
Business Processes Modelling MPB (6 cfu, 295AA)

Roberto Bruni

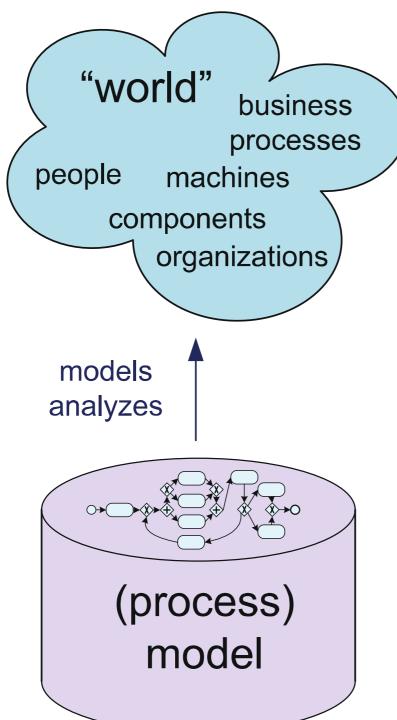
http://www.di.unipi.it/~bruni

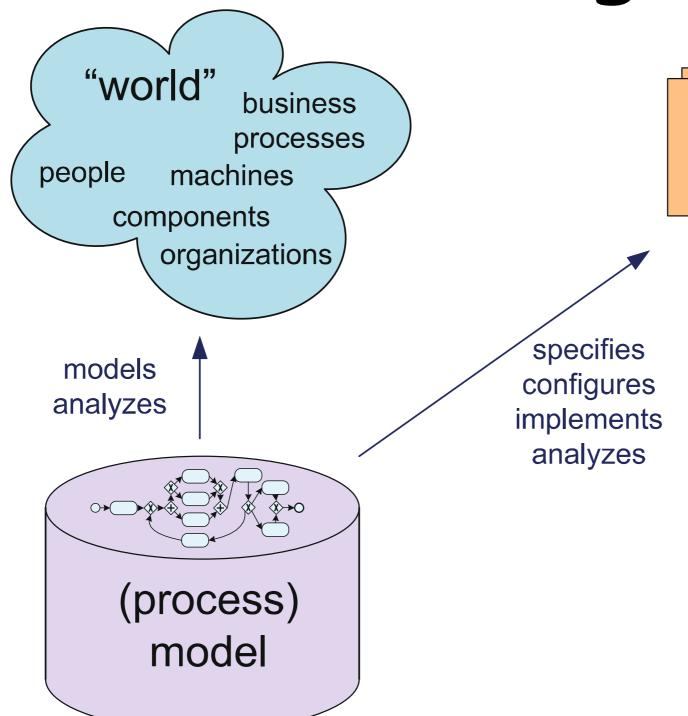
23 - Process Mining

We overview the key principles of process mining

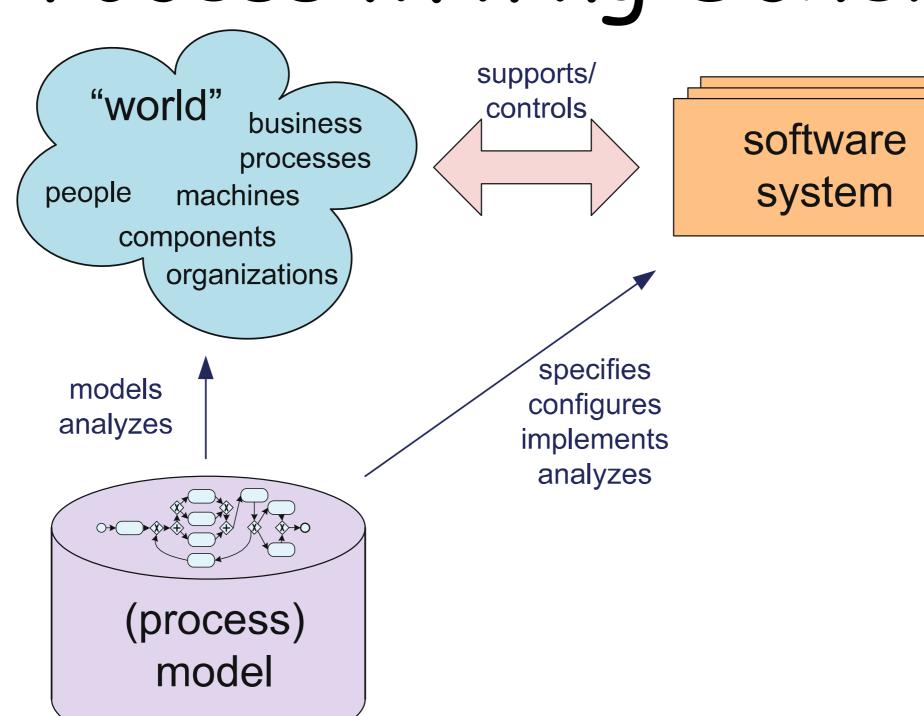
Chapters 1, 5, 7. Process Mining. W. van der Aalst

Process Mining


Process mining is a relative young research discipline that sits between


machine learning and data mining on the one hand

and process modeling and analysis on the other hand.


