabilityPosition x="500.0" y="0.0"/>
 </toolspecific>
 </arc>
 <arc id="a10" source="p4" target="t3">
 <inscription>
 <text>1</text>
 </inscription>
 <graphics/>
 <toolspecific tool="WoPeD" version="1.0">
 <probability>1.0</probability>
 <displayProbabilityOn>false</displayProbabilityOn>
 <displayProbabilityPosition x="500.0" y="0.0"/>
 </toolspecific>
 </arc>
 <arc id="a24" source="t5" target="p2">
 <inscription>
 <text>1</text>

PNMLnet.xml Page 4 of 4

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

 </inscription>
 <graphics/>
 <toolspecific tool="WoPeD" version="1.0">
 <probability>1.0</probability>
 <displayProbabilityOn>false</displayProbabilityOn>
 <displayProbabilityPosition x="500.0" y="0.0"/>
 </toolspecific>
 </arc>
 <arc id="a1" source="p1" target="t1">
 <inscription>
 <text>1</text>
 </inscription>
 <graphics/>
 <toolspecific tool="WoPeD" version="1.0">
 <probability>1.0</probability>
 <displayProbabilityOn>false</displayProbabilityOn>
 <displayProbabilityPosition x="500.0" y="0.0"/>
 </toolspecific>
 </arc>
 <arc id="a2" source="t1" target="p2">
 <inscription>
 <text>1</text>
 </inscription>
 <graphics/>
 <toolspecific tool="WoPeD" version="1.0">
 <probability>1.0</probability>
 <displayProbabilityOn>false</displayProbabilityOn>
 <displayProbabilityPosition x="500.0" y="0.0"/>
 </toolspecific>
 </arc>
 <arc id="a5" source="p2" target="t2">
 <inscription>
 <text>1</text>
 </inscription>
 <graphics/>
 <toolspecific tool="WoPeD" version="1.0">
 <probability>1.0</probability>
 <displayProbabilityOn>false</displayProbabilityOn>
 <displayProbabilityPosition x="500.0" y="0.0"/>
 </toolspecific>
 </arc>
 <arc id="a6" source="t2" target="p3">
 <inscription>
 <text>1</text>
 </inscription>
 <graphics/>
 <toolspecific tool="WoPeD" version="1.0">
 <probability>1.0</probability>
 <displayProbabilityOn>false</displayProbabilityOn>
 <displayProbabilityPosition x="500.0" y="0.0"/>
 </toolspecific>
 </arc>
 <arc id="a18" source="t4" target="p6">
 <inscription>
 <text>1</text>
 </inscription>
 <graphics/>
 <toolspecific tool="WoPeD" version="1.0">
 <probability>1.0</probability>
 <displayProbabilityOn>false</displayProbabilityOn>
 <displayProbabilityPosition x="500.0" y="0.0"/>
 </toolspecific>
 </arc>
 <toolspecific tool="WoPeD" version="1.0">
 <bounds>
 <position x="11" y="33"/>
 <dimension x="755" y="490"/>
 </bounds>
 <treeWidth>2</treeWidth>
 <verticalLayout>false</verticalLayout>
 <resources/>
 <simulations/>
 <partnerLinks/>
 <variables/>
 </toolspecific>
 </net>
</pnml>

PNMLnet.xml Page 1 of 4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

<?xml version="1.0" encoding="UTF-8"?><pnml>
 <net type="http://www.informatik.hu-berlin.de/top/pntd/ptNetb" id="noID">
 <place id="p6">
 <name>
 <text>p6</text>
 <graphics>
 <offset x="430" y="270"/>
 </graphics>
 </name>
 <graphics>
 <position x="430" y="230"/>
 <dimension x="40" y="40"/>
 </graphics>
 </place>
 <place id="p5">
 <name>
 <text>p5</text>
 <graphics>
 <offset x="300" y="320"/>
 </graphics>
 </name>
 <graphics>
 <position x="300" y="280"/>
 <dimension x="40" y="40"/>
 </graphics>
 </place>
 <place id="p4">
 <name>
 <text>p4</text>
 <graphics>
 <offset x="180" y="320"/>
 </graphics>
 </name>
 <graphics>
 <position x="180" y="280"/>
 <dimension x="40" y="40"/>
 </graphics>
 </place>
 <place id="p3">
 <name>
 <text>p3</text>
 <graphics>
 <offset x="300" y="220"/>
 </graphics>
 </name>
 <graphics>
 <position x="300" y="180"/>
 <dimension x="40" y="40"/>
 </graphics>
 </place>
 <place id="p2">
 <name>
 <text>p2</text>
 <graphics>
 <offset x="180" y="220"/>
 </graphics>
 </name>
 <graphics>
 <position x="180" y="180"/>
 <dimension x="40" y="40"/>
 </graphics>
 </place>
 <place id="p1">
 <name>
 <text>p1</text>
 <graphics>
 <offset x="40" y="270"/>
 </graphics>
 </name>
 <graphics>
 <position x="40" y="230"/>
 <dimension x="40" y="40"/>
 </graphics>
 <initialMarking>
 <text>1</text>
 </initialMarking>
 </place>

PNMLnet.xml Page 2 of 4

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

 <transition id="t3">
 <name>
 <text>t3</text>
 <graphics>
 <offset x="240" y="320"/>
 </graphics>
 </name>
 <graphics>
 <position x="240" y="280"/>
 <dimension x="40" y="40"/>
 </graphics>
 <toolspecific tool="WoPeD" version="1.0">
 <time>0</time>
 <timeUnit>1</timeUnit>
 <orientation>1</orientation>
 </toolspecific>
 </transition>
 <transition id="t2">
 <name>
 <text>t2</text>
 <graphics>
 <offset x="240" y="220"/>
 </graphics>
 </name>
 <graphics>
 <position x="240" y="180"/>
 <dimension x="40" y="40"/>
 </graphics>
 <toolspecific tool="WoPeD" version="1.0">
 <time>0</time>
 <timeUnit>1</timeUnit>
 <orientation>1</orientation>
 </toolspecific>
 </transition>
 <transition id="t1">
 <name>
 <text>t1</text>
 <graphics>
 <offset x="120" y="270"/>
 </graphics>
 </name>
 <graphics>
 <position x="120" y="230"/>
 <dimension x="40" y="40"/>
 </graphics>
 <toolspecific tool="WoPeD" version="1.0">
 <time>0</time>
 <timeUnit>1</timeUnit>
 <orientation>1</orientation>
 </toolspecific>
 </transition>
 <transition id="t4">
 <name>
 <text>t4</text>
 <graphics>
 <offset x="360" y="270"/>
 </graphics>
 </name>
 <graphics>
 <position x="360" y="230"/>
 <dimension x="40" y="40"/>
 </graphics>
 <toolspecific tool="WoPeD" version="1.0">
 <time>0</time>
 <timeUnit>1</timeUnit>
 <orientation>1</orientation>
 </toolspecific>
 </transition>
 <transition id="t5">
 <name>
 <text>t5</text>
 <graphics>
 <offset x="240" y="150"/>
 </graphics>
 </name>
 <graphics>
 <position x="240" y="110"/>

PNMLnet.xml Page 3 of 4

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

 <dimension x="40" y="40"/>
 </graphics>
 <toolspecific tool="WoPeD" version="1.0">
 <time>0</time>
 <timeUnit>1</timeUnit>
 <orientation>1</orientation>
 </toolspecific>
 </transition>
 <arc id="a9" source="t1" target="p4">
 <inscription>
 <text>1</text>
 </inscription>
 <graphics/>
 <toolspecific tool="WoPeD" version="1.0">
 <probability>1.0</probability>
 <displayProbabilityOn>false</displayProbabilityOn>
 <displayProbabilityPosition x="500.0" y="0.0"/>
 </toolspecific>
 </arc>
 <arc id="a17" source="p3" target="t4">
 <inscription>
 <text>1</text>
 </inscription>
 <graphics/>
 <toolspecific tool="WoPeD" version="1.0">
 <probability>1.0</probability>
 <displayProbabilityOn>false</displayProbabilityOn>
 <displayProbabilityPosition x="500.0" y="0.0"/>
 </toolspecific>
 </arc>
 <arc id="a14" source="p5" target="t4">
 <inscription>
 <text>1</text>
 </inscription>
 <graphics/>
 <toolspecific tool="WoPeD" version="1.0">
 <probability>1.0</probability>
 <displayProbabilityOn>false</displayProbabilityOn>
 <displayProbabilityPosition x="500.0" y="0.0"/>
 </toolspecific>
 </arc>
 <arc id="a21" source="p3" target="t5">
 <inscription>
 <text>1</text>
 </inscription>
 <graphics/>
 <toolspecific tool="WoPeD" version="1.0">
 <probability>1.0</probability>
 <displayProbabilityOn>false</displayProbabilityOn>
 <displayProbabilityPosition x="500.0" y="0.0"/>
 </toolspecific>
 </arc>
 <arc id="a13" source="t3" target="p5">
 <inscription>
 <text>1</text>
 </inscription>
 <graphics/>
 <toolspecific tool="WoPeD" version="1.0">
 <probability>1.0</probability>
 <displayProbabilityOn>false</displayProbabilityOn>
 <displayProbabilityPosition x="500.0" y="0.0"/>
 </toolspecific>
 </arc>
 <arc id="a10" source="p4" target="t3">
 <inscription>
 <text>1</text>
 </inscription>
 <graphics/>
 <toolspecific tool="WoPeD" version="1.0">
 <probability>1.0</probability>
 <displayProbabilityOn>false</displayProbabilityOn>
 <displayProbabilityPosition x="500.0" y="0.0"/>
 </toolspecific>
 </arc>
 <arc id="a24" source="t5" target="p2">
 <inscription>
 <text>1</text>

PNMLnet.xml Page 4 of 4

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

 </inscription>
 <graphics/>
 <toolspecific tool="WoPeD" version="1.0">
 <probability>1.0</probability>
 <displayProbabilityOn>false</displayProbabilityOn>
 <displayProbabilityPosition x="500.0" y="0.0"/>
 </toolspecific>
 </arc>
 <arc id="a1" source="p1" target="t1">
 <inscription>
 <text>1</text>
 </inscription>
 <graphics/>
 <toolspecific tool="WoPeD" version="1.0">
 <probability>1.0</probability>
 <displayProbabilityOn>false</displayProbabilityOn>
 <displayProbabilityPosition x="500.0" y="0.0"/>
 </toolspecific>
 </arc>
 <arc id="a2" source="t1" target="p2">
 <inscription>
 <text>1</text>
 </inscription>
 <graphics/>
 <toolspecific tool="WoPeD" version="1.0">
 <probability>1.0</probability>
 <displayProbabilityOn>false</displayProbabilityOn>
 <displayProbabilityPosition x="500.0" y="0.0"/>
 </toolspecific>
 </arc>
 <arc id="a5" source="p2" target="t2">
 <inscription>
 <text>1</text>
 </inscription>
 <graphics/>
 <toolspecific tool="WoPeD" version="1.0">
 <probability>1.0</probability>
 <displayProbabilityOn>false</displayProbabilityOn>
 <displayProbabilityPosition x="500.0" y="0.0"/>
 </toolspecific>
 </arc>
 <arc id="a6" source="t2" target="p3">
 <inscription>
 <text>1</text>
 </inscription>
 <graphics/>
 <toolspecific tool="WoPeD" version="1.0">
 <probability>1.0</probability>
 <displayProbabilityOn>false</displayProbabilityOn>
 <displayProbabilityPosition x="500.0" y="0.0"/>
 </toolspecific>
 </arc>
 <arc id="a18" source="t4" target="p6">
 <inscription>
 <text>1</text>
 </inscription>
 <graphics/>
 <toolspecific tool="WoPeD" version="1.0">
 <probability>1.0</probability>
 <displayProbabilityOn>false</displayProbabilityOn>
 <displayProbabilityPosition x="500.0" y="0.0"/>
 </toolspecific>
 </arc>
 <toolspecific tool="WoPeD" version="1.0">
 <bounds>
 <position x="11" y="33"/>
 <dimension x="755" y="490"/>
 </bounds>
 <treeWidth>2</treeWidth>
 <verticalLayout>false</verticalLayout>
 <resources/>
 <simulations/>
 <partnerLinks/>
 <variables/>
 </toolspecific>
 </net>
</pnml>

Forget XML

14

BPEL is designed to work with WSDL documents
of the services required by the process

A process can itself be exposed as a service
which needs its own WSDL document

let us forget that WSDL documents are written in XML
we regard them as abstract interface descriptions

WSDL

15

Service

16

A service can be thought of as a container
for a set of (logically related) operations

that are made available via web-based protocols

Roughly: a remote object

PortType / Interface

17

The <portType> element,
renamed to <interface> in WSDL 2.0,

defines a web service,
the operations that can be performed,

and the messages that are used to perform the operation.

Roughly: the type of a remote object

i.e., a remote (abstract) class

Operation

18

Each operation can be thought of as
a method or function call in some programming language.

Four kinds of operations
(one-way, request-response, notification, solicit-response)

Three kinds of parameters/arguments
(input, output, fault)

(not all combinations allowed)

Roughly: a remote (abstract) method

Port / Endpoint

19

The <port> element,
renamed to <endpoint> in WSDL 2.0,
declares the address of a web service.

It typically involves a name, a binding and a URL

Binding

20

The binding specifies the interface as well as
the SOAP binding style (message format)
and SOAP transport protocol (http / smtp).

WSDL (from wikipedia)

21

22

PurchaseExample.wsdl Page 1 of 2

1

2

3

!

4

!

5

!

6

7

8

9

10

!

11

!

12

13

14

!

15

!

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

!

33

34

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="PurchaseExample"
 targetNamespace="http://www.fluidimagination.com/
sams/PurchaseExample.wsdl"
 xmlns:tns="http://www.fluidimagination.com/sams/
PurchaseExample.wsdl"
 xmlns:soap="http://www.schemas.xmlsoap.org/wsdl/
soap/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <wsdl:types>
 <xsd:schema
 targetNamespace="http://
www.fluidimagination.com/sams/productType.wsdl"
 xmlns:xsd="http://www.w3.org/2001/
XMLSchema">
 <xsd:complexType name="scannerType">
 <xsd:all>
 <xsd:element name="upc"
type="upcType"/>
 <xsd:element name="isbn"
type="isbnType"/>
 </xsd:all>
 </xsd:complexType>
 <xsd:simpleType name="upcType">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="[0-9]{12}"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="isbnType">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="([0-9]-){10}"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:schema>
 </wsdl:types>
 <!-- Adding a message that has two addresses -->
 <wsdl:message name="purchaseMessage">
 <wsdl:part name="productCode"
element="tns:scannerType"/>
 </wsdl:message>
 <!--create a port type with one operation -->

PurchaseExample.wsdl Page 2 of 2

35

36

37

38

39

40

41

!

42

43

!

44

45

46

47

48

49

50

51

!

52

53

!