The idea is to discover, monitor and improve real processes by **extracting knowledge from event logs** readily available in today's systems.

```
"world" business processes people machines components organizations
```


software system

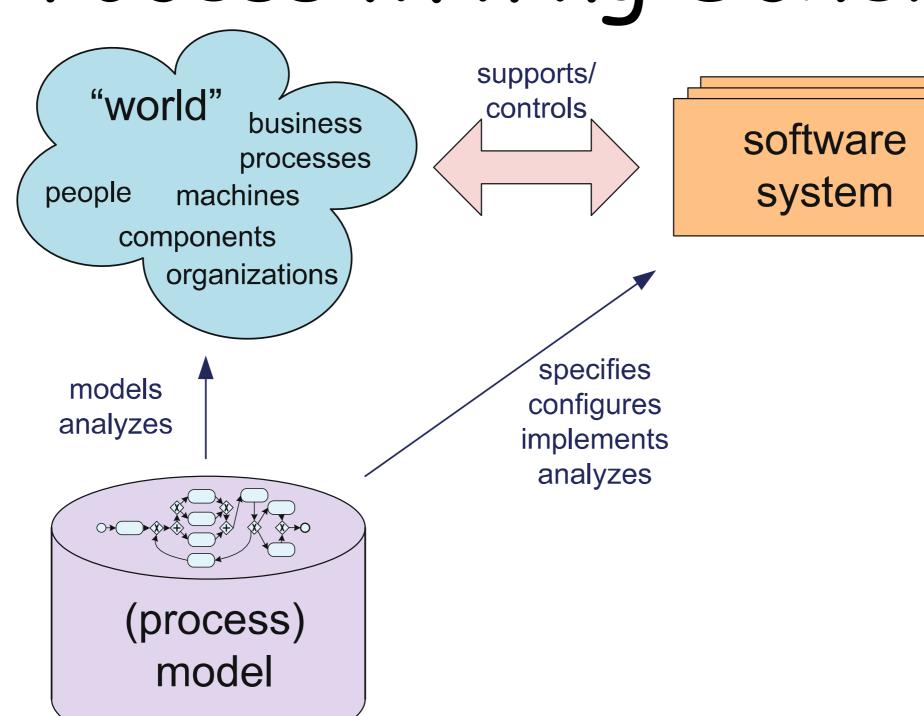
Processes, Cases, Events, Attributes

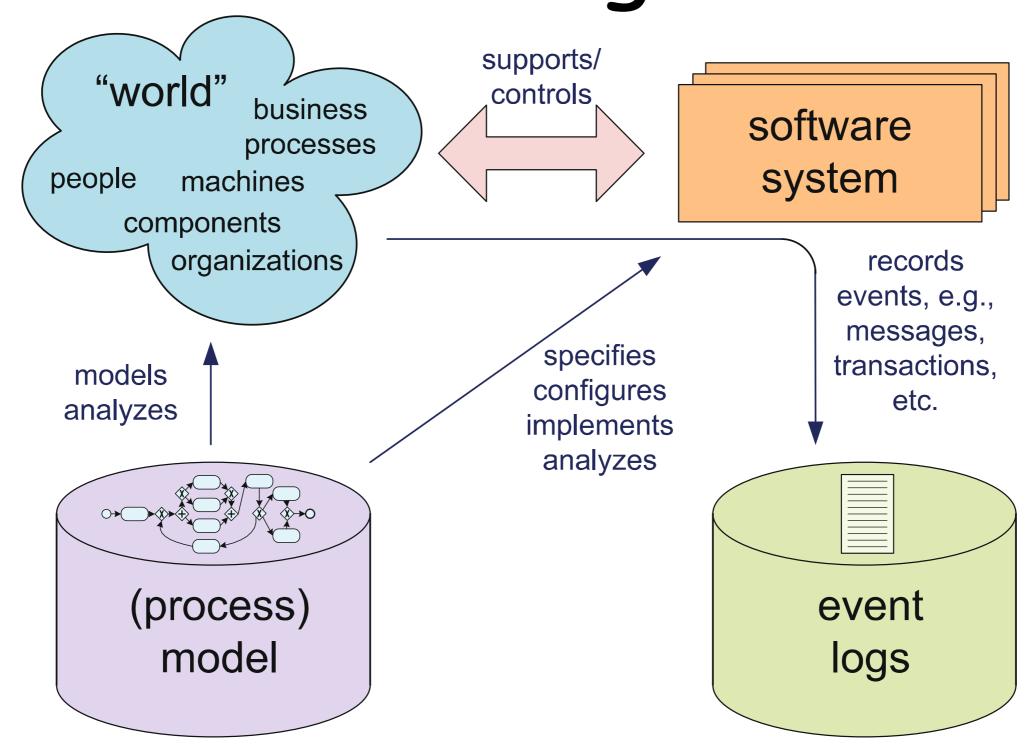
A process consists of cases.

A case consists of events such that each event relates to precisely one case.

Events within a case are ordered in time.

Events can have attributes.


Examples of typical attribute names are activity, time, cost, and resource.

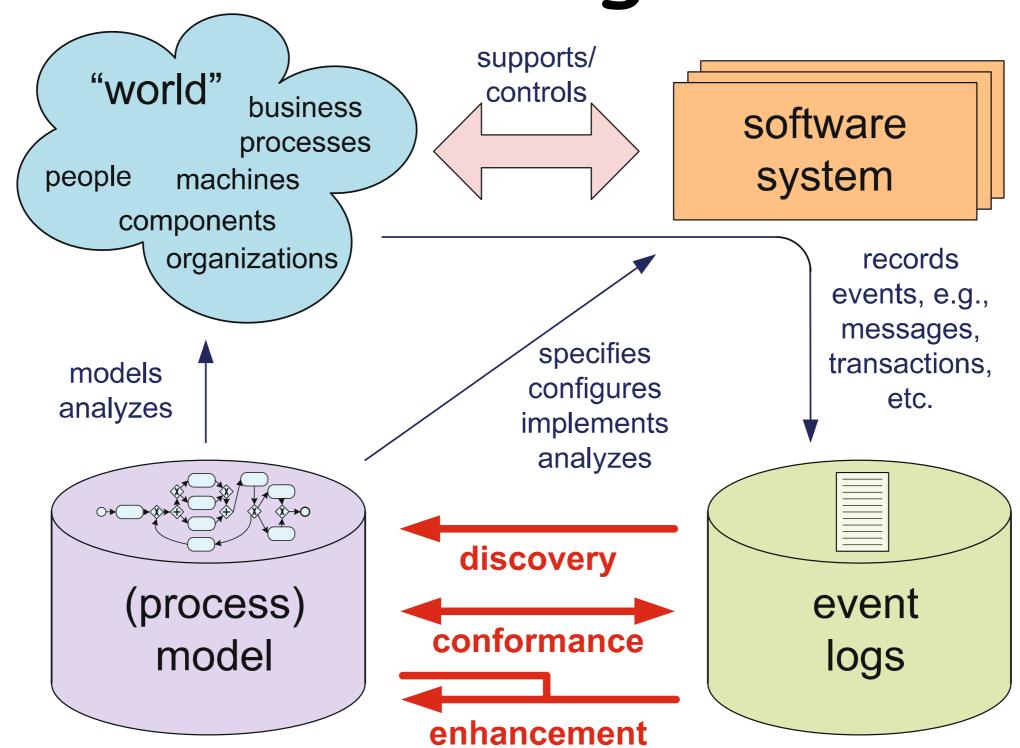

Event Logs

Let us assume that it is possible to sequentially record events of a process such that each event:

refers to an activity (i.e., a well-defined step in the process)

and is related to a particular case (i.e., a process instance).

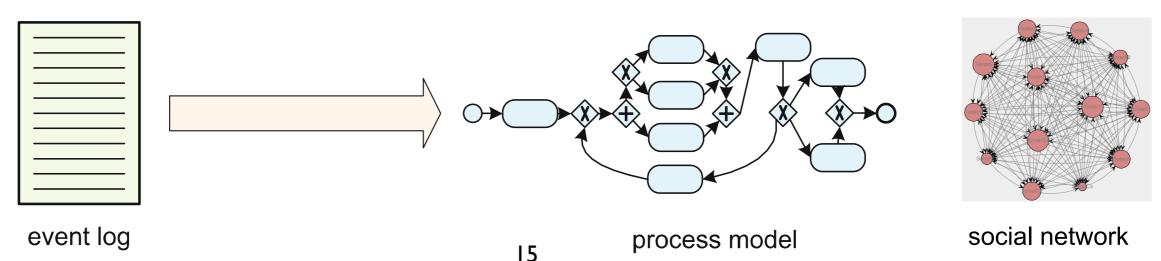
Event Log Example


Case id	Event id	Properties				
		Timestamp	Activity	Resource	Cost	• • •
1	35654423	30-12-2010:11.02	Register request	Pete	50	
2	35654483	30-12-2010:11.32	Register request	Mike	50	
2	35654485	30-12-2010:12.12	Check ticket	Mike	100	
2	35654487	30-12-2010:14.16	Examine casually	Pete	400	• • •
1	35654424	31-12-2010:10.06	Examine thoroughly	Sue	400	• • •
2	35654488	05-01-2011:11.22	Decide	Sara	200	• • •
1	35654425	05-01-2011:15.12	Check ticket	Mike	100	• • •
1	35654426	06-01-2011:11.18	Decide	Sara	200	• • •
1	35654427	07-01-2011:14.24	Reject request	Pete	200	• • •
2	35654489	08-01-2011:12.05	Pay compensation	Ellen	200	• • •

ordered by Timestamp

Event Log Example

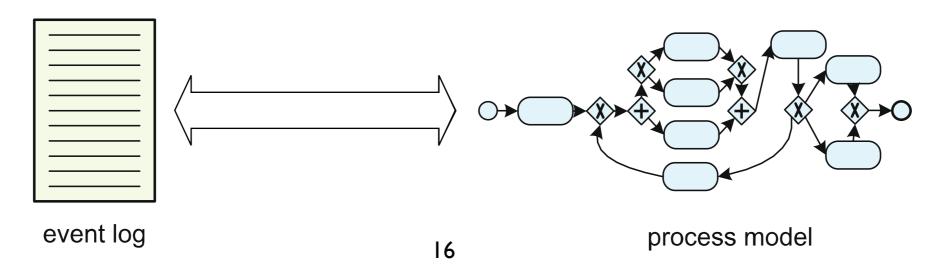
Case id	Event id	Properties				
		Timestamp	Activity	Resource	Cost	• • •
1	35654423	30-12-2010:11.02	Register request	Pete	50	• • •
	35654424	31-12-2010:10.06	Examine thoroughly	Sue	400	• • •
	35654425	05-01-2011:15.12	Check ticket	Mike	100	• • •
	35654426	06-01-2011:11.18	Decide	Sara	200	• • •
	35654427	07-01-2011:14.24	Reject request	Pete	200	• • •
2	35654483	30-12-2010:11.32	Register request	Mike	50	
	35654485	30-12-2010:12.12	Check ticket	Mike	100	• • •
	35654487	30-12-2010:14.16	Examine casually	Pete	400	• • •
	35654488	05-01-2011:11.22	Decide	Sara	200	• • •
	35654489	08-01-2011:12.05	Pay compensation	Ellen	200	


grouped by Case id, ordered by Timestamp

Discovery

A discovery technique takes an event log and produces a model (without using any a-priori information)

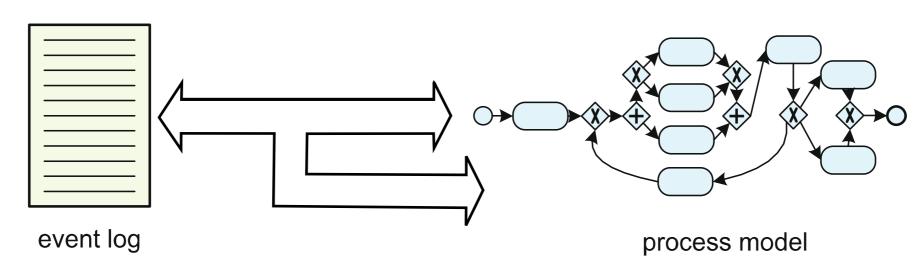
If the event log contains information about resources, one can also discover resource-related models, e.g., a social network showing how people work together in an organization.