54

55

56

57

58

59

60

 <wsdl:portType name="purchaseType">
 <wsdl:operation name="purchaseOperation">
 <wsdl:input name="tns:purchaseMessage"/>
 </wsdl:operation>
 </wsdl:portType>
 <!--Bind the message to SOAP using HTTP -->
 <wsdl:binding name="purchaseBinding"
type="tns:purchaseType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/
http"/>
 <wsdl:operation name="tns:purchaseOperation">
 <wsdl:input>
 <soap:body use="literal"/>
 </wsdl:input>
 </wsdl:operation>
 </wsdl:binding>
 <!--Bind the message to SOAP over SMTP -->
 <wsdl:binding name="purchaseBindingSMTP"
type="tns:purchaseType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/
smtp"/>
 <wsdl:operation name="tns:purchaseOperation">
 <wsdl:input>
 <soap:body use="literal"/>
 </wsdl:input>
 </wsdl:operation>
 </wsdl:binding>
</wsdl:definitions>

PurchaseExample.wsdl Page 1 of 2

1

2

3

!

4

!

5

!

6

7

8

9

10

!

11

!

12

13

14

!

15

!

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

!

33

34

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="PurchaseExample"
 targetNamespace="http://www.fluidimagination.com/
sams/PurchaseExample.wsdl"
 xmlns:tns="http://www.fluidimagination.com/sams/
PurchaseExample.wsdl"
 xmlns:soap="http://www.schemas.xmlsoap.org/wsdl/
soap/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <wsdl:types>
 <xsd:schema
 targetNamespace="http://
www.fluidimagination.com/sams/productType.wsdl"
 xmlns:xsd="http://www.w3.org/2001/
XMLSchema">
 <xsd:complexType name="scannerType">
 <xsd:all>
 <xsd:element name="upc"
type="upcType"/>
 <xsd:element name="isbn"
type="isbnType"/>
 </xsd:all>
 </xsd:complexType>
 <xsd:simpleType name="upcType">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="[0-9]{12}"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="isbnType">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="([0-9]-){10}"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:schema>
 </wsdl:types>
 <!-- Adding a message that has two addresses -->
 <wsdl:message name="purchaseMessage">
 <wsdl:part name="productCode"
element="tns:scannerType"/>
 </wsdl:message>
 <!--create a port type with one operation -->

PurchaseExample.wsdl Page 2 of 2

35

36

37

38

39

40

41

!

42

43

!

44

45

46

47

48

49

50

51

!

52

53

!

54

55

56

57

58

59

60

 <wsdl:portType name="purchaseType">
 <wsdl:operation name="purchaseOperation">
 <wsdl:input name="tns:purchaseMessage"/>
 </wsdl:operation>
 </wsdl:portType>
 <!--Bind the message to SOAP using HTTP -->
 <wsdl:binding name="purchaseBinding"
type="tns:purchaseType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/
http"/>
 <wsdl:operation name="tns:purchaseOperation">
 <wsdl:input>
 <soap:body use="literal"/>
 </wsdl:input>
 </wsdl:operation>
 </wsdl:binding>
 <!--Bind the message to SOAP over SMTP -->
 <wsdl:binding name="purchaseBindingSMTP"
type="tns:purchaseType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/
smtp"/>
 <wsdl:operation name="tns:purchaseOperation">
 <wsdl:input>
 <soap:body use="literal"/>
 </wsdl:input>
 </wsdl:operation>
 </wsdl:binding>
</wsdl:definitions>

23

PurchaseService.wsdl.xml Page 1 of 21

2

3

4

5

6

7

8

9

10

↪

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="PurchaseService"
targetNamespace="http://www.fluidimagination.com/sams/PurchaseService.wsdl"
 xmlns:tns="http://www.fluidimagination.com/sams/PurchaseService.wsdl"
 xmlns:soap="http://www.schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <wsdl:types>
 <xsd:schema
 targetNamespace="http://www.fluidimagination.com/sams/
PurchaseService.wsdl"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:complexType name="scannerType">
 <xsd:all>
 <xsd:element name="upc" type="upcType"/>
 <xsd:element name="isbn" type="isbnType"/>
 </xsd:all>
 </xsd:complexType>
 <xsd:simpleType name="upcType">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="[0-9]{12}"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="isbnType">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="([0-9]-){10}"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:schema>
 </wsdl:types>
 <!-- Adding a message that has two addresses -->
 <wsdl:message name="purchaseMessage">
 <wsdl:part name="productCode" element="tns:scannerType"/>
 </wsdl:message>
 <!--create a port type with one operation -->
 <wsdl:portType name="purchaseType">
 <wsdl:operation name="purchaseOperation">
 <wsdl:input name="tns:purchaseMessage"/>
 </wsdl:operation>
 </wsdl:portType>
 <!--Bind the message to SOAP over HTTP -->
 <wsdl:binding name="purchaseBinding" type="tns:purchaseType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="tns:purchaseOperation">
 <wsdl:input>
 <soap:body use="literal"/>
 </wsdl:input>
 </wsdl:operation>
 </wsdl:binding>
 <!--Bind the message to SOAP over SMTP -->
 <wsdl:binding name="purchaseBinding" type="tns:purchaseType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/smtp"/>
 <wsdl:operation name="tns:purchaseOperation">
 <wsdl:input>
 <soap:body use="literal"/>
 </wsdl:input>
 </wsdl:operation>

24

PurchaseService.wsdl.xml Page 1 of 21

2

3

4

5

6

7

8

9

10

↪

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="PurchaseService"
targetNamespace="http://www.fluidimagination.com/sams/PurchaseService.wsdl"
 xmlns:tns="http://www.fluidimagination.com/sams/PurchaseService.wsdl"
 xmlns:soap="http://www.schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <wsdl:types>
 <xsd:schema
 targetNamespace="http://www.fluidimagination.com/sams/
PurchaseService.wsdl"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:complexType name="scannerType">
 <xsd:all>
 <xsd:element name="upc" type="upcType"/>
 <xsd:element name="isbn" type="isbnType"/>
 </xsd:all>
 </xsd:complexType>
 <xsd:simpleType name="upcType">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="[0-9]{12}"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="isbnType">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="([0-9]-){10}"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:schema>
 </wsdl:types>
 <!-- Adding a message that has two addresses -->
 <wsdl:message name="purchaseMessage">
 <wsdl:part name="productCode" element="tns:scannerType"/>
 </wsdl:message>
 <!--create a port type with one operation -->
 <wsdl:portType name="purchaseType">
 <wsdl:operation name="purchaseOperation">
 <wsdl:input name="tns:purchaseMessage"/>
 </wsdl:operation>
 </wsdl:portType>
 <!--Bind the message to SOAP over HTTP -->
 <wsdl:binding name="purchaseBinding" type="tns:purchaseType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="tns:purchaseOperation">
 <wsdl:input>
 <soap:body use="literal"/>
 </wsdl:input>
 </wsdl:operation>
 </wsdl:binding>
 <!--Bind the message to SOAP over SMTP -->
 <wsdl:binding name="purchaseBinding" type="tns:purchaseType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/smtp"/>
 <wsdl:operation name="tns:purchaseOperation">
 <wsdl:input>
 <soap:body use="literal"/>
 </wsdl:input>
 </wsdl:operation>

25

PurchaseExample.wsdl Page 1 of 2

1

2

3

!

4

!

5

!

6

7

8

9

10

!

11

!

12

13

14

!

15

!

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

!

33

34

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="PurchaseExample"
 targetNamespace="http://www.fluidimagination.com/
sams/PurchaseExample.wsdl"
 xmlns:tns="http://www.fluidimagination.com/sams/
PurchaseExample.wsdl"
 xmlns:soap="http://www.schemas.xmlsoap.org/wsdl/
soap/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <wsdl:types>
 <xsd:schema
 targetNamespace="http://
www.fluidimagination.com/sams/productType.wsdl"
 xmlns:xsd="http://www.w3.org/2001/
XMLSchema">
 <xsd:complexType name="scannerType">
 <xsd:all>
 <xsd:element name="upc"
type="upcType"/>
 <xsd:element name="isbn"
type="isbnType"/>
 </xsd:all>
 </xsd:complexType>
 <xsd:simpleType name="upcType">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="[0-9]{12}"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="isbnType">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="([0-9]-){10}"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:schema>
 </wsdl:types>
 <!-- Adding a message that has two addresses -->
 <wsdl:message name="purchaseMessage">
 <wsdl:part name="productCode"
element="tns:scannerType"/>
 </wsdl:message>
 <!--create a port type with one operation -->

PurchaseExample.wsdl Page 2 of 2

35

36

37

38

39

40

41

!

42

43

!

44

45

46

47

48

49

50

51

!

52

53

!

54

55

56

57

58

59

60

 <wsdl:portType name="purchaseType">
 <wsdl:operation name="purchaseOperation">
 <wsdl:input name="tns:purchaseMessage"/>
 </wsdl:operation>
 </wsdl:portType>
 <!--Bind the message to SOAP using HTTP -->
 <wsdl:binding name="purchaseBinding"
type="tns:purchaseType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/
http"/>
 <wsdl:operation name="tns:purchaseOperation">
 <wsdl:input>
 <soap:body use="literal"/>
 </wsdl:input>
 </wsdl:operation>
 </wsdl:binding>
 <!--Bind the message to SOAP over SMTP -->
 <wsdl:binding name="purchaseBindingSMTP"
type="tns:purchaseType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/
smtp"/>
 <wsdl:operation name="tns:purchaseOperation">
 <wsdl:input>
 <soap:body use="literal"/>
 </wsdl:input>
 </wsdl:operation>
 </wsdl:binding>
</wsdl:definitions>

UPC = Universal Product Code

ISBN = International Standard Book Number

26

PurchaseService.wsdl.xml Page 1 of 21

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="PurchaseService"
targetNamespace="http://www.fluidimagination.com/sams/PurchaseService.wsdl"
 xmlns:tns="http://www.fluidimagination.com/sams/PurchaseService.wsdl"
 xmlns:soap="http://www.schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <wsdl:types>
 <xsd:schema
 targetNamespace="http://www.fluidimagination.com/sams/PurchaseService.wsdl"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:complexType name="scannerType">
 <xsd:all>
 <xsd:element name="upc" type="upcType"/>
 <xsd:element name="isbn" type="isbnType"/>
 </xsd:all>
 </xsd:complexType>
 <xsd:simpleType name="upcType">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="[0-9]{12}"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="isbnType">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="([0-9]-){10}"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:schema>
 </wsdl:types>
 <!-- Adding a message that has two addresses -->
 <wsdl:message name="purchaseMessage">
 <wsdl:part name="productCode" element="tns:scannerType"/>
 </wsdl:message>
 <!--create a port type with one operation -->
 <wsdl:portType name="purchaseType">
 <wsdl:operation name="purchaseOperation">
 <wsdl:input name="tns:purchaseMessage"/>
 </wsdl:operation>
 </wsdl:portType>
 <!--Bind the message to SOAP over HTTP -->
 <wsdl:binding name="purchaseBinding" type="tns:purchaseType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="tns:purchaseOperation">
 <wsdl:input>
 <soap:body use="literal"/>
 </wsdl:input>
 </wsdl:operation>
 </wsdl:binding>
 <!--Bind the message to SOAP over SMTP -->
 <wsdl:binding name="purchaseBinding" type="tns:purchaseType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/smtp"/>
 <wsdl:operation name="tns:purchaseOperation">
 <wsdl:input>
 <soap:body use="literal"/>
 </wsdl:input>
 </wsdl:operation>
 </wsdl:binding>

 <service name="Purchase_Service">
 <documentation>Purchase service,
 offering purchase of ISBN or UPC based matterials
 to the world!</documentation>

27

PurchaseService.wsdl.xml Page 2 of 259

60

61

62

63

64

65

66

67

68

69

70

71

72

73

 </wsdl:binding>

 <service name="Purchase_Service">
 <documentation>Purchase service,
 offering purchase of ISBN or UPC based matterials
 to the world!</documentation>
 <port binding="tns:purchaseBinding" name="Purchase_ServicePort">
 <soap:address
 location="http://www.fluidimagination.com:8080/soap/servlet/rpcrouter"/>
 </port>
 </service>

</wsdl:definitions>

BPEL ingredients

28

Structured control vs
free flow

29

BPEL4WS should provide
both structured (hierarchical)

and graph-like control regimes,
and allow their usage to be blended

as seamlessly as possible.

BPEL ingredients

30

Data flow
(scoped variables)

Partner links and Message correlation

Message flow
(one-way, request-response, notify, solicit-response)

Control flow
(structured activities and synchronization links)

Handling events, faults, compensations

About data handling

31

BPEL4WS provides limited data handling functions
that are sufficient for the simple manipulation of data

that is needed to define
process relevant data and control flow.

Variable assignment

32

Variables can be defined (within a local scope)

The activity <assign> can be used to copy data
(messages, part of messages, service references)

between variables

<assign>
 <copy>
 <from variable="PO" part="customerInfo"/>
 <to variable="shippingRequest" part="customerInfo"/>
 </copy>
</assign>

Stateless services,
stateful processes

33

When a message for (WS-BPEL) service arrives,
it must be delivered either to a new

or to an existing instance of the process

Stateful business processes are instantiated to act
according to interaction history

Messages should not only be delivered to the correct port,
but also to the correct instance of the business process

that provides that port

Message correlation

34

Message correlation is the way to tie together
messages coming from different communications

A correlation set is a set of properties such that
all messages having the same values of all properties

are part of the same interaction

The partner that first fixes the values of the properties
in the correlation set is the initiator of the exchange,

 the other partners are called the followers

Message flow

35

Basic activities are available
to send and receive messages to partners

Activity <invoke>: asynchronous (one-way) or
synchronous (request-response)

Activity <receive>: a request from a partner to execute
one of the (WSDL) operations implemented by the process

Activity <reply>: to return the result of a <receive>d
synchronous request-response operation

Partner Link

36

A partner is a service that the process invokes,
or a client that invokes the process

A BPEL process interacts with a partner using a
<partnerLink> a (typed) connector

that the process offers to/requires from its partner
(to be declared in the BPEL document)

<partnerLinks>
 <partnerLink name="shipping"
 partnerLinkType="lns:shippingLT"
 myRole="shippingRequester"
 partnerRole="shippingService"/>
 ...
</partnerLinks>

Invoke

37

Needed information: the <partnerLink>,
the WSDL <portType> of the service to be invoked, and

the name and parameters of the <operation>

<invoke partnerLink="shipping"
 portType="lns:shippingPT"
 operation="requestShipping"
 inputVariable="shippingRequest"
 outputVariable="shippingInfo">
 <source linkName="ship-to-invoice"/>
</invoke>

Receive

38

Needed information: the <partnerLink>,
the WSDL <portType> of the exposed service, and
a <variable> where to copy the parameters of the

<operation>

<receive partnerLink="purchasing"
 portType="lns:purchaseOrderPT"
 operation="sendPurchaseOrder"
 variable="PO">
</receive>

Reply

39

A process can <reply> to a message it <receive>d

Asynchronous operations do not use <reply>
If a reply must be sent,

<invoke> is used to call back a client operation

<reply partnerLink="purchasing"
 portType="lns:purchaseOrderPT"
 operation="sendPurchaseOrder"
 variable="Invoice" />

40

Structured activities

41

<sequence> for specifying sequential compositions

<switch> for (local) internal choices
(ordered list of conditional <case> branches,
possibly ended by an <otherwise> branch)

<pick> for (global) external choices
(set of event handlers of the form event → activity,

<onMessage> arrival of a message or <onAlarm> timer)

<flow> for parallel composition

<while> for iterations (guards are XPath expressions)

on
ly

 o
ne

 b
ra

nc
h

is
 s

el
ec

te
d

Control links

42

Control links are a non-structural element
that introduces control dependencies between activities

Each link carry a predicate, called “transition condition”

An activity can be the source of many links
(when the activity completes,

the transition conditions of all links are evaluated)

An activity can be the target of many links
(it waits for the boolean evaluation of the transition

conditions of incoming links and apply a “join condition”)

Link

43

A <link> expresses synchronisation dependencies
among activities in a process

Each <link> has a name,
one source activity, one target activity, and

 it may be associated with a transition condition
(a predicate to be evaluated when the source activity ends)

Join condition

44

Any activity that is the target of one or more links
may have an explicit <joinCondition>,

(a predicate on the status values of the incoming links,
to be evaluated once all such values have been determined)

otherwise, the implicit join condition is the OR

If the <joinCondition> evaluates to:

TRUE the activity can be executed,

FALSE a <joinFailure> fault may be thrown
(depending on the <suppressJoinFailure> flag

Join condition failure

45

 If the attribute suppressJoinFailure is set to no,
a join failure needs to be thrown,

which triggers a standard fault handling procedure

 If the attribute suppressJoinFailure is set to yes,
the activity will not be performed,
 will end up in the “finished” state,

(the processing of any following activity will not be affected)
and the status of all outgoing links will be set to false.