Conformance

Conformance checking measures how reality, as recorded in the log, conforms to the process model, and vice versa.

An existing process model is compared with an event log.


Conformance checking may be used to detect, locate and explain deviations, and to measure the severity of these deviations.

Enhancement

Whereas conformance checking measures the alignment between a model and reality

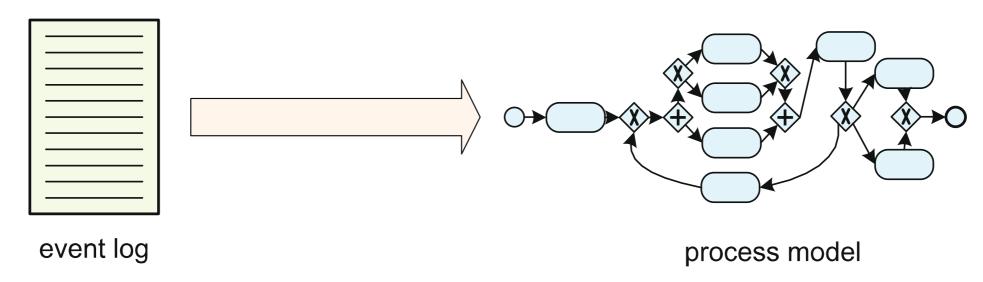
enhancement aims to extend/improve existing models/systems using information about the actual process recorded in some event log.

Enhancement: Two angles

First viewpoint (the model is supposed to be **descriptive**): the model does not capture the real behavior ("the model is wrong, how to improve it?")

Second viewpoint (the model is **normative**) reality deviates from the desired model ("the event log is wrong, how to control execution?").

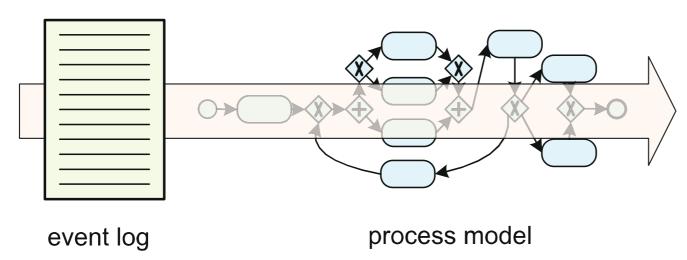
Enhancement: Model Repair


One type of enhancement is **repair**, i.e., modifying the model to better reflect reality.

For example, if two activities are modeled sequentially but in reality can happen in any order, then the model may be corrected to reflect this.

Three Strategies

Play-in

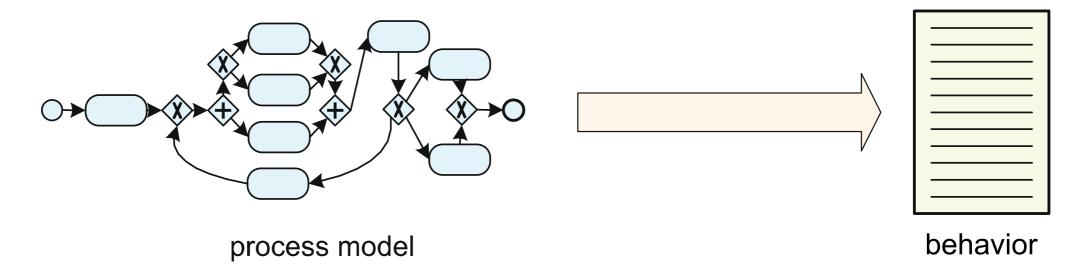

Play-In

Mining **Discovery**

Replay

Replay

- extended model showing times, frequencies, etc.
- diagnostics
- predictions
- recommendations


Conformance checking

Performance analysis
Bottlenecks detection
Predictive models (based on past)

Operational support (deviation detection)

Play-out

Play-Out

Workflow engine
Simulation engine
Trace generation
Model checking

Discovery and conformance: an example

Case id	Event id	Properties				
		Timestamp	Activity	Resource	Cost	• • •
1	35654423	30-12-2010:11.02	Register request	Pete	50	
	35654424	31-12-2010:10.06	Examine thoroughly	Sue	400	• • •
	35654425	05-01-2011:15.12	Check ticket	Mike	100	
	35654426	06-01-2011:11.18	Decide	Sara	200	• • •
	35654427	07-01-2011:14.24	Reject request	Pete	200	•••
2	35654483	30-12-2010:11.32	Register request	Mike	50	
	35654485	30-12-2010:12.12	Check ticket	Mike	100	• • •
	35654487	30-12-2010:14.16	Examine casually	Pete	400	• • •
	35654488	05-01-2011:11.22	Decide	Sara	200	
	35654489	08-01-2011:12.05	Pay compensation	Ellen	200	• • •

Two cases

Two traces

Ten (ordered) events

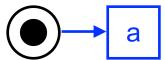
Case id	Event id	Properties			
		Timestamp	Activity	Resource	Cost
1			Register request		
			Examine thoroughly		
			Check ticket		
			Decide		
			Reject request		
2			Register request		
			Check ticket		
			Examine casually		
			Decide		
			Pay compensation		

Case id	Event id	Properties				
		Timestamp	Activity	Resource	Cost	• • •
1			a (Register request)		
			b Examine thoroughly	5		
			Check ticket			
			e Decide			
			h (Reject request			
2			a (Register request)		
			Check ticket	5		
			C Examine casually			
			e Decide			
			G Pay compensation			

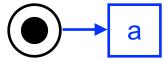
Case id	Event id	Properties				
		Timestamp	Activity	Resource	Cost	• • •
1			а			
			b			
			d			
			е			
			h			
2			a			
			d			
			C			
			е			
			g			

```
Case id
           Event id
                          Properties
                                                                          Resource
                          Timestamp
                                                 Activity
                                                                                        Cost
                                    \langle abdeh \rangle
                                    \langle adceg \rangle
```

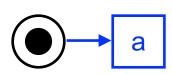
Case id	Event id	Properties					Case id	Event id	Properties				
		Timestamp	Activity	Resource	Cost	•••			Timestamp	Activity	Resource	Cost	• • •
1	35654423	30-12-2010:11.02	Register request	Pete	50		6	35654871	06-01-2011:15.02	Register request	Mike	50	
	35654424	31-12-2010:1	Examine thoroughly	Sue	400			33654873	06-01-2011:16.06	E amine casually	Ellen	400	•••
	35654425	05-01-2011:1: 12	Checletic	4	100			565 87		C ecl fic et	Mike	100	
	35654426	06-01-2011:1 .18	D c'le	Saa	200	()	<i>(</i>	2565 0 5	010 20 1:15 5	Dail	Sara	200	• • •
	35654427	07-01-2011:14	Reject request	Pete	200		9 4	35654877	16-01-2011:11.47	Pay compensation	Mike	200	•••
2	35654483	30-12-2010:11.32	Register request	Mike	50			33034077	10-01-2011.11	1 ay compensation	WIIKC	200	•••
	35654485	30-12-2010:12.12	Check ticket	Mike	100		• • •	•••	•••	•••	•••	•••	• • •
	35654487	30-12-2010:14.16	Examine casually	Pete	400								
	35654488	05-01-2011:11.22	Decide	Sara	200				T 11 4 4 4				
	35654489	08-01-2011:12.05	Pay compensation	Ellen	200				Table 1.2 A m	-			
3	35654521	30-12-2010:14.32	Register request	Pete	50]	representation of	of log shown			
	35654522	30-12-2010:15.06	Examine casually	Mike	400			-	in Table 1.1: <i>a</i>	= register			
	35654524	30-12-2010:16.34	Check ticket	Ellen	100				request, b = ex	O			
	35654525	06-01-2011:09.18	Decide	Sara	200				•				
	35654526	06-01-2011:12.18	Reinitiate request	Sara	200			i	thoroughly, $c =$	= examine			
	35654527	06-01-2011:13.06	Examine thoroughly	Sean	400			(casually, $d = c$	check ticket,			
	35654530	08-01-2011:11.43	Check ticket	Pete	100				e = decide, f =				
	35654531	09-01-2011:09.55	Decide	Sara	200								
	35654533	15-01-2011:10.45	Pay compensation	Ellen	200				request, $g = pa$	•			
4	35654641	06-01-2011:15.02	Register request	Pete	50				compensation,	and $h = reject$	L		
	35654643	07-01-2011:12.06	Check ticket	Mike	100				request				
	35654644	08-01-2011:14.43	Examine thoroughly	Sean	400				1				
	35654645	09-01-2011:12.02	Decide	Sara	200		Case id			Trace			
	35654647	12-01-2011:15.44	Reject request	Ellen	200								
5	35654711	06-01-2011:09.02	Register request	Ellen	50		1			/ a la d a la\			
	35654712	07-01-2011:10.16	Examine casually	Mike	400		1			$\langle a, b, d, e, h \rangle$			
	35654714	08-01-2011:11.22	Check ticket	Pete	100		2			$\langle a, d, c, e, g \rangle$			
	35654715	10-01-2011:13.28	Decide	Sara	200								
	35654716	11-01-2011:16.18	Reinitiate request	Sara	200		3			$\langle a, c, d, e, f, l \rangle$	$\langle o, d, e, g \rangle$		
	35654718	14-01-2011:14.33	Check ticket	Ellen	100		4			$\langle a, d, b, e, h \rangle$			
	35654719	16-01-2011:15.50	Examine casually	Mike	400		4			•			
	35654720	19-01-2011:11.18	Decide	Sara	200		5			$\langle a, c, d, e, f, c \rangle$	d, c, e, f,	c, d, ϵ	$e,h\rangle$
	35654721	20-01-2011:12.48	Reinitiate request	Sara	200						, , , , , ,	, , , -	, , ,
	35654722	21-01-2011:09.06	Examine casually	Sue	400		6			$\langle a, c, d, e, g \rangle$			
	35654724	21-01-2011:11.34	Check ticket	Pete	100								
	35654725	23-01-2011:13.12	Decide	Sara	200					• • •			
	35654726	24-01-2011:14.56	Reject request	Mike	200		30						

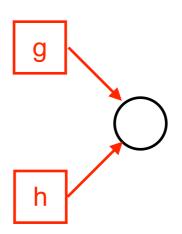

Case id	Trace
1	$\langle a,b,d,e,h \rangle$
2	$\langle a,d,c,e,g \rangle$
3	$\langle a, c, d, e, f, b, d, e, g \rangle$
4	$\langle a,d,b,e,h \rangle$
5	$\langle a, c, d, e, f, d, c, e, f, c, d, e, h \rangle$
6	$\langle a, c, d, e, g \rangle$
	• • •