This is known as dead path elimination
(the false link status is propagated transitively along the

paths formed by control links, until a join condition is
reached that evaluates to true)

Scope

46

A scope provides fault and compensation handling
capabilities to the activities nested within it

A <scope> activity consists of:
a, possibly structured, primary activity,

a set of (optional) fault handlers,

a single (optional) compensation handlers,

a set of (optional) event handlers
(executed concurrently with the process,

they enable a scope to react to messages and alarm events)

Faults

47

 BPEL defines three kinds of faults:

application faults (also service faults)
generated by invoked services

process-defined faults
generated by a <throw> activity

system faults
generated by the process engine, such as join failures

“it is never possible to run more than one fault handler for
the same scope, under any circumstances”

Formal semantics of
control flow in BPEL

48

Formal Semantics and Analysis of Control Flow in WS-BPEL⋆

(Revised Version)

Chun Ouyang1, Eric Verbeek2, Wil M.P. van der Aalst2,1, Stephen Breutel1,
Marlon Dumas1, and Arthur H.M. ter Hofstede1

1 Faculty of Information Technology, Queensland University of Technology,
GPO Box 2434, Brisbane QLD 4001, Australia

{c.ouyang,sw.breutel,m.dumas,a.terhofstede}@qut.edu.au
2 Department of Technology Management, Eindhoven University of Technology,

GPO Box 513, NL-5600 MB, The Netherlands
{h.m.w.verbeek,w.m.p.v.d.aalst}@tm.tue.nl

Abstract. Web service composition refers to the creation of new (Web) services by combination of
functionality provided by existing ones. This paradigm has gained significant attention in the Web
services community and is seen as a pillar for building service-oriented applications. A number of
domain-specific languages for service composition have been proposed with consensus being formed
around a process-oriented language known as WS-BPEL (or BPEL). The kernel of BPEL consists
of simple communication primitives that may be combined using control-flow constructs expressing
sequence, branching, parallelism, synchronisation, etc. As a result, BPEL process definitions lend
themselves to static flow-based analysis techniques. This report aims at validating the feasibility of
using Petri nets for static analysis of BPEL processes. We present a comprehensive and rigorously
defined mapping of BPEL constructs into Petri net structures. This leads to the implementation
of a tool which operates by translating BPEL processes into Petri nets and exploiting existing
Petri net analysis techniques. The tool performs two useful types of static checks and extracts
meta-data to optimise dynamic resource management.

Keywords: Business process modelling, Web services, BPEL, tool-based verification, Petri nets.

1 Introduction

There is an increasing acceptance of Service-Oriented Architectures (SOA) as a paradigm for integrating
software applications within and across organisational boundaries. In this paradigm, independently
developed and operated applications are exposed as (Web) services that communicate with each other
using XML-based standards, most notably SOAP and associated specifications [3]. While the technology
for developing basic services and interconnecting them on a point-to-point basis has attained a certain
level of maturity, there remain open challenges when it comes to engineering services that engage in
complex interactions with multiple other services.

A number of approaches have been proposed to address these challenges. One such approach, known
as (process-oriented) service composition [6] has its roots in workflow and business process management.
The idea of service composition is to capture the business logic and behavioural interface of services in
terms of process models. These models may be expressed at different levels of abstraction, down to the
executable level. A number of domain-specific languages for service composition have been proposed,
with consensus gathering around the Business Process Execution Language for Web Services, which is
known as BPEL4WS [4] and recently WS-BPEL [5] (or BPEL for short).

In BPEL, the logic of the interactions between a given service and its environment is described
as a composition of communication actions (send, receive, send/receive, etc). These communication
actions are interrelated by control-flow dependencies expressed through constructs corresponding to
parallel, sequential, and conditional execution, event and exception handling, and compensation. Data
manipulation is captured through lexically scoped variables as in imperative programming languages.

The constructs found in BPEL, especially those related to control flow, are close to those found in
workflow definition languages [1]. In the area of workflow, it has been shown that Petri nets provide
an appropriate foundation for performing static verification: Tools such as Woflan [22] are able to
perform state space-based and transition invariant-based analysis on workflow models in order to verify
properties such as soundness [22]. It is thus natural to conjecture that static analysis can be performed
⋆ This work was supported by the Australian Research Council under the Discovery Grant “Expressiveness

Comparison and Interchange Faciliation between Business Process Execution Languages”.

Motivation

49

BPEL specification:
rigorous XML syntax

English prose semantics (of apparent clarity)

Consequences:
inconsistencies, ambiguities, incompleteness

try to google for “WS BPEL issues list”, e.g.
Issue 32 Link Semantics in Event Handlers (resolved)

Issue 39 Inconsistent syntax for query attribute values in spec examples (resolved)

...

Issue 42 Need for Formalism (resolved) YES

http://www.oasis-open.org/apps/group_public/download.php/11285/wsbpel_issues34.html#Issue32
http://www.oasis-open.org/apps/group_public/download.php/11285/wsbpel_issues34.html#Issue39
http://www.oasis-open.org/apps/group_public/download.php/11285/wsbpel_issues34.html#Issue42

Approaches

50

Promela (SPIN)

Process algebras

Abstract State Machines

Automata

Weakest preconditions / strongest postconditions

Axiomatic semantics

Petri nets

Goal

51

Unveil ambiguities in BPEL specification
(reported to BPEL standardization committee)

Complete formalization of all control-flow constructs

Checking for unreachable activities

Checking for potential conflicting message receipt actions

Determining which messages can be eventually consumed

Example: BPEL with
unreachable activity

52

which, together with the associated notions of join condition and transition condition, support the
definition of precedence, synchronization and conditional dependencies on top of those captured by the
structured activity constructs. A control link between activities A and B indicates that B cannot start
before A has either completed or has been “skipped”. Moreover, B can only be executed if its associated
join condition evaluates to true, otherwise B is skipped. This join condition is expressed in terms of
the tokens carried by control links leading to B. These tokens may take either a positive (true) or a
negative (false) value. An activity X propagates a token with a positive value along an outgoing link L
if and only if X was executed (as opposed to being skipped) and the transition condition associated to
L evaluates to true. Transition conditions are boolean expressions over the process variables (just like
the conditions in a switch activity). The process by which positive and negative tokens are propagated
along control links, causing activities to be executed or skipped, is called dead path elimination.

Control links may cross the boundaries of most structured activities. However, they must not create
cyclic control dependencies and must not cross the boundary of a while activity or a serializable scope.4
Prior to our work, the interaction between structured activities and control links was not fully under-
stood, resulting in ambiguities and contradictions in the wording of the BPEL specification [5]. Following
our formalisation effort, some of these issues were reported and discussed in the BPEL standardisation
committee, and changes to the specification’s wording have been proposed, albeit not yet adopted (see
footnote 3).

Also, whilst the control flow constructs of BPEL have been designed in a way to ensure that no
BPEL process execution can deadlock5, some combinations of structured activities (in particular switch
and pick) with control links can lead to situations where some activities are “unreachable”. Consider the
BPEL process definition in Fig. 1 where both the XML code and a graphical representation are provided.
During the execution of this process, either A1 or A2 will be skipped because these two activities are
placed in different branches of a switch and in any execution of a switch only one branch is taken. Thus,
one of the two control links x1 or x2 will carry a negative token. On the other hand, we assume that
the join condition attached to activity A3 (denoted by keyword “AND”) evaluates to true if and only if
both links x1 and x2 carry positive values. Hence, this join condition will always evaluate to false and
activity A3 is always skipped (i.e. it is unreachable).

<invoke name = "A3">

AND

A1 A2

x2

x1

A3

SW

FL

c1 c2

Flow

Switch

Control Link

Legend:

Basic Activity

<process name="unreachableTask"

<flow name="FL" suppressJoinFailure="yes">
<links>
 <link name="x1"/>
 <link name="x2"/>
</links>
<switch name="SW">
 <case>
 <invoke name="A1">
 <sources>
 </invoke>
 </case>
 <otherwise>
 <invoke name="A2">
 <sources>
 </invoke>
 </otherwise>
</switch>

 <targets>
 <joinCondition>

 </joinCondition>
 <target linkName="x1"/>
 <target linkName="x2"/>
 </targets>
</invoke>
</flow>

</process>

 <source linkName="x1"/> </sources>

 </sources>

 targetNamespace="http://samples.otn.com"
 suppressJoinFailure="yes"
 xmlns:tns="http://samples.otn.com"
 xmlns:services="http://services.otn.com"
 xmlns="http://schemas.xmlsoap.org/ws/2003/03/business−process/">

 bpws:getLinkStatus(‘x1’) and bpws:getLinkStatus(‘x2’)

 <source linkName="x2"/>

Fig. 1. Example of a BPEL process with an unreachable activity.

4 Serializable scopes are not covered in this paper since they are not a control-flow construct and thus fall
outside the scope of this work. Instead, serializable scopes are fundamentally related to data manipulation.

5 Although it has not been formally proved that BPEL processes are deadlock-free, to the best of our knowledge
no example of a deadlocking BPEL process has been put forward. Also, Kiepuszewski et al. [14] proves
that synchronizing workflows (a subset of BPEL processes made up of elementary actions, control links,
and restricted forms of join conditions) are non-deadlocking. Note that here we refer to “individual BPEL
processes” as opposed to “sets of communicating BPEL processes” which are outside the scope of our work.

3

which, together with the associated notions of join condition and transition condition, support the
definition of precedence, synchronization and conditional dependencies on top of those captured by the
structured activity constructs. A control link between activities A and B indicates that B cannot start
before A has either completed or has been “skipped”. Moreover, B can only be executed if its associated
join condition evaluates to true, otherwise B is skipped. This join condition is expressed in terms of
the tokens carried by control links leading to B. These tokens may take either a positive (true) or a
negative (false) value. An activity X propagates a token with a positive value along an outgoing link L
if and only if X was executed (as opposed to being skipped) and the transition condition associated to
L evaluates to true. Transition conditions are boolean expressions over the process variables (just like
the conditions in a switch activity). The process by which positive and negative tokens are propagated
along control links, causing activities to be executed or skipped, is called dead path elimination.

Control links may cross the boundaries of most structured activities. However, they must not create
cyclic control dependencies and must not cross the boundary of a while activity or a serializable scope.4
Prior to our work, the interaction between structured activities and control links was not fully under-
stood, resulting in ambiguities and contradictions in the wording of the BPEL specification [5]. Following
our formalisation effort, some of these issues were reported and discussed in the BPEL standardisation
committee, and changes to the specification’s wording have been proposed, albeit not yet adopted (see
footnote 3).

Also, whilst the control flow constructs of BPEL have been designed in a way to ensure that no
BPEL process execution can deadlock5, some combinations of structured activities (in particular switch
and pick) with control links can lead to situations where some activities are “unreachable”. Consider the
BPEL process definition in Fig. 1 where both the XML code and a graphical representation are provided.
During the execution of this process, either A1 or A2 will be skipped because these two activities are
placed in different branches of a switch and in any execution of a switch only one branch is taken. Thus,
one of the two control links x1 or x2 will carry a negative token. On the other hand, we assume that
the join condition attached to activity A3 (denoted by keyword “AND”) evaluates to true if and only if
both links x1 and x2 carry positive values. Hence, this join condition will always evaluate to false and
activity A3 is always skipped (i.e. it is unreachable).

<invoke name = "A3">

AND

A1 A2

x2

x1

A3

SW

FL

c1 c2

Flow

Switch

Control Link

Legend:

Basic Activity

<process name="unreachableTask"

<flow name="FL" suppressJoinFailure="yes">
<links>
 <link name="x1"/>
 <link name="x2"/>
</links>
<switch name="SW">
 <case>
 <invoke name="A1">
 <sources>
 </invoke>
 </case>
 <otherwise>
 <invoke name="A2">
 <sources>
 </invoke>
 </otherwise>
</switch>

 <targets>
 <joinCondition>

 </joinCondition>
 <target linkName="x1"/>
 <target linkName="x2"/>
 </targets>
</invoke>
</flow>

</process>

 <source linkName="x1"/> </sources>

 </sources>

 targetNamespace="http://samples.otn.com"
 suppressJoinFailure="yes"
 xmlns:tns="http://samples.otn.com"
 xmlns:services="http://services.otn.com"
 xmlns="http://schemas.xmlsoap.org/ws/2003/03/business−process/">

 bpws:getLinkStatus(‘x1’) and bpws:getLinkStatus(‘x2’)

 <source linkName="x2"/>

Fig. 1. Example of a BPEL process with an unreachable activity.

4 Serializable scopes are not covered in this paper since they are not a control-flow construct and thus fall
outside the scope of this work. Instead, serializable scopes are fundamentally related to data manipulation.

5 Although it has not been formally proved that BPEL processes are deadlock-free, to the best of our knowledge
no example of a deadlocking BPEL process has been put forward. Also, Kiepuszewski et al. [14] proves
that synchronizing workflows (a subset of BPEL processes made up of elementary actions, control links,
and restricted forms of join conditions) are non-deadlocking. Note that here we refer to “individual BPEL
processes” as opposed to “sets of communicating BPEL processes” which are outside the scope of our work.

3

which, together with the associated notions of join condition and transition condition, support the
definition of precedence, synchronization and conditional dependencies on top of those captured by the
structured activity constructs. A control link between activities A and B indicates that B cannot start
before A has either completed or has been “skipped”. Moreover, B can only be executed if its associated
join condition evaluates to true, otherwise B is skipped. This join condition is expressed in terms of
the tokens carried by control links leading to B. These tokens may take either a positive (true) or a
negative (false) value. An activity X propagates a token with a positive value along an outgoing link L
if and only if X was executed (as opposed to being skipped) and the transition condition associated to
L evaluates to true. Transition conditions are boolean expressions over the process variables (just like
the conditions in a switch activity). The process by which positive and negative tokens are propagated
along control links, causing activities to be executed or skipped, is called dead path elimination.

Control links may cross the boundaries of most structured activities. However, they must not create
cyclic control dependencies and must not cross the boundary of a while activity or a serializable scope.4
Prior to our work, the interaction between structured activities and control links was not fully under-
stood, resulting in ambiguities and contradictions in the wording of the BPEL specification [5]. Following
our formalisation effort, some of these issues were reported and discussed in the BPEL standardisation
committee, and changes to the specification’s wording have been proposed, albeit not yet adopted (see
footnote 3).

Also, whilst the control flow constructs of BPEL have been designed in a way to ensure that no
BPEL process execution can deadlock5, some combinations of structured activities (in particular switch
and pick) with control links can lead to situations where some activities are “unreachable”. Consider the
BPEL process definition in Fig. 1 where both the XML code and a graphical representation are provided.
During the execution of this process, either A1 or A2 will be skipped because these two activities are
placed in different branches of a switch and in any execution of a switch only one branch is taken. Thus,
one of the two control links x1 or x2 will carry a negative token. On the other hand, we assume that
the join condition attached to activity A3 (denoted by keyword “AND”) evaluates to true if and only if
both links x1 and x2 carry positive values. Hence, this join condition will always evaluate to false and
activity A3 is always skipped (i.e. it is unreachable).

<invoke name = "A3">

AND

A1 A2

x2

x1

A3

SW

FL

c1 c2

Flow

Switch

Control Link

Legend:

Basic Activity

<process name="unreachableTask"

<flow name="FL" suppressJoinFailure="yes">
<links>
 <link name="x1"/>
 <link name="x2"/>
</links>
<switch name="SW">
 <case>
 <invoke name="A1">
 <sources>
 </invoke>
 </case>
 <otherwise>
 <invoke name="A2">
 <sources>
 </invoke>
 </otherwise>
</switch>

 <targets>
 <joinCondition>

 </joinCondition>
 <target linkName="x1"/>
 <target linkName="x2"/>
 </targets>
</invoke>
</flow>

</process>

 <source linkName="x1"/> </sources>

 </sources>

 targetNamespace="http://samples.otn.com"
 suppressJoinFailure="yes"
 xmlns:tns="http://samples.otn.com"
 xmlns:services="http://services.otn.com"
 xmlns="http://schemas.xmlsoap.org/ws/2003/03/business−process/">

 bpws:getLinkStatus(‘x1’) and bpws:getLinkStatus(‘x2’)

 <source linkName="x2"/>

Fig. 1. Example of a BPEL process with an unreachable activity.

4 Serializable scopes are not covered in this paper since they are not a control-flow construct and thus fall
outside the scope of this work. Instead, serializable scopes are fundamentally related to data manipulation.

5 Although it has not been formally proved that BPEL processes are deadlock-free, to the best of our knowledge
no example of a deadlocking BPEL process has been put forward. Also, Kiepuszewski et al. [14] proves
that synchronizing workflows (a subset of BPEL processes made up of elementary actions, control links,
and restricted forms of join conditions) are non-deadlocking. Note that here we refer to “individual BPEL
processes” as opposed to “sets of communicating BPEL processes” which are outside the scope of our work.

3

x1

x2

Basic activity X

53

Table 1. A comparative summary of related work on BPEL formalisation and analysis.

Tech SA CL EH TAV FDM Comm

Fu et al. [12] FSM + - - +/- - +
Foster et al. [11] FSM + - - +/- - +
Fisteus et al. [10] FSM + - +/- +/- - -
Ferrara [9] PA + - + - - -
Koshkina & van Breugel [15] PA + + - +/- + -
Farahbod et al. [8] ASM + +/- + - + -
Martens [16], Hinz et al. [13] PN + +/- + +/- - +
Stahl [20] HPN + + + +/- - +
our work PN + + + + + -

This paper follows on our previous work on formalising BPEL. A less complete and earlier version
of the formalisation presented here (without the tool support) can be found in [21], while an informal
analysis of BPEL in terms of a set of workflow patterns is given in [23].

3 Mapping WS-BPEL to Petri Nets

In this section we informally establish a mapping of the WS-BPEL control flow constructs to Petri nets.
When using Petri nets for capturing formal semantics of WS-BPEL, we allow the usage of both labeled
and unlabeled transitions. The labeled transitions are used to model events and basic activities. The
transitions without a label, which we hereafter refer to as λ-transitions, represent internal actions that
cannot be observed by external users.

3.1 Activities

We start with the mapping of a basic activity (X) shown in Fig. 2, which also illustrates our mapping
approach for structured activities. The net is divided into two parts: one (drawn in solid lines) models
the normal processing of X, the other (drawn in dashed lines) models the skipping of X. In the normal
processing part, place rx (“ready”) models an initial state when it is ready to start activity X before
checking the status of all control links coming into X, and place fx (“finished”) indicates a final state
when both X completes and the status of all control links leaving from X have been determined. The
transition labeled x models the action to be performed. This is an abstract way of modelling basic
activities, where the core of each activity is considered as an atomic action. Transition x has an input
place sx (“started”) for the state when activity X has started, and an output place cx (“completed”)
for the state when X is completed. Two λ-transitions (drawn as solid bars) model internal actions for
checking pre-conditions or evaluating post-conditions for activities. The skip path is used to facilitate
the mapping of control links, which will be described in Sect. 3.2. Note that the to skip and skipped
places are respectively decorated by two patterns (a letter Y and its upside-down image) so that they
can be graphically identified. In Fig. 2, hiding the subnet enclosed in the box labeled x yields an abstract
graphic representation of the mapping for activities. This will be used in the rest of the paper.

X

Y

skippedX

"skip"

YXto_skip Xr

Xs

X

Xc

Xf

Fig. 2. A basic activity.

Fig. 3 depicts the mapping of structured activities (except scopes) with a focus on their normal
behaviour. Since scopes are mainly concerned with exception handling, their mapping will be given
in Sect. 3.3. In Fig. 3, next to the mapping of each activity is a BPEL snippet of the activity. More

5

started

completed

ready

finished

The activity can be
<assign>
<invoke>
<receive>
<reply>

Sequence A;B

54

λ-transitions (drawn as hollow bars) are introduced for the mapping of routing constructs. Note that in
Figure 3 and subsequent figures, the skip path of the mapping is not shown when it is not used.

A sequence activity consists of one or more activities that are executed sequentially. A flow activity
provides parallel execution and synchronization of activities. The corresponding mappings in Fig. 3(a)
and (b) are straightforward.

A switch activity supports conditional routing between activities. In Fig. 3(c), as soon as one of the
branches is taken in activity X the other needs to be skipped, and X will not complete until both the
activity in the selected branch is finished and the activity in the other branch is skipped. Also, among
the set of branches in a switch activity, the first branch whose condition holds will be taken. In Fig. 3(c),
this is captured by the two λ-transitions annotated by z1 or ∼ z1 ∧ z2, where z1 and z2 are conditions
for the branches with activity A or B, respectively.

A pick activity exhibits the conditional behaviour where decision making is triggered by external
events or system timeout. It has a set of branches in the form of an event followed by an activity, and
exactly one of the branches is selected upon the occurrence of the event associated with it. There are two
types of events: message events (onMessage) which occur upon the arrival of an external message, and
alarm events (onAlarm) which occur upon timeout. In Fig. 3(d), a pick activity is modelled in a similar
way as a switch activity, except for the two transitions, labeled e1 or e2, which model the corresponding
events. As compared to the two local λ-transitions annotated (by conditions associated with branches)
in the mapping of a switch activity (in Fig. 3(c)), the event transitions e1 and e2 (in Fig. 3(d)) are
global transitions enabled upon external or system triggers.

A while activity supports structured loops. In Fig. 3(e), activity X has a sub-activity A that is
performed multiple times as long as the while condition (z) holds and the loop will exit if the condition
does not hold any more (∼z).

(d) pick

</case>
<case>

<condition>

</condition>

</condition>
activity B

</case>
</switch>

z

z

(c) switch(b) flow

(e) while

name="X">
activity A
activity B

</flow>

(a) sequence

<flow

<switch name="X">
<case>

<condition>

activity A

fA

Xr
X

Xr

Xs

B

Br

fB

Xc

fX

A

fA

rA

X

"z "1 2z "

Xr

Xs

fA

rA Br

fB

A B

Y Y

YY

Xc

fX

1"~z V

X

1

2

"z""~z"

A

rA

fA

Xs

Xr

fX

Xc

X

</while>
activity A
</condition>

z
<condition>

<while name="X">

Xs

Xr

Xc

fX

e1

fA

rA Br

fB

<sequence

e2

A B

Y Y

YY

X

e1

e2

</pick>

<onMessage >

><onAlarm
</onMessage>

activity A

<pick name="X">

</onAlarm>
activity B

name="X">
activity A
activity B

</sequence>
B

Br

fB

Xc

Xs

fX

A

rA

Fig. 3. Structured activities (normal behaviour).

From the above, except for a while activity (which always contains one sub-activity), we have con-
sidered two sub-activities when mapping the normal behaviour of structured activities. This yields a
binary version of the mapping, which can be easily extended to an n-ary version.

6

We show the binary version,
but it can be generalized to

an arbitrary number of
activities

sequence starts

sequence ends

Flow A|B

55

We show the binary version,
but it can be generalized to

an arbitrary number of
activities

λ-transitions (drawn as hollow bars) are introduced for the mapping of routing constructs. Note that in
Figure 3 and subsequent figures, the skip path of the mapping is not shown when it is not used.

A sequence activity consists of one or more activities that are executed sequentially. A flow activity
provides parallel execution and synchronization of activities. The corresponding mappings in Fig. 3(a)
and (b) are straightforward.

A switch activity supports conditional routing between activities. In Fig. 3(c), as soon as one of the
branches is taken in activity X the other needs to be skipped, and X will not complete until both the
activity in the selected branch is finished and the activity in the other branch is skipped. Also, among
the set of branches in a switch activity, the first branch whose condition holds will be taken. In Fig. 3(c),
this is captured by the two λ-transitions annotated by z1 or ∼ z1 ∧ z2, where z1 and z2 are conditions
for the branches with activity A or B, respectively.

A pick activity exhibits the conditional behaviour where decision making is triggered by external
events or system timeout. It has a set of branches in the form of an event followed by an activity, and
exactly one of the branches is selected upon the occurrence of the event associated with it. There are two
types of events: message events (onMessage) which occur upon the arrival of an external message, and
alarm events (onAlarm) which occur upon timeout. In Fig. 3(d), a pick activity is modelled in a similar
way as a switch activity, except for the two transitions, labeled e1 or e2, which model the corresponding
events. As compared to the two local λ-transitions annotated (by conditions associated with branches)
in the mapping of a switch activity (in Fig. 3(c)), the event transitions e1 and e2 (in Fig. 3(d)) are
global transitions enabled upon external or system triggers.

A while activity supports structured loops. In Fig. 3(e), activity X has a sub-activity A that is
performed multiple times as long as the while condition (z) holds and the loop will exit if the condition
does not hold any more (∼z).

(d) pick

</case>
<case>

<condition>

</condition>

</condition>
activity B

</case>
</switch>

z

z

(c) switch(b) flow

(e) while

name="X">
activity A
activity B

</flow>

(a) sequence

<flow

<switch name="X">
<case>

<condition>

activity A

fA

Xr
X

Xr

Xs

B

Br

fB

Xc

fX

A

fA

rA

X

"z "1 2z "

Xr

Xs

fA

rA Br

fB

A B

Y Y

YY

Xc

fX

1"~z V

X

1

2

"z""~z"

A

rA

fA

Xs

Xr

fX

Xc

X

</while>
activity A
</condition>

z
<condition>

<while name="X">

Xs

Xr

Xc

fX

e1

fA

rA Br

fB

<sequence

e2

A B

Y Y

YY

X

e1

e2

</pick>

<onMessage >

><onAlarm
</onMessage>

activity A

<pick name="X">

</onAlarm>
activity B

name="X">
activity A
activity B

</sequence>
B

Br

fB

Xc

Xs

fX

A

rA

Fig. 3. Structured activities (normal behaviour).

From the above, except for a while activity (which always contains one sub-activity), we have con-
sidered two sub-activities when mapping the normal behaviour of structured activities. This yields a
binary version of the mapping, which can be easily extended to an n-ary version.

6

While z do A

56

λ-transitions (drawn as hollow bars) are introduced for the mapping of routing constructs. Note that in
Figure 3 and subsequent figures, the skip path of the mapping is not shown when it is not used.

A sequence activity consists of one or more activities that are executed sequentially. A flow activity
provides parallel execution and synchronization of activities. The corresponding mappings in Fig. 3(a)
and (b) are straightforward.

A switch activity supports conditional routing between activities. In Fig. 3(c), as soon as one of the
branches is taken in activity X the other needs to be skipped, and X will not complete until both the
activity in the selected branch is finished and the activity in the other branch is skipped. Also, among
the set of branches in a switch activity, the first branch whose condition holds will be taken. In Fig. 3(c),
this is captured by the two λ-transitions annotated by z1 or ∼ z1 ∧ z2, where z1 and z2 are conditions
for the branches with activity A or B, respectively.

A pick activity exhibits the conditional behaviour where decision making is triggered by external
events or system timeout. It has a set of branches in the form of an event followed by an activity, and
exactly one of the branches is selected upon the occurrence of the event associated with it. There are two
types of events: message events (onMessage) which occur upon the arrival of an external message, and
alarm events (onAlarm) which occur upon timeout. In Fig. 3(d), a pick activity is modelled in a similar
way as a switch activity, except for the two transitions, labeled e1 or e2, which model the corresponding
events. As compared to the two local λ-transitions annotated (by conditions associated with branches)
in the mapping of a switch activity (in Fig. 3(c)), the event transitions e1 and e2 (in Fig. 3(d)) are
global transitions enabled upon external or system triggers.

A while activity supports structured loops. In Fig. 3(e), activity X has a sub-activity A that is
performed multiple times as long as the while condition (z) holds and the loop will exit if the condition
does not hold any more (∼z).

(d) pick

</case>
<case>

<condition>

</condition>

</condition>
activity B

</case>
</switch>

z

z

(c) switch(b) flow

(e) while

name="X">
activity A
activity B

</flow>

(a) sequence

<flow

<switch name="X">
<case>

<condition>

activity A

fA

Xr
X

Xr

Xs

B

Br

fB

Xc

fX

A

fA

rA

X

"z "1 2z "

Xr

Xs

fA

rA Br

fB

A B

Y Y

YY

Xc

fX

1"~z V

X

1

2

"z""~z"

A

rA

fA

Xs

Xr

fX

Xc

X

</while>
activity A
</condition>

z
<condition>

<while name="X">

Xs

Xr

Xc

fX

e1

fA

rA Br

fB

<sequence

e2

A B

Y Y

YY

X

e1

e2

</pick>

<onMessage >

><onAlarm
</onMessage>

activity A

<pick name="X">

</onAlarm>
activity B

name="X">
activity A
activity B

</sequence>
B

Br

fB

Xc

Xs

fX

A

rA

Fig. 3. Structured activities (normal behaviour).

From the above, except for a while activity (which always contains one sub-activity), we have con-
sidered two sub-activities when mapping the normal behaviour of structured activities. This yields a
binary version of the mapping, which can be easily extended to an n-ary version.

6

Switch (z1)A,(z2)B

57

We show the binary
version, but it can be

generalized to
an arbitrary number of

activities

In blue:
alternative flow
to skip activities

(to deal with links
and dead-path elim.)

are just decorations

λ-transitions (drawn as hollow bars) are introduced for the mapping of routing constructs. Note that in
Figure 3 and subsequent figures, the skip path of the mapping is not shown when it is not used.

A sequence activity consists of one or more activities that are executed sequentially. A flow activity
provides parallel execution and synchronization of activities. The corresponding mappings in Fig. 3(a)
and (b) are straightforward.