All cases start with a

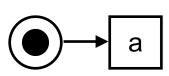

Case id	Trace
1	$\langle a, b, d, e, h \rangle$ $\langle a, d, c, e, g \rangle$ $\langle a, c, d, e, f, b, d, e, g \rangle$ $\langle a, d, b, e, h \rangle$ $\langle a, c, d, e, f, d, c, e, f, c, d, e, h \rangle$ $\langle a, c, d, e, g \rangle$
2	$\langle a, d, c, e, g \rangle$
3	$\langle a, c, d, e, f, b, d, e, g \rangle$
4	$\langle a, d, b, e, h \rangle$
5	$\langle a, c, d, e, f, d, c, e, f, c, d, e, h \rangle$
6	$\langle a, c, d, e, g \rangle$
•••	

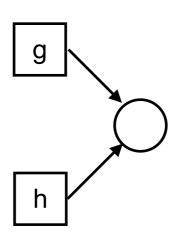
All cases start with a


Case id	Trace
1	$\langle a, b, d, e, h \rangle$ $\langle a, d, c, e, g \rangle$ $\langle a, c, d, e, f, b, d, e, g \rangle$ $\langle a, d, b, e, h \rangle$ $\langle a, c, d, e, f, d, c, e, f, c, d, e, h \rangle$ $\langle a, c, d, e, g \rangle$
2	$\langle a, d, c, e, g \rangle$
3	$\langle a, c, d, e, f, b, d, e, g \rangle$
4	$\langle a, d, b, e, h \rangle$
5	$\langle a, c, d, e, f, d, c, e, f, c, d, e, h \rangle$
6	$\langle a, c, d, e, g \rangle$
•••	
o 	$\langle a, c, a, e, g \rangle$

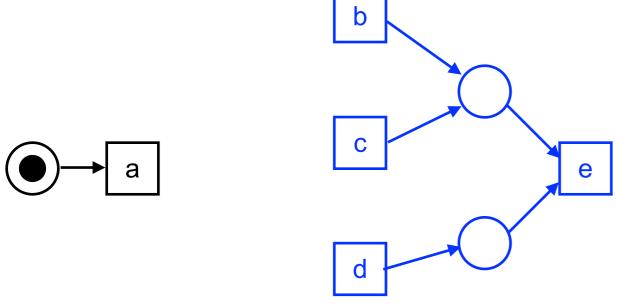


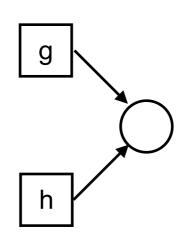
All cases start with a and end with either g or h.


Trace
$\langle a, b, d, e, h \rangle$ $\langle a, d, c, e, g \rangle$ $\langle a, c, d, e, f, b, d, e, g \rangle$ $\langle a, d, b, e, h \rangle$ $\langle a, c, d, e, f, d, c, e, f, c, d, e, h \rangle$ $\langle a, c, d, e, g \rangle$
$\langle a, d, c, e g \rangle$
$\langle a, c, d, e, f, b, d, e \rangle$
$\langle a, d, b, e h \rangle$
$\langle a, c, d, e, f, d, c, e, f, c, d, e, h \rangle$
$\langle a, c, d, e g \rangle$

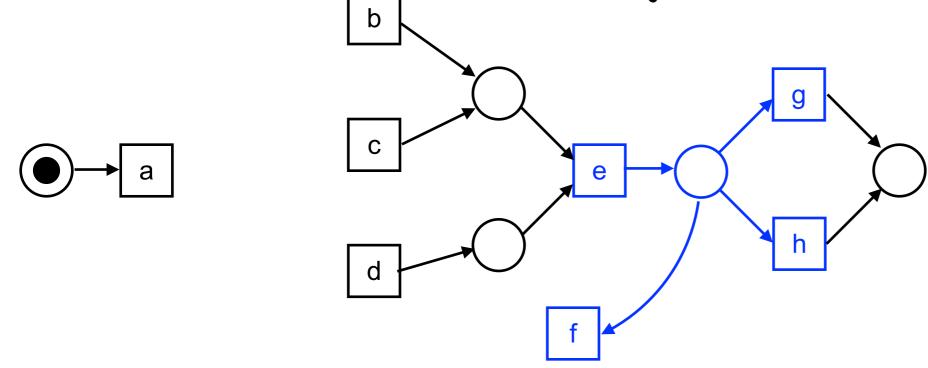


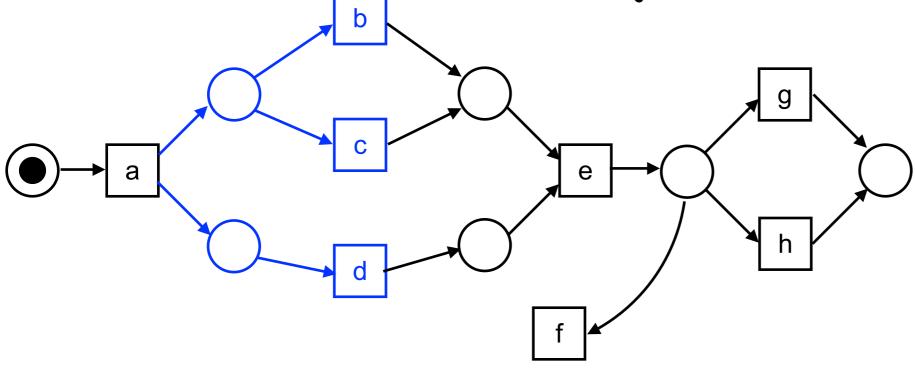
All cases start with a and end with either g or h.