A switch activity supports conditional routing between activities. In Fig. 3(c), as soon as one of the
branches is taken in activity X the other needs to be skipped, and X will not complete until both the
activity in the selected branch is finished and the activity in the other branch is skipped. Also, among
the set of branches in a switch activity, the first branch whose condition holds will be taken. In Fig. 3(c),
this is captured by the two λ-transitions annotated by z1 or ∼ z1 ∧ z2, where z1 and z2 are conditions
for the branches with activity A or B, respectively.

A pick activity exhibits the conditional behaviour where decision making is triggered by external
events or system timeout. It has a set of branches in the form of an event followed by an activity, and
exactly one of the branches is selected upon the occurrence of the event associated with it. There are two
types of events: message events (onMessage) which occur upon the arrival of an external message, and
alarm events (onAlarm) which occur upon timeout. In Fig. 3(d), a pick activity is modelled in a similar
way as a switch activity, except for the two transitions, labeled e1 or e2, which model the corresponding
events. As compared to the two local λ-transitions annotated (by conditions associated with branches)
in the mapping of a switch activity (in Fig. 3(c)), the event transitions e1 and e2 (in Fig. 3(d)) are
global transitions enabled upon external or system triggers.

A while activity supports structured loops. In Fig. 3(e), activity X has a sub-activity A that is
performed multiple times as long as the while condition (z) holds and the loop will exit if the condition
does not hold any more (∼z).

(d) pick

</case>
<case>

<condition>

</condition>

</condition>
activity B

</case>
</switch>

z

z

(c) switch(b) flow

(e) while

name="X">
activity A
activity B

</flow>

(a) sequence

<flow

<switch name="X">
<case>

<condition>

activity A

fA

Xr
X

Xr

Xs

B

Br

fB

Xc

fX

A

fA

rA

X

"z "1 2z "

Xr

Xs

fA

rA Br

fB

A B

Y Y

YY

Xc

fX

1"~z V

X

1

2

"z""~z"

A

rA

fA

Xs

Xr

fX

Xc

X

</while>
activity A
</condition>

z
<condition>

<while name="X">

Xs

Xr

Xc

fX

e1

fA

rA Br

fB

<sequence

e2

A B

Y Y

YY

X

e1

e2

</pick>

<onMessage >

><onAlarm
</onMessage>

activity A

<pick name="X">

</onAlarm>
activity B

name="X">
activity A
activity B

</sequence>
B

Br

fB

Xc

Xs

fX

A

rA

Fig. 3. Structured activities (normal behaviour).

From the above, except for a while activity (which always contains one sub-activity), we have con-
sidered two sub-activities when mapping the normal behaviour of structured activities. This yields a
binary version of the mapping, which can be easily extended to an n-ary version.

6

Y
Y

Pick (e1)A,(e2)B

58

λ-transitions (drawn as hollow bars) are introduced for the mapping of routing constructs. Note that in
Figure 3 and subsequent figures, the skip path of the mapping is not shown when it is not used.

A sequence activity consists of one or more activities that are executed sequentially. A flow activity
provides parallel execution and synchronization of activities. The corresponding mappings in Fig. 3(a)
and (b) are straightforward.

A switch activity supports conditional routing between activities. In Fig. 3(c), as soon as one of the
branches is taken in activity X the other needs to be skipped, and X will not complete until both the
activity in the selected branch is finished and the activity in the other branch is skipped. Also, among
the set of branches in a switch activity, the first branch whose condition holds will be taken. In Fig. 3(c),
this is captured by the two λ-transitions annotated by z1 or ∼ z1 ∧ z2, where z1 and z2 are conditions
for the branches with activity A or B, respectively.

A pick activity exhibits the conditional behaviour where decision making is triggered by external
events or system timeout. It has a set of branches in the form of an event followed by an activity, and
exactly one of the branches is selected upon the occurrence of the event associated with it. There are two
types of events: message events (onMessage) which occur upon the arrival of an external message, and
alarm events (onAlarm) which occur upon timeout. In Fig. 3(d), a pick activity is modelled in a similar
way as a switch activity, except for the two transitions, labeled e1 or e2, which model the corresponding
events. As compared to the two local λ-transitions annotated (by conditions associated with branches)
in the mapping of a switch activity (in Fig. 3(c)), the event transitions e1 and e2 (in Fig. 3(d)) are
global transitions enabled upon external or system triggers.

A while activity supports structured loops. In Fig. 3(e), activity X has a sub-activity A that is
performed multiple times as long as the while condition (z) holds and the loop will exit if the condition
does not hold any more (∼z).

(d) pick

</case>
<case>

<condition>

</condition>

</condition>
activity B

</case>
</switch>

z

z

(c) switch(b) flow

(e) while

name="X">
activity A
activity B

</flow>

(a) sequence

<flow

<switch name="X">
<case>

<condition>

activity A

fA

Xr
X

Xr

Xs

B

Br

fB

Xc

fX

A

fA

rA

X

"z "1 2z "

Xr

Xs

fA

rA Br

fB

A B

Y Y

YY

Xc

fX

1"~z V

X

1

2

"z""~z"

A

rA

fA

Xs

Xr

fX

Xc

X

</while>
activity A
</condition>

z
<condition>

<while name="X">

Xs

Xr

Xc

fX

e1

fA

rA Br

fB

<sequence

e2

A B

Y Y

YY

X

e1

e2

</pick>

<onMessage >

><onAlarm
</onMessage>

activity A

<pick name="X">

</onAlarm>
activity B

name="X">
activity A
activity B

</sequence>
B

Br

fB

Xc

Xs

fX

A

rA

Fig. 3. Structured activities (normal behaviour).

From the above, except for a while activity (which always contains one sub-activity), we have con-
sidered two sub-activities when mapping the normal behaviour of structured activities. This yields a
binary version of the mapping, which can be easily extended to an n-ary version.

6

We show the binary
version, but it can be

generalized to
an arbitrary number of

activities

In blue:
alternative flow
to skip activities

(to deal with links
and dead-path elim.)

are just decorations
Y

Y

Basic activity + skip

59

Table 1. A comparative summary of related work on BPEL formalisation and analysis.

Tech SA CL EH TAV FDM Comm

Fu et al. [12] FSM + - - +/- - +
Foster et al. [11] FSM + - - +/- - +
Fisteus et al. [10] FSM + - +/- +/- - -
Ferrara [9] PA + - + - - -
Koshkina & van Breugel [15] PA + + - +/- + -
Farahbod et al. [8] ASM + +/- + - + -
Martens [16], Hinz et al. [13] PN + +/- + +/- - +
Stahl [20] HPN + + + +/- - +
our work PN + + + + + -

This paper follows on our previous work on formalising BPEL. A less complete and earlier version
of the formalisation presented here (without the tool support) can be found in [21], while an informal
analysis of BPEL in terms of a set of workflow patterns is given in [23].

3 Mapping WS-BPEL to Petri Nets

In this section we informally establish a mapping of the WS-BPEL control flow constructs to Petri nets.
When using Petri nets for capturing formal semantics of WS-BPEL, we allow the usage of both labeled
and unlabeled transitions. The labeled transitions are used to model events and basic activities. The
transitions without a label, which we hereafter refer to as λ-transitions, represent internal actions that
cannot be observed by external users.

3.1 Activities

We start with the mapping of a basic activity (X) shown in Fig. 2, which also illustrates our mapping
approach for structured activities. The net is divided into two parts: one (drawn in solid lines) models
the normal processing of X, the other (drawn in dashed lines) models the skipping of X. In the normal
processing part, place rx (“ready”) models an initial state when it is ready to start activity X before
checking the status of all control links coming into X, and place fx (“finished”) indicates a final state
when both X completes and the status of all control links leaving from X have been determined. The
transition labeled x models the action to be performed. This is an abstract way of modelling basic
activities, where the core of each activity is considered as an atomic action. Transition x has an input
place sx (“started”) for the state when activity X has started, and an output place cx (“completed”)
for the state when X is completed. Two λ-transitions (drawn as solid bars) model internal actions for
checking pre-conditions or evaluating post-conditions for activities. The skip path is used to facilitate
the mapping of control links, which will be described in Sect. 3.2. Note that the to skip and skipped
places are respectively decorated by two patterns (a letter Y and its upside-down image) so that they
can be graphically identified. In Fig. 2, hiding the subnet enclosed in the box labeled x yields an abstract
graphic representation of the mapping for activities. This will be used in the rest of the paper.

X

Y

skippedX

"skip"

YXto_skip Xr

Xs

X

Xc

Xf

Fig. 2. A basic activity.

Fig. 3 depicts the mapping of structured activities (except scopes) with a focus on their normal
behaviour. Since scopes are mainly concerned with exception handling, their mapping will be given
in Sect. 3.3. In Fig. 3, next to the mapping of each activity is a BPEL snippet of the activity. More

5

Regular
flow

Skip
path

started

completed

ready

finished

Basic activity + skip

60

Table 1. A comparative summary of related work on BPEL formalisation and analysis.

Tech SA CL EH TAV FDM Comm

Fu et al. [12] FSM + - - +/- - +
Foster et al. [11] FSM + - - +/- - +
Fisteus et al. [10] FSM + - +/- +/- - -
Ferrara [9] PA + - + - - -
Koshkina & van Breugel [15] PA + + - +/- + -
Farahbod et al. [8] ASM + +/- + - + -
Martens [16], Hinz et al. [13] PN + +/- + +/- - +
Stahl [20] HPN + + + +/- - +
our work PN + + + + + -

This paper follows on our previous work on formalising BPEL. A less complete and earlier version
of the formalisation presented here (without the tool support) can be found in [21], while an informal
analysis of BPEL in terms of a set of workflow patterns is given in [23].

3 Mapping WS-BPEL to Petri Nets

In this section we informally establish a mapping of the WS-BPEL control flow constructs to Petri nets.
When using Petri nets for capturing formal semantics of WS-BPEL, we allow the usage of both labeled
and unlabeled transitions. The labeled transitions are used to model events and basic activities. The
transitions without a label, which we hereafter refer to as λ-transitions, represent internal actions that
cannot be observed by external users.

3.1 Activities

We start with the mapping of a basic activity (X) shown in Fig. 2, which also illustrates our mapping
approach for structured activities. The net is divided into two parts: one (drawn in solid lines) models
the normal processing of X, the other (drawn in dashed lines) models the skipping of X. In the normal
processing part, place rx (“ready”) models an initial state when it is ready to start activity X before
checking the status of all control links coming into X, and place fx (“finished”) indicates a final state
when both X completes and the status of all control links leaving from X have been determined. The
transition labeled x models the action to be performed. This is an abstract way of modelling basic
activities, where the core of each activity is considered as an atomic action. Transition x has an input
place sx (“started”) for the state when activity X has started, and an output place cx (“completed”)
for the state when X is completed. Two λ-transitions (drawn as solid bars) model internal actions for
checking pre-conditions or evaluating post-conditions for activities. The skip path is used to facilitate
the mapping of control links, which will be described in Sect. 3.2. Note that the to skip and skipped
places are respectively decorated by two patterns (a letter Y and its upside-down image) so that they
can be graphically identified. In Fig. 2, hiding the subnet enclosed in the box labeled x yields an abstract
graphic representation of the mapping for activities. This will be used in the rest of the paper.

X

Y

skippedX

"skip"

YXto_skip Xr

Xs

X

Xc

Xf

Fig. 2. A basic activity.

Fig. 3 depicts the mapping of structured activities (except scopes) with a focus on their normal
behaviour. Since scopes are mainly concerned with exception handling, their mapping will be given
in Sect. 3.3. In Fig. 3, next to the mapping of each activity is a BPEL snippet of the activity. More

5

The token arrives
either here... ... or here

(but not both)

Table 1. A comparative summary of related work on BPEL formalisation and analysis.

Tech SA CL EH TAV FDM Comm

Fu et al. [12] FSM + - - +/- - +
Foster et al. [11] FSM + - - +/- - +
Fisteus et al. [10] FSM + - +/- +/- - -
Ferrara [9] PA + - + - - -
Koshkina & van Breugel [15] PA + + - +/- + -
Farahbod et al. [8] ASM + +/- + - + -
Martens [16], Hinz et al. [13] PN + +/- + +/- - +
Stahl [20] HPN + + + +/- - +
our work PN + + + + + -

This paper follows on our previous work on formalising BPEL. A less complete and earlier version
of the formalisation presented here (without the tool support) can be found in [21], while an informal
analysis of BPEL in terms of a set of workflow patterns is given in [23].

3 Mapping WS-BPEL to Petri Nets

In this section we informally establish a mapping of the WS-BPEL control flow constructs to Petri nets.
When using Petri nets for capturing formal semantics of WS-BPEL, we allow the usage of both labeled
and unlabeled transitions. The labeled transitions are used to model events and basic activities. The
transitions without a label, which we hereafter refer to as λ-transitions, represent internal actions that
cannot be observed by external users.

3.1 Activities

We start with the mapping of a basic activity (X) shown in Fig. 2, which also illustrates our mapping
approach for structured activities. The net is divided into two parts: one (drawn in solid lines) models
the normal processing of X, the other (drawn in dashed lines) models the skipping of X. In the normal
processing part, place rx (“ready”) models an initial state when it is ready to start activity X before
checking the status of all control links coming into X, and place fx (“finished”) indicates a final state
when both X completes and the status of all control links leaving from X have been determined. The
transition labeled x models the action to be performed. This is an abstract way of modelling basic
activities, where the core of each activity is considered as an atomic action. Transition x has an input
place sx (“started”) for the state when activity X has started, and an output place cx (“completed”)
for the state when X is completed. Two λ-transitions (drawn as solid bars) model internal actions for
checking pre-conditions or evaluating post-conditions for activities. The skip path is used to facilitate
the mapping of control links, which will be described in Sect. 3.2. Note that the to skip and skipped
places are respectively decorated by two patterns (a letter Y and its upside-down image) so that they
can be graphically identified. In Fig. 2, hiding the subnet enclosed in the box labeled x yields an abstract
graphic representation of the mapping for activities. This will be used in the rest of the paper.

X

Y

skippedX

"skip"

YXto_skip Xr

Xs

X

Xc

Xf

Fig. 2. A basic activity.

Fig. 3 depicts the mapping of structured activities (except scopes) with a focus on their normal
behaviour. Since scopes are mainly concerned with exception handling, their mapping will be given
in Sect. 3.3. In Fig. 3, next to the mapping of each activity is a BPEL snippet of the activity. More

5

normal behaviour skipping behaviour

Sequence + skip

61

Regular
flow

Skip
path

The mapping of skipping an entire structured activity is shown in Fig. 4. To capture the control
dependencies generated by structural constructs like sequence, we define separately the mapping of
skipping a non-sequence activity (i.e. flow, switch, pick, or while) in Fig. 4(a), and the mapping of
skipping a sequence activity in Fig. 4(b). In both mappings, a skipping place is added to specify an
intermediate state when the structured activity (X) waits for all its sub-activities (X1 to Xn) to be
skipped before X itself can be skipped. In Fig. 4(a), when a non-sequence activity is skipped, all its
sub-activities will be skipped in parallel. Whereas in Fig. 4(b), when a sequence activity is skipped, all
its sub-activities need to be skipped in the same order as their normal occurrences in the sequence.

(a) non−sequence

X Xn. . . are all direct sub−activities of X.[note]

.

..

.

..

Xn

Xn

. ..

. . .
. . .

X

n

X1

X1

X1

X

X

X

Y

I

Y Y

Y

Y Y

X

X

r

s

c

f

r

ff

r

"skip"

"skip_fin"

Xto_skip

Xskipped

Xskipping

nX

2X

1X

.

..

Xf

.

..

X

X

Xn

n
r

f

c

X2

X2

r

f

X

X

X1

X1

Y

r

s

r

f

Y

I
Y

Y

Y

Y

Y

Y

"skip"

"skip_fin"

X
X

X

Xskipped

skipping

to_skip

(b) sequence1

Fig. 4. Skipping structured activities.

3.2 Control Links

Control links are non-structural constructs used to express control dependencies between activities.
Fig. 5 depicts the mapping of control links using an example of a basic activity. The given BPEL
snippet specifies that activity X is the source of links X out

1 to X out
n and the target of links X in

1 to X in
m .

Each control link has a link status that may be set to true or false, as represented by place lst (“link
status true”) or lsf (“link status false”).

..

. BNXnet
boolean

βX

(mapping
of)

jctX

jcfX

...

. ..

lsttc
X
out

lst
lsf

tc

1
out

out

out

lsf
lst

1

lsf
lst

in

in

in

in
1

m

m

X

X

X

X

r

c

f

s

X

X

"sjf"

X
inL

L

n

n

n

1

1

lsf

out

out

out

jlsin Xin
jis the status of control link

where j=1, 2, ... , m.
,[note]

outtcn

out
1tc

...

...

βX lsin
1 , ... , mlsin()

Xout
n

Xout
1

Xin
1

Xin
m

<targets>
<joinCondition>

</transitionCondition>
</source>

</sources>

</joinCondition>

<activityX suppressJoinFailure="yes">
<sources>

</transitionCondition>
</source>

</targets>
</activityX>

<transitionCondition>

<source linkname="

<source linkname="

<target linkname="

<transitionCondition>
">

">

<target linkname=" ">

">

Fig. 5. A basic activity with control links.

7

Non-sequence + skip

62

Regular
flow

Skip
path

The mapping of skipping an entire structured activity is shown in Fig. 4. To capture the control
dependencies generated by structural constructs like sequence, we define separately the mapping of
skipping a non-sequence activity (i.e. flow, switch, pick, or while) in Fig. 4(a), and the mapping of
skipping a sequence activity in Fig. 4(b). In both mappings, a skipping place is added to specify an
intermediate state when the structured activity (X) waits for all its sub-activities (X1 to Xn) to be
skipped before X itself can be skipped. In Fig. 4(a), when a non-sequence activity is skipped, all its
sub-activities will be skipped in parallel. Whereas in Fig. 4(b), when a sequence activity is skipped, all
its sub-activities need to be skipped in the same order as their normal occurrences in the sequence.

(a) non−sequence

X Xn. . . are all direct sub−activities of X.[note]

.

..

.

..

Xn

Xn

. ..

. . .
. . .

X

n

X1

X1

X1

X

X

X

Y

I

Y Y

Y

Y Y

X

X

r

s

c

f

r

ff

r

"skip"

"skip_fin"

Xto_skip

Xskipped

Xskipping

nX

2X

1X

.

..

Xf

.

..

X

X

Xn

n
r

f

c

X2

X2

r

f

X

X

X1

X1

Y

r

s

r

f

Y

I
Y

Y

Y

Y

Y

Y

"skip"

"skip_fin"

X
X

X

Xskipped

skipping

to_skip

(b) sequence1

Fig. 4. Skipping structured activities.

3.2 Control Links

Control links are non-structural constructs used to express control dependencies between activities.
Fig. 5 depicts the mapping of control links using an example of a basic activity. The given BPEL
snippet specifies that activity X is the source of links X out

1 to X out
n and the target of links X in

1 to X in
m .

Each control link has a link status that may be set to true or false, as represented by place lst (“link
status true”) or lsf (“link status false”).

..

. BNXnet
boolean

βX

(mapping
of)

jctX

jcfX

...

. ..

lsttc
X
out

lst
lsf

tc

1
out

out

out

lsf
lst

1

lsf
lst

in

in

in

in
1

m

m

X

X

X

X

r

c

f

s

X

X

"sjf"

X
inL

L

n

n

n

1

1

lsf

out

out

out

jlsin Xin
jis the status of control link

where j=1, 2, ... , m.
,[note]

outtcn

out
1tc

...

...

βX lsin
1 , ... , mlsin()

Xout
n

Xout
1

Xin
1

Xin
m

<targets>
<joinCondition>

</transitionCondition>
</source>

</sources>

</joinCondition>

<activityX suppressJoinFailure="yes">
<sources>

</transitionCondition>
</source>

</targets>
</activityX>

<transitionCondition>

<source linkname="

<source linkname="

<target linkname="

<transitionCondition>
">

">

<target linkname=" ">

">

Fig. 5. A basic activity with control links.

7

Basic activity with control
links: normal behaviour

63

The mapping of skipping an entire structured activity is shown in Fig. 4. To capture the control
dependencies generated by structural constructs like sequence, we define separately the mapping of
skipping a non-sequence activity (i.e. flow, switch, pick, or while) in Fig. 4(a), and the mapping of
skipping a sequence activity in Fig. 4(b). In both mappings, a skipping place is added to specify an
intermediate state when the structured activity (X) waits for all its sub-activities (X1 to Xn) to be
skipped before X itself can be skipped. In Fig. 4(a), when a non-sequence activity is skipped, all its
sub-activities will be skipped in parallel. Whereas in Fig. 4(b), when a sequence activity is skipped, all
its sub-activities need to be skipped in the same order as their normal occurrences in the sequence.

(a) non−sequence

X Xn. . . are all direct sub−activities of X.[note]

.

..

.

..

Xn

Xn

. ..

. . .
. . .

X

n

X1

X1

X1

X

X

X

Y

I

Y Y

Y

Y Y

X

X

r

s

c

f

r

ff

r

"skip"

"skip_fin"

Xto_skip

Xskipped

Xskipping

nX

2X

1X

.

..

Xf

.

..

X

X

Xn

n
r

f

c

X2

X2

r

f

X

X

X1

X1

Y

r

s

r

f

Y

I
Y

Y

Y

Y

Y

Y

"skip"

"skip_fin"

X
X

X

Xskipped

skipping

to_skip

(b) sequence1

Fig. 4. Skipping structured activities.

3.2 Control Links

Control links are non-structural constructs used to express control dependencies between activities.
Fig. 5 depicts the mapping of control links using an example of a basic activity. The given BPEL
snippet specifies that activity X is the source of links X out

1 to X out
n and the target of links X in

1 to X in
m .

Each control link has a link status that may be set to true or false, as represented by place lst (“link
status true”) or lsf (“link status false”).

..

. BNXnet
boolean

βX

(mapping
of)

jctX

jcfX

...
. ..

lsttc
X
out

lst
lsf

tc

1
out

out

out

lsf
lst

1

lsf
lst

in

in

in

in
1

m

m

X

X

X

X

r

c

f

s

X

X

"sjf"

X
inL

L

n

n

n

1

1

lsf

out

out

out

jlsin Xin
jis the status of control link

where j=1, 2, ... , m.
,[note]

outtcn

out
1tc

...

...

βX lsin
1 , ... , mlsin()

Xout
n

Xout
1

Xin
1

Xin
m

<targets>
<joinCondition>

</transitionCondition>
</source>

</sources>

</joinCondition>

<activityX suppressJoinFailure="yes">
<sources>

</transitionCondition>
</source>

</targets>
</activityX>

<transitionCondition>

<source linkname="

<source linkname="

<target linkname="

<transitionCondition>
">

">

<target linkname=" ">

">

Fig. 5. A basic activity with control links.

7

transition condition
is true

transition condition
is false

Basic activity with control
links: normal behaviour

64

The mapping of skipping an entire structured activity is shown in Fig. 4. To capture the control
dependencies generated by structural constructs like sequence, we define separately the mapping of
skipping a non-sequence activity (i.e. flow, switch, pick, or while) in Fig. 4(a), and the mapping of
skipping a sequence activity in Fig. 4(b). In both mappings, a skipping place is added to specify an
intermediate state when the structured activity (X) waits for all its sub-activities (X1 to Xn) to be
skipped before X itself can be skipped. In Fig. 4(a), when a non-sequence activity is skipped, all its
sub-activities will be skipped in parallel. Whereas in Fig. 4(b), when a sequence activity is skipped, all
its sub-activities need to be skipped in the same order as their normal occurrences in the sequence.

(a) non−sequence

X Xn. . . are all direct sub−activities of X.[note]

.

..

.

..

Xn

Xn

. ..

. . .
. . .

X

n

X1

X1

X1

X

X

X

Y

I

Y Y

Y

Y Y

X

X

r

s

c

f

r

ff

r

"skip"

"skip_fin"

Xto_skip

Xskipped

Xskipping

nX

2X

1X

.

..

Xf

.

..

X

X

Xn

n
r

f

c

X2

X2

r

f

X

X

X1

X1

Y

r

s

r

f

Y

I
Y

Y

Y

Y

Y

Y

"skip"

"skip_fin"

X
X

X

Xskipped

skipping

to_skip

(b) sequence1

Fig. 4. Skipping structured activities.

3.2 Control Links

Control links are non-structural constructs used to express control dependencies between activities.
Fig. 5 depicts the mapping of control links using an example of a basic activity. The given BPEL
snippet specifies that activity X is the source of links X out

1 to X out
n and the target of links X in

1 to X in
m .

Each control link has a link status that may be set to true or false, as represented by place lst (“link
status true”) or lsf (“link status false”).

..

. BNXnet
boolean

βX

(mapping
of)

jctX

jcfX

...
. ..

lsttc
X
out

lst
lsf

tc

1
out

out

out

lsf
lst

1

lsf
lst

in

in

in

in
1

m

m

X

X

X

X

r

c

f

s

X

X

"sjf"

X
inL

L

n

n

n

1

1

lsf

out

out

out

jlsin Xin
jis the status of control link

where j=1, 2, ... , m.
,[note]

outtcn

out
1tc

...

...

βX lsin
1 , ... , mlsin()

Xout
n

Xout
1

Xin
1

Xin
m

<targets>
<joinCondition>

</transitionCondition>
</source>

</sources>

</joinCondition>

<activityX suppressJoinFailure="yes">
<sources>

</transitionCondition>
</source>

</targets>
</activityX>

<transitionCondition>

<source linkname="

<source linkname="

<target linkname="

<transitionCondition>
">

">

<target linkname=" ">

">

Fig. 5. A basic activity with control links.

7

join condition true

join condition false

incoming link is true

incoming link is false

Basic activity with control
links: normal behaviour

65

The mapping of skipping an entire structured activity is shown in Fig. 4. To capture the control
dependencies generated by structural constructs like sequence, we define separately the mapping of
skipping a non-sequence activity (i.e. flow, switch, pick, or while) in Fig. 4(a), and the mapping of
skipping a sequence activity in Fig. 4(b). In both mappings, a skipping place is added to specify an
intermediate state when the structured activity (X) waits for all its sub-activities (X1 to Xn) to be
skipped before X itself can be skipped. In Fig. 4(a), when a non-sequence activity is skipped, all its
sub-activities will be skipped in parallel. Whereas in Fig. 4(b), when a sequence activity is skipped, all
its sub-activities need to be skipped in the same order as their normal occurrences in the sequence.

(a) non−sequence

X Xn. . . are all direct sub−activities of X.[note]

.

..

.

..

Xn

Xn

. ..

. . .
. . .

X

n

X1

X1

X1

X

X

X

Y

I

Y Y

Y

Y Y

X

X

r

s

c

f

r

ff

r

"skip"

"skip_fin"

Xto_skip

Xskipped

Xskipping

nX

2X

1X

.

..

Xf

.

..

X

X

Xn

n
r

f

c

X2

X2

r

f

X

X

X1

X1

Y

r

s

r

f

Y

I
Y

Y

Y

Y

Y

Y

"skip"

"skip_fin"

X
X

X

Xskipped

skipping

to_skip

(b) sequence1

Fig. 4. Skipping structured activities.

3.2 Control Links

Control links are non-structural constructs used to express control dependencies between activities.
Fig. 5 depicts the mapping of control links using an example of a basic activity. The given BPEL
snippet specifies that activity X is the source of links X out

1 to X out
n and the target of links X in

1 to X in
m .

Each control link has a link status that may be set to true or false, as represented by place lst (“link
status true”) or lsf (“link status false”).

..

. BNXnet
boolean

βX

(mapping
of)

jctX

jcfX

...
. ..

lsttc
X
out

lst
lsf

tc

1
out

out

out

lsf
lst

1

lsf
lst

in

in

in

in
1

m

m

X

X

X

X

r

c

f

s

X

X

"sjf"

X
inL

L

n

n

n

1

1

lsf

out

out

out

jlsin Xin
jis the status of control link

where j=1, 2, ... , m.
,[note]

outtcn

out
1tc

...

...

βX lsin
1 , ... , mlsin()

Xout
n

Xout
1

Xin
1

Xin
m

<targets>
<joinCondition>

</transitionCondition>
</source>

</sources>

</joinCondition>

<activityX suppressJoinFailure="yes">
<sources>

</transitionCondition>
</source>

</targets>
</activityX>

<transitionCondition>

<source linkname="

<source linkname="

<target linkname="

<transitionCondition>
">

">

<target linkname=" ">

">

Fig. 5. A basic activity with control links.

7

join condition false

suppress join failure is selected

transition condition
is false

transition condition
is false

Basic activity with control
links: normal behaviour

66

The mapping of skipping an entire structured activity is shown in Fig. 4. To capture the control
dependencies generated by structural constructs like sequence, we define separately the mapping of
skipping a non-sequence activity (i.e. flow, switch, pick, or while) in Fig. 4(a), and the mapping of
skipping a sequence activity in Fig. 4(b). In both mappings, a skipping place is added to specify an
intermediate state when the structured activity (X) waits for all its sub-activities (X1 to Xn) to be
skipped before X itself can be skipped. In Fig. 4(a), when a non-sequence activity is skipped, all its
sub-activities will be skipped in parallel. Whereas in Fig. 4(b), when a sequence activity is skipped, all
its sub-activities need to be skipped in the same order as their normal occurrences in the sequence.

(a) non−sequence

X Xn. . . are all direct sub−activities of X.[note]

.

..

.

..

Xn

Xn

. ..

. . .
. . .

X

n

X1

X1

X1

X

X

X

Y

I

Y Y

Y

Y Y

X

X

r

s

c

f

r

ff

r

"skip"

"skip_fin"

Xto_skip

Xskipped

Xskipping

nX

2X

1X

.

..

Xf

.

..

X

X

Xn

n
r

f

c

X2

X2

r

f

X

X

X1

X1

Y

r

s

r

f

Y

I
Y

Y

Y

Y

Y

Y

"skip"

"skip_fin"

X
X

X

Xskipped

skipping

to_skip

(b) sequence1

Fig. 4. Skipping structured activities.

3.2 Control Links

Control links are non-structural constructs used to express control dependencies between activities.
Fig. 5 depicts the mapping of control links using an example of a basic activity. The given BPEL
snippet specifies that activity X is the source of links X out

1 to X out
n and the target of links X in

1 to X in
m .

Each control link has a link status that may be set to true or false, as represented by place lst (“link
status true”) or lsf (“link status false”).

..