$\langle a, b, d, e, h \rangle$ $\langle a, d, c, e, g \rangle$ $\langle a, c, d, e, f, b, d, e, g \rangle$ $\langle a, d, b, e, h \rangle$ $\langle a, c, d, e, f, d, c, e, f, c, d, e, h \rangle$ $\langle a, c, d, e, g \rangle$
$\langle a, d, c, e g \rangle$
$\langle a, c, d, e, f, b, d, e \rangle$
$\langle a, d, b, e h \rangle$
$\langle a, c, d, e, f, d, c, e, f, c, d, e, h \rangle$
$\langle a, c, d, e \mid g \rangle$
_



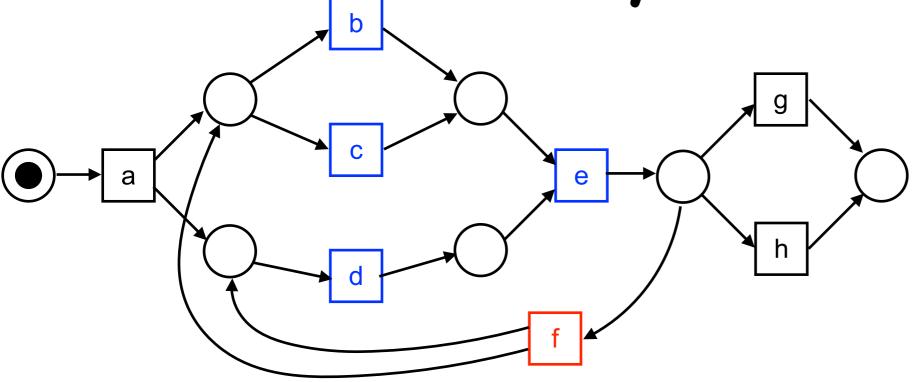
d and one of the examination activities (b or c).


Trace
$\langle a, b, d, e, h \rangle$
$\langle a, b, d, e, h \rangle$ $\langle a, a, c, e, g \rangle$ $\langle a, c, d, e, f, b, d, e, g \rangle$
$\langle a, c(d, e, f, b(d, e, g) \rangle$
$\langle a, a, b, e, h \rangle$
$\langle a, c d, e, f, d c, e, f, a, d, e, h \rangle$
$\langle a, c d, e, g \rangle$
•••

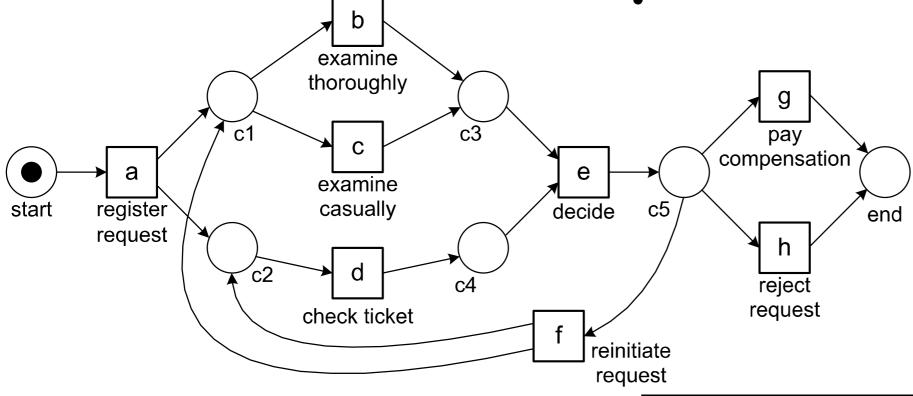

d and one of the examination activities (b or c).

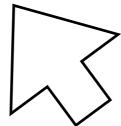
Case id	Trace
1	$\langle a, b, d, e, h \rangle$
2	$\langle a, a, c, e, g \rangle$
3	$\langle a, b, d, e, h \rangle$ $\langle a, a, c, e, g \rangle$ $\langle a, c, d, e, f, b, d, e, g \rangle$
4	$\langle a, a, b, e, h \rangle$
5	$\langle a, c(d, e), f, d(c, e), f, d, d, e, h \rangle$
6	$\langle a, c d, e, g \rangle$
	•••
37	

Moreover, e is always followed by f, g, or h.

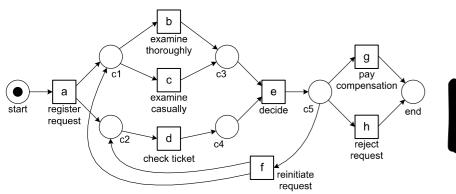

Case id	Trace
1	$\langle a, b, d(e, h) \rangle$
2	
3	$\langle a, d, c e, g \rangle$ $\langle a, c, d e, f, b, d e, g \rangle$ $\langle a, d, b e, h \rangle$
4	$\langle a, d, b e, h \rangle$
5	$\langle a, c, d e, f, d, c e, f, c, d e, h \rangle$
6	$\langle a, c, d e, g \rangle$
•••	•••
38	

b/c and d
are executed in any order
(bd,db,cd,dc)
which suggests they are


which suggests they are executed in parallel


Case id	Trace
1	$\langle a(b,d,e,h)\rangle$
2	$\langle a, d, e, h \rangle$ $\langle a, d, c, e, g \rangle$
3	$\langle a(c,d,e,f(b,d,e,g))\rangle$
4	$\langle a(d,b),e,h\rangle$
5	$\langle a(c,d,e,f(d,c,e,f,c,d,e,h)\rangle$
6	$\langle a(c,d,e,g)\rangle$
• • •	•••
39	

The repeated execution of b/c, d, and e suggests the presence of a loop (over f).