. BNXnet
boolean

βX

(mapping
of)

jctX

jcfX

...
. ..

lsttc
X
out

lst
lsf

tc

1
out

out

out

lsf
lst

1

lsf
lst

in

in

in

in
1

m

m

X

X

X

X

r

c

f

s

X

X

"sjf"

X
inL

L

n

n

n

1

1

lsf

out

out

out

jlsin Xin
jis the status of control link

where j=1, 2, ... , m.
,[note]

outtcn

out
1tc

...

...

βX lsin
1 , ... , mlsin()

Xout
n

Xout
1

Xin
1

Xin
m

<targets>
<joinCondition>

</transitionCondition>
</source>

</sources>

</joinCondition>

<activityX suppressJoinFailure="yes">
<sources>

</transitionCondition>
</source>

</targets>
</activityX>

<transitionCondition>

<source linkname="

<source linkname="

<target linkname="

<transitionCondition>
">

">

<target linkname=" ">

">

Fig. 5. A basic activity with control links.

7

join condition true

join condition false

suppress join failure is selected

transition condition
is true

incoming link is true

incoming link is false

transition condition
is false

67

The subnet enclosed in the box labeled Lout
x specifies the mapping of outgoing links from activity X.

Once X is complete, it is ready to evaluate transition conditions, which determine the link status for each
of the outgoing links. Since transition condition expressions are part of the data perspective, they are
not explicitly specified in the mapping and their boolean evaluation is modelled non-deterministically.

The subnet enclosed in the box labeled Lin
x specifies the mapping of incoming links to activity X. A

join condition is defined as a boolean expression (e.g. βX (ls in
1 ,...,ls in

m)) in the set of variables representing
the status of each of the incoming links. It is mapped to a boolean net (BNx), which takes the status
of all incoming links as input and produces an evaluation result as output to place jctx (“join condition
true”) or jcfx (“join condition false”). The definition of this boolean net is given in Sect. 4.2.

If the join condition evaluates to true, activity X can start as normal. Otherwise, a fault called
join failure occurs. A join failure can be handled in two different ways, as determined by a so-called
suppressJoinFailure attribute associated with X. If this attribute is set to yes, the join failure will
be suppressed, as modelled by transition “sjf” (“suppress join failure”). In this case, the activity will
not be performed and the status of all outgoing links will be set to false. This is known as dead path
elimination in the sense that suppressing a join failure has the effect of propagating the false link status
transitively along the paths formed by control links, until a join condition is reached that evaluates to
true. An activity for which a join failure is suppressed, will end up in the “finished” state (e.g. fx) as if it
is completed as normal, and thus the processing of any following activity will not be affected. Otherwise,
if suppressJoinFailure is set to no, a join failure needs to be thrown, which triggers a standard fault
handling procedure as described in Sect. 3.5.

The mapping of skipping a basic activity with control links is shown in Fig. 6. Such an activity X, if
asked to skip, cannot be skipped until the status of all incoming links has been determined. Place jcvx
is used to collect either true or false token which represents the corresponding result of join condition
evaluation, as such result will not affect the skipping behaviour of X. In this way, we capture the control
dependency between activity X and the source activity of each of the incoming links to X. As soon as
activity X is skipped, the status of each of the outgoing links from X will be set to false, which captures
the dead path elimination as a result of skipping the activity.

jcfX

jctX

jcvX

.

X

X
in

X

X

X

r

c

f

s

X

X

.

L

.

.

LX
out"skip"

Y

Y

.

..

. . .

. . .

out
1

n
outlsf

lsf

skipped

X

X

to_skip

Fig. 6. Mapping of skipping a basic activity with control links.

. ..

. . .

Xto_f

.

..

.

..

. . .
. . .

Xr

Xn

Xn

jcfX

jctX

XLin

.

.

.

...
. . .

. . .

LX
out

out
1

n
outlsf

lsf

X

Xs

Xc

Xf

X1

X1

X1

f

rY

Y

Xn

r

f

Y

Y

. . .

"sjf_fin"

"sjf"
.
..

.

..

Xc

Xr
. ..X1 Xn

Xn

Xn

jcfX

jctX

XLin

.

.

.

...
. . .

. . .

LX
out

out
1

n
outlsf

lsf

Xs

X

Xf

Y

Y

X1

X1

r

f

r

f
I

. . .

Y Y

Y Y

"skip_fin"

"skip"

to_skipX

skippedX

skipping

. . .
. . .

. . .

Xjcv

X

(a) normal behaviour (b) skipping behaviour

Fig. 7. A non-sequence structured activity with control links.

8

join condition true

join condition false

link status false

link status false

Basic activity with control
links: skipping behaviour

Sequence activity with control links

68

We now extend the mapping of control links for structured activities. This is shown in Fig. 7 which
includes mappings for both (a) normal behaviour and (b) skipping behaviour of a non-sequence activity.
For the mapping of suppressing a join failure in Fig. 7(a), place to fx is added to capture an intermediate
state when activity X waits for all its sub-activities X1 to Xn to be skipped, before it is finished (fx).
For both mappings in Fig. 7(a) and (b), the dead path elimination is captured upon the completion of
suppressing the join failure (transition “sjffin”) or skipping all sub-activities of X (transition “skipfin”).
The mapping for a sequence activity can be extended in a similar way, as shown in Fig. 8. Note that
there is an exclusive choice between the normal behaviour (Fig. 7 (a) and Fig. 8 (a)) and the skipping
behaviour (Fig. 7 (b) and Fig. 8 (b)), because the environment puts a token in either place rx or to skipx.

Xn

Xn

. . .

to_fX

Xf

Xn

Xn

. . .

...

rX

skippedX

jctX

jcfX

XLin

...

XLin

jctX

jcfX

.

.

.

...
. . .

. . .

LX
out

out
1

n
outlsf

lsf ...
. . .

. . .

LX
out

out
1

n
outlsf

lsf......

to_skipX

skippingX

X1

X2

XnXn

X2

X1

(a) normal behaviour (b) skipping behaviour

X

r

f

c
"sjf_fin"

X2

2

r

Xf

rX

X

X1

X1

s

r

f

X

"sjf"

X

r

f

c

X2

2

r

Xf

X

X1

X1

s

r

f

X

Y

...

Xf

Y

Y

I

Y

Y

Y

Y

Y

.

.

.

"skip"
Y

Y

Y
Y

Y

Y

...

jcv

"skip_fin"

X

Fig. 8. A sequence activity with control links.

As an example, Figure 9 depicts the mapping of the BPEL process shown in Figure 1.

"c1"

FL

rFL

cFL

fFL

cSW

fSW

rSW

sSW

Y Y

Y Y

"~c1 c2"v

tc

tc

"tt"

"ff"

"tf"

"ft"

r

s

A3

c

f

c

s

r

f f

c

A2

s

A2r

jct

jcflsf

lst
lsf

lst

A1

A1 A2

A2A1

A1 A2

A3

A3

A3

A3

A1
x2

x1

x2

x2

x1

A3

A3

x1

s

Fig. 9. Mapping of the BPEL process shown in Figure 1.

9

We now extend the mapping of control links for structured activities. This is shown in Fig. 7 which
includes mappings for both (a) normal behaviour and (b) skipping behaviour of a non-sequence activity.
For the mapping of suppressing a join failure in Fig. 7(a), place to fx is added to capture an intermediate
state when activity X waits for all its sub-activities X1 to Xn to be skipped, before it is finished (fx).
For both mappings in Fig. 7(a) and (b), the dead path elimination is captured upon the completion of
suppressing the join failure (transition “sjffin”) or skipping all sub-activities of X (transition “skipfin”).
The mapping for a sequence activity can be extended in a similar way, as shown in Fig. 8. Note that
there is an exclusive choice between the normal behaviour (Fig. 7 (a) and Fig. 8 (a)) and the skipping
behaviour (Fig. 7 (b) and Fig. 8 (b)), because the environment puts a token in either place rx or to skipx.

Xn

Xn

. . .

to_fX

Xf

Xn

Xn

. . .

...

rX

skippedX

jctX

jcfX

XLin

...

XLin

jctX

jcfX

.

.

.

...
. . .

. . .

LX
out

out
1

n
outlsf

lsf ...
. . .

. . .

LX
out

out
1

n
outlsf

lsf......

to_skipX

skippingX

X1

X2

XnXn

X2

X1

(a) normal behaviour (b) skipping behaviour

X

r

f

c
"sjf_fin"

X2

2

r

Xf

rX

X

X1

X1

s

r

f

X

"sjf"

X

r

f

c

X2

2

r

Xf

X

X1

X1

s

r

f

X

Y

...

Xf

Y

Y

I

Y

Y

Y

Y

Y

.

.

.

"skip"
Y

Y

Y
Y

Y

Y

...

jcv

"skip_fin"

X

Fig. 8. A sequence activity with control links.

As an example, Figure 9 depicts the mapping of the BPEL process shown in Figure 1.

"c1"

FL

rFL

cFL

fFL

cSW

fSW

rSW

sSW

Y Y

Y Y

"~c1 c2"v

tc

tc

"tt"

"ff"

"tf"

"ft"

r

s

A3

c

f

c

s

r

f f

c

A2

s

A2r

jct

jcflsf

lst
lsf

lst

A1

A1 A2

A2A1

A1 A2

A3

A3

A3

A3

A1
x2

x1

x2

x2

x1

A3

A3

x1

s

Fig. 9. Mapping of the BPEL process shown in Figure 1.

9

Non-sequence activity with control links

69

The subnet enclosed in the box labeled Lout
x specifies the mapping of outgoing links from activity X.

Once X is complete, it is ready to evaluate transition conditions, which determine the link status for each
of the outgoing links. Since transition condition expressions are part of the data perspective, they are
not explicitly specified in the mapping and their boolean evaluation is modelled non-deterministically.

The subnet enclosed in the box labeled Lin
x specifies the mapping of incoming links to activity X. A

join condition is defined as a boolean expression (e.g. βX (ls in
1 ,...,ls in

m)) in the set of variables representing
the status of each of the incoming links. It is mapped to a boolean net (BNx), which takes the status
of all incoming links as input and produces an evaluation result as output to place jctx (“join condition
true”) or jcfx (“join condition false”). The definition of this boolean net is given in Sect. 4.2.

If the join condition evaluates to true, activity X can start as normal. Otherwise, a fault called
join failure occurs. A join failure can be handled in two different ways, as determined by a so-called
suppressJoinFailure attribute associated with X. If this attribute is set to yes, the join failure will
be suppressed, as modelled by transition “sjf” (“suppress join failure”). In this case, the activity will
not be performed and the status of all outgoing links will be set to false. This is known as dead path
elimination in the sense that suppressing a join failure has the effect of propagating the false link status
transitively along the paths formed by control links, until a join condition is reached that evaluates to
true. An activity for which a join failure is suppressed, will end up in the “finished” state (e.g. fx) as if it
is completed as normal, and thus the processing of any following activity will not be affected. Otherwise,
if suppressJoinFailure is set to no, a join failure needs to be thrown, which triggers a standard fault
handling procedure as described in Sect. 3.5.

The mapping of skipping a basic activity with control links is shown in Fig. 6. Such an activity X, if
asked to skip, cannot be skipped until the status of all incoming links has been determined. Place jcvx
is used to collect either true or false token which represents the corresponding result of join condition
evaluation, as such result will not affect the skipping behaviour of X. In this way, we capture the control
dependency between activity X and the source activity of each of the incoming links to X. As soon as
activity X is skipped, the status of each of the outgoing links from X will be set to false, which captures
the dead path elimination as a result of skipping the activity.

jcfX

jctX

jcvX

.

X

X
in

X

X

X

r

c

f

s

X

X

.

L

.

.

LX
out"skip"

Y

Y

.

..

. . .

. . .

out
1

n
outlsf

lsf

skipped

X

X

to_skip

Fig. 6. Mapping of skipping a basic activity with control links.

. ..

. . .

Xto_f

.

..

.

..

. . .
. . .

Xr

Xn

Xn

jcfX

jctX

XLin

.

.

.

...
. . .

. . .

LX
out

out
1

n
outlsf

lsf

X

Xs

Xc

Xf

X1

X1

X1

f

rY

Y

Xn

r

f

Y

Y

. . .

"sjf_fin"

"sjf"
.
..

.

..

Xc

Xr

. ..X1 Xn

Xn

Xn

jcfX

jctX

XLin

.

.

.

...
. . .

. . .

LX
out

out
1

n
outlsf

lsf

Xs

X

Xf

Y

Y

X1

X1

r

f

r

f
I

. . .

Y Y

Y Y

"skip_fin"

"skip"

to_skipX

skippedX

skipping

. . .
. . .

. . .

Xjcv

X

(a) normal behaviour (b) skipping behaviour

Fig. 7. A non-sequence structured activity with control links.

8

The subnet enclosed in the box labeled Lout
x specifies the mapping of outgoing links from activity X.

Once X is complete, it is ready to evaluate transition conditions, which determine the link status for each
of the outgoing links. Since transition condition expressions are part of the data perspective, they are
not explicitly specified in the mapping and their boolean evaluation is modelled non-deterministically.

The subnet enclosed in the box labeled Lin
x specifies the mapping of incoming links to activity X. A

join condition is defined as a boolean expression (e.g. βX (ls in
1 ,...,ls in

m)) in the set of variables representing
the status of each of the incoming links. It is mapped to a boolean net (BNx), which takes the status
of all incoming links as input and produces an evaluation result as output to place jctx (“join condition
true”) or jcfx (“join condition false”). The definition of this boolean net is given in Sect. 4.2.

If the join condition evaluates to true, activity X can start as normal. Otherwise, a fault called
join failure occurs. A join failure can be handled in two different ways, as determined by a so-called
suppressJoinFailure attribute associated with X. If this attribute is set to yes, the join failure will
be suppressed, as modelled by transition “sjf” (“suppress join failure”). In this case, the activity will
not be performed and the status of all outgoing links will be set to false. This is known as dead path
elimination in the sense that suppressing a join failure has the effect of propagating the false link status
transitively along the paths formed by control links, until a join condition is reached that evaluates to
true. An activity for which a join failure is suppressed, will end up in the “finished” state (e.g. fx) as if it
is completed as normal, and thus the processing of any following activity will not be affected. Otherwise,
if suppressJoinFailure is set to no, a join failure needs to be thrown, which triggers a standard fault
handling procedure as described in Sect. 3.5.

The mapping of skipping a basic activity with control links is shown in Fig. 6. Such an activity X, if
asked to skip, cannot be skipped until the status of all incoming links has been determined. Place jcvx
is used to collect either true or false token which represents the corresponding result of join condition
evaluation, as such result will not affect the skipping behaviour of X. In this way, we capture the control
dependency between activity X and the source activity of each of the incoming links to X. As soon as
activity X is skipped, the status of each of the outgoing links from X will be set to false, which captures
the dead path elimination as a result of skipping the activity.

jcfX

jctX

jcvX

.

X

X
in

X

X

X

r

c

f

s

X

X

.

L

.

.

LX
out"skip"

Y

Y

.

..

. . .

. . .

out
1

n
outlsf

lsf

skipped

X

X

to_skip

Fig. 6. Mapping of skipping a basic activity with control links.

. ..

. . .

Xto_f

.

..

.

..

. . .
. . .

Xr

Xn

Xn

jcfX

jctX

XLin

.

.

.

...
. . .

. . .

LX
out

out
1

n
outlsf

lsf

X

Xs

Xc

Xf

X1

X1

X1

f

rY

Y

Xn

r

f

Y

Y

. . .

"sjf_fin"

"sjf"
.
..

.

..

Xc

Xr

. ..X1 Xn

Xn

Xn

jcfX

jctX

XLin

.

.

.

...
. . .

. . .

LX
out

out
1

n
outlsf

lsf

Xs

X

Xf

Y

Y

X1

X1

r

f

r

f
I

. . .

Y Y

Y Y

"skip_fin"

"skip"

to_skipX

skippedX

skipping

. . .
. . .

. . .

Xjcv

X

(a) normal behaviour (b) skipping behaviour

Fig. 7. A non-sequence structured activity with control links.

8

The previous example

70

which, together with the associated notions of join condition and transition condition, support the
definition of precedence, synchronization and conditional dependencies on top of those captured by the
structured activity constructs. A control link between activities A and B indicates that B cannot start
before A has either completed or has been “skipped”. Moreover, B can only be executed if its associated
join condition evaluates to true, otherwise B is skipped. This join condition is expressed in terms of
the tokens carried by control links leading to B. These tokens may take either a positive (true) or a
negative (false) value. An activity X propagates a token with a positive value along an outgoing link L
if and only if X was executed (as opposed to being skipped) and the transition condition associated to
L evaluates to true. Transition conditions are boolean expressions over the process variables (just like
the conditions in a switch activity). The process by which positive and negative tokens are propagated
along control links, causing activities to be executed or skipped, is called dead path elimination.

Control links may cross the boundaries of most structured activities. However, they must not create
cyclic control dependencies and must not cross the boundary of a while activity or a serializable scope.4
Prior to our work, the interaction between structured activities and control links was not fully under-
stood, resulting in ambiguities and contradictions in the wording of the BPEL specification [5]. Following
our formalisation effort, some of these issues were reported and discussed in the BPEL standardisation
committee, and changes to the specification’s wording have been proposed, albeit not yet adopted (see
footnote 3).

Also, whilst the control flow constructs of BPEL have been designed in a way to ensure that no
BPEL process execution can deadlock5, some combinations of structured activities (in particular switch
and pick) with control links can lead to situations where some activities are “unreachable”. Consider the
BPEL process definition in Fig. 1 where both the XML code and a graphical representation are provided.
During the execution of this process, either A1 or A2 will be skipped because these two activities are
placed in different branches of a switch and in any execution of a switch only one branch is taken. Thus,
one of the two control links x1 or x2 will carry a negative token. On the other hand, we assume that
the join condition attached to activity A3 (denoted by keyword “AND”) evaluates to true if and only if
both links x1 and x2 carry positive values. Hence, this join condition will always evaluate to false and
activity A3 is always skipped (i.e. it is unreachable).

<invoke name = "A3">

AND

A1 A2

x2

x1

A3

SW

FL

c1 c2

Flow

Switch

Control Link

Legend:

Basic Activity

<process name="unreachableTask"

<flow name="FL" suppressJoinFailure="yes">
<links>
 <link name="x1"/>
 <link name="x2"/>
</links>
<switch name="SW">
 <case>
 <invoke name="A1">
 <sources>
 </invoke>
 </case>
 <otherwise>
 <invoke name="A2">
 <sources>
 </invoke>
 </otherwise>
</switch>

 <targets>
 <joinCondition>

 </joinCondition>
 <target linkName="x1"/>
 <target linkName="x2"/>
 </targets>
</invoke>
</flow>

</process>

 <source linkName="x1"/> </sources>

 </sources>

 targetNamespace="http://samples.otn.com"
 suppressJoinFailure="yes"
 xmlns:tns="http://samples.otn.com"
 xmlns:services="http://services.otn.com"
 xmlns="http://schemas.xmlsoap.org/ws/2003/03/business−process/">

 bpws:getLinkStatus(‘x1’) and bpws:getLinkStatus(‘x2’)

 <source linkName="x2"/>

Fig. 1. Example of a BPEL process with an unreachable activity.

4 Serializable scopes are not covered in this paper since they are not a control-flow construct and thus fall
outside the scope of this work. Instead, serializable scopes are fundamentally related to data manipulation.

5 Although it has not been formally proved that BPEL processes are deadlock-free, to the best of our knowledge
no example of a deadlocking BPEL process has been put forward. Also, Kiepuszewski et al. [14] proves
that synchronizing workflows (a subset of BPEL processes made up of elementary actions, control links,
and restricted forms of join conditions) are non-deadlocking. Note that here we refer to “individual BPEL
processes” as opposed to “sets of communicating BPEL processes” which are outside the scope of our work.

3

We now extend the mapping of control links for structured activities. This is shown in Fig. 7 which
includes mappings for both (a) normal behaviour and (b) skipping behaviour of a non-sequence activity.
For the mapping of suppressing a join failure in Fig. 7(a), place to fx is added to capture an intermediate
state when activity X waits for all its sub-activities X1 to Xn to be skipped, before it is finished (fx).
For both mappings in Fig. 7(a) and (b), the dead path elimination is captured upon the completion of
suppressing the join failure (transition “sjffin”) or skipping all sub-activities of X (transition “skipfin”).
The mapping for a sequence activity can be extended in a similar way, as shown in Fig. 8. Note that
there is an exclusive choice between the normal behaviour (Fig. 7 (a) and Fig. 8 (a)) and the skipping
behaviour (Fig. 7 (b) and Fig. 8 (b)), because the environment puts a token in either place rx or to skipx.

Xn

Xn

. . .

to_fX

Xf

Xn

Xn

. . .

...

rX

skippedX

jctX

jcfX

XLin

...

XLin

jctX

jcfX

.

.

.

...
. . .

. . .

LX
out

out
1

n
outlsf

lsf ...
. . .

. . .

LX
out

out
1

n
outlsf

lsf......

to_skipX

skippingX

X1

X2

XnXn

X2

X1

(a) normal behaviour (b) skipping behaviour

X

r

f

c
"sjf_fin"

X2

2

r

Xf

rX

X

X1

X1

s

r

f

X

"sjf"

X

r

f

c

X2

2

r

Xf

X

X1

X1

s

r

f

X

Y

...

Xf

Y

Y

I

Y

Y

Y

Y

Y

.

.

.

"skip"
Y

Y

Y

Y

Y

Y

...

jcv

"skip_fin"

X

Fig. 8. A sequence activity with control links.

As an example, Figure 9 depicts the mapping of the BPEL process shown in Figure 1.

"c1"

FL

rFL

cFL

fFL

cSW

fSW

rSW

sSW

Y Y

Y Y

"~c1 c2"v

tc

tc

"tt"

"ff"

"tf"

"ft"

r

s

A3

c

f

c

s

r

f f

c

A2

s

A2r

jct

jcflsf

lst
lsf

lst

A1

A1 A2

A2A1

A1 A2

A3

A3

A3

A3

A1
x2

x1

x2

x2

x1

A3

A3

x1

s

Fig. 9. Mapping of the BPEL process shown in Figure 1.

9

71

The previous example

72

The previous example

Scope

73

 Remind that a scope has a primary activity, and optionally:
a set of fault handlers,

a set of event handlers, and
one compensation handler.

To deal with them, four “flags” are attached to a scope:
to_continue (no exception, execution is in progress)
to_stop (an error occurred, activities need to stop)
snapshot (successfully completed, uncompensated)

no_snapshot (no compensation needed)

Scope

74

3.3 Scopes

A scope is a special type of structured activity defined for event and exception handling. It has a
primary (i.e. main) activity, and can provide event handlers (Sect. 3.4), fault handlers (Sect. 3.5) and
a compensation handler (Sect. 3.6). Like other structured activities, scopes can be nested to arbitrary
depth, and the whole process is implicitly regarded as the top level scope.

To facilitate the mapping of exception handling, we define four flags for a scope. These are: to continue,
indicating the execution of the scope is in progress and no exception has occurred; to stop, signaling an
error has occurred and all active activities nested in the scope need to stop; snapshot, capturing the scope
snapshot defined in [5] which refers to the preserved state of a successfully completed uncompensated
scope; and no snapshot, indicating the absence of a scope snapshot.

Fig. 10 depicts the basic mapping for a scope (Q) in which the mapping of any event or exception
handler associated with the scope is not included. Assume that no exception occurs. Scope Q remains in
the status of to continue during its normal performance (i.e. the execution of Q’s main activity A). Upon
the completion of activity A, a snapshot is preserved for scope Q. Next, consider the case of skipping
scope Q (see Fig. 10(a)) or the case of suppressing a join failure for Q (see Fig. 10(b)). Once activity A
has been skipped (upon the occurrence of transition “skip fin” or “sjf fin”), the status indicating the
absence of a scope snapshot for Q (place no snapshotQ) will be recorded. Finally, faults may occur during
the normal performance of scope Q, causing the status of Q to change from to continue to to stop. This
will be described further in Sect. 3.5.

(b) suppressing join failure

to_stopX

to_continueQC

snapshotQ

:)

Qno_snapshotskippedQ

Qskipping

to_skipQ

Q

A

A

A

Qr

s

r

f

Y
Q

Q

Q

c

f

Y !

Y

I

Y

"skip_fin"

"skip"

(a) skipping behaviour

Qr

Qs

Qc

snapshotQ

:)

Qno_snapshot ! Qf

jctQ

jcfQ

Q
inL

to_fQ

LX
out

...
. . .

. . .

out
1

n
outlsf

lsf

Qto_stopX

to_continueQC

Ar

A

Af

.

.

.

"sjf"

"sjf_fin"

Y

Y

Q

. ..

. . .

Q

Fig. 10. A scope with its main activity.

3.4 Event Handlers

A scope can provide event handlers that are responsible for handling normal events (i.e. message or alarm
events) that occur concurrently while the scope is running. A message event handler can be triggered
multiple times if the expected message event occurs multiple times, and an alarm event handler, except
for a repeatEvery alarm, can be invoked at most once (upon timeout). The repeatEvery alarm event
occurs repeatedly upon each timeout when the scope is active, and the corresponding event handler can
be invoked multiple times as long as the alarm event occurs.

We discuss a couple of decisions made for the mapping of event handlers. Firstly, since no control
links are allowed to cross the boundary of event handlers, each event handler can be viewed as an
independent unit of activities within a scope. Secondly, the occurrence of an event is either triggered by
the system (for an alarm event) or by the environment (for a message event), and the event handler is
invoked only if the expected event occurs. So it is not necessary to distinguish between the mappings
of the different types of event handlers.

Fig. 11 depicts the mapping of a scope (Q) with an event handler (EH). The four flags associated
with the scope are omitted. The subnet enclosed in the box labeled EH specifies the mapping of event
handler EH. As soon as scope Q starts, it is ready to invoke EH. Meanwhile, event enormal is enabled
and may occur upon an environment or a system trigger. When enormal occurs, an instance of EH is
created, in which activity HE (“handling event”) is executed. EH remains active as long as Q is active.
Finally, event enormal becomes disabled once the normal process of Q (i.e. Q’s main activity A) is finished.

10

3.3 Scopes

A scope is a special type of structured activity defined for event and exception handling. It has a
primary (i.e. main) activity, and can provide event handlers (Sect. 3.4), fault handlers (Sect. 3.5) and
a compensation handler (Sect. 3.6). Like other structured activities, scopes can be nested to arbitrary
depth, and the whole process is implicitly regarded as the top level scope.

To facilitate the mapping of exception handling, we define four flags for a scope. These are: to continue,
indicating the execution of the scope is in progress and no exception has occurred; to stop, signaling an
error has occurred and all active activities nested in the scope need to stop; snapshot, capturing the scope
snapshot defined in [5] which refers to the preserved state of a successfully completed uncompensated
scope; and no snapshot, indicating the absence of a scope snapshot.

Fig. 10 depicts the basic mapping for a scope (Q) in which the mapping of any event or exception
handler associated with the scope is not included. Assume that no exception occurs. Scope Q remains in
the status of to continue during its normal performance (i.e. the execution of Q’s main activity A). Upon
the completion of activity A, a snapshot is preserved for scope Q. Next, consider the case of skipping
scope Q (see Fig. 10(a)) or the case of suppressing a join failure for Q (see Fig. 10(b)). Once activity A
has been skipped (upon the occurrence of transition “skip fin” or “sjf fin”), the status indicating the
absence of a scope snapshot for Q (place no snapshotQ) will be recorded. Finally, faults may occur during
the normal performance of scope Q, causing the status of Q to change from to continue to to stop. This
will be described further in Sect. 3.5.

(b) suppressing join failure

to_stopX

to_continueQC

snapshotQ

:)

Qno_snapshotskippedQ

Qskipping

to_skipQ

Q

A

A

A

Qr

s

r

f

Y
Q

Q

Q

c

f

Y !

Y

I
Y

"skip_fin"

"skip"

(a) skipping behaviour

Qr

Qs

Qc

snapshotQ

:)

Qno_snapshot ! Qf

jctQ

jcfQ

Q
inL

to_fQ

LX
out

...
. . .

. . .

out
1

n
outlsf

lsf

Qto_stopX

to_continueQC

Ar

A

Af

.

.

.

"sjf"

"sjf_fin"

Y

Y

Q

. ..

. . .

Q

Fig. 10. A scope with its main activity.

3.4 Event Handlers

A scope can provide event handlers that are responsible for handling normal events (i.e. message or alarm
events) that occur concurrently while the scope is running. A message event handler can be triggered
multiple times if the expected message event occurs multiple times, and an alarm event handler, except
for a repeatEvery alarm, can be invoked at most once (upon timeout). The repeatEvery alarm event
occurs repeatedly upon each timeout when the scope is active, and the corresponding event handler can
be invoked multiple times as long as the alarm event occurs.

We discuss a couple of decisions made for the mapping of event handlers. Firstly, since no control
links are allowed to cross the boundary of event handlers, each event handler can be viewed as an
independent unit of activities within a scope. Secondly, the occurrence of an event is either triggered by
the system (for an alarm event) or by the environment (for a message event), and the event handler is
invoked only if the expected event occurs. So it is not necessary to distinguish between the mappings
of the different types of event handlers.

Fig. 11 depicts the mapping of a scope (Q) with an event handler (EH). The four flags associated
with the scope are omitted. The subnet enclosed in the box labeled EH specifies the mapping of event
handler EH. As soon as scope Q starts, it is ready to invoke EH. Meanwhile, event enormal is enabled
and may occur upon an environment or a system trigger. When enormal occurs, an instance of EH is
created, in which activity HE (“handling event”) is executed. EH remains active as long as Q is active.
Finally, event enormal becomes disabled once the normal process of Q (i.e. Q’s main activity A) is finished.

10

Full translation

75

 The interested reader can find out
more details in the paper by Ouyang et al.

and play with the BPEL2PNML tool available at
http://www.win.tue.nl/~hverbeek/doku.php?id=projects:prom:plug-ins:conversion:bpel2tpn

An alternative translation is given in the paper
``Transforming BPEL to Petri Nets’’ by Hinz, Schmidt, Stahl,

supported by the BPEL2oWFN tool available at
http://www.gnu.org/software/bpel2owfn/

The two translations are compared in
``Comparing and Evaluating Petri Net Semantics for BPEL’’

by Lohmann, Verbeek, Ouyang, Stahl, van der Aalst

http://www.win.tue.nl/~hverbeek/doku.php?id=projects:prom:plug-ins:conversion:bpel2tpn
http://www.gnu.org/software/bpel2owfn/