Case id	Trace
1	$\langle a,b,d,e,h \rangle$
2	$\langle a, d, c, e, g \rangle$
3	$\langle a, c, d, e f, b, d, e g \rangle$ $\langle a, d, b, e, h \rangle$
4	$\langle a,d,b,e,h \rangle$
5	$\langle a, c, d, e f, d, c, e f, c, d, e h \rangle$ $\langle a, c, d, e, g \rangle$
6	$\langle a, c, d, e, g \rangle$
•••	•••
40	

Replay:
log features are
adequately captured by
the net

Case id		Trace
1	$L(N) \ni$	$\langle a, b, d, e, h \rangle$
2	$L(N) \ni$	$\langle a, d, c, e, g \rangle$
3	$L(N) \ni$	$\langle a, c, d, e, f, b, d, e, g \rangle$
4	$L(N) \ni$	$\langle a,d,b,e,h \rangle$
5	$L(N) \ni$	$\langle a, c, d, e, f, d, c, e, f, c, d, e, h \rangle$
6	$L(N) \ni$	$\langle a, c, d, e, g \rangle$
		•••
41		

Discussion

Case id	Trace
1	$\langle a,b,d,e,h \rangle$
2	$\langle a, d, c, e, g \rangle$
3	$\langle a, c, d, e, f, b, d, e, g \rangle$
4	$\langle a,d,b,e,h \rangle$
5	$\langle a, c, d, e, f, d, c, e, f, c, d, e, h \rangle$
6	$\langle a, c, d, e, g \rangle$

The discovered net also allows for traces not in the log, e.g.

(a, c, d, e, f, c, d, e, f, c, d, e, f, c, d, e, f, b, d, e, g >

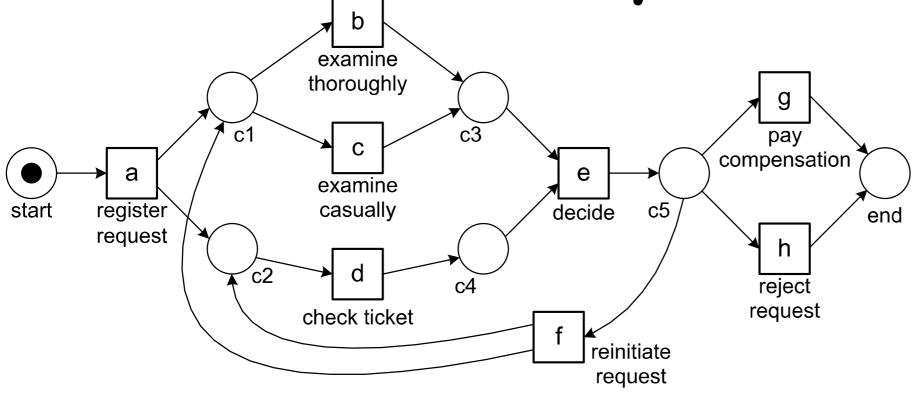
This is a desired phenomenon:

the goal of a discovery procedure is not to represent exactly the particular set of sample traces in the event log.

Process mining algorithms must generalize the behavior contained in the log to show the most likely underlying model that is not invalidated by the next set of observations

Overfitting and Underfitting

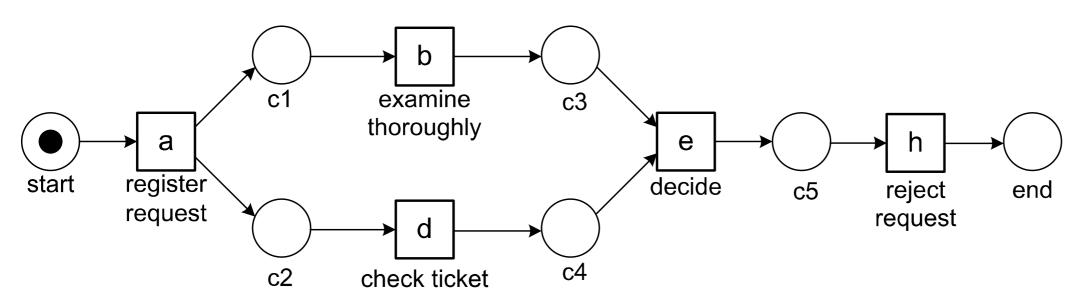
One of the challenges of process mining is to balance between


overfitting:

the model is too specific it only allows for the accidental behavior observed

and

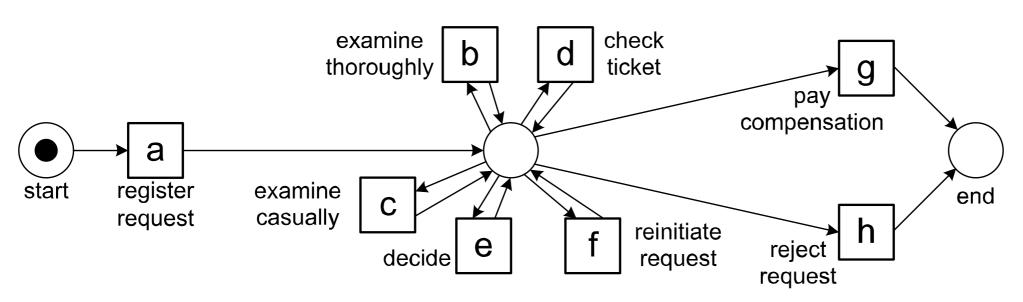
underfitting:


the model is too general it allows for behavior unrelated to the behavior observed

When comparing the event log and the model, there seems to be a good balance between "overfitting" and "underfitting".

Case id	Trace
1	$\langle a,b,d,e,h \rangle$
2	$\langle a, d, c, e, g \rangle$
3	$\langle a, c, d, e, f, b, d, e, g \rangle$
4	$\langle a,d,b,e,h \rangle$
5	$\langle a, c, d, e, f, d, c, e, f, c, d, e, h \rangle$
6	$\langle a, c, d, e, g \rangle$
•••	•••
44	

Another Discovery Example



Another net could fail to replay some traces

Case id	Trace
1	$\langle a,b,d,e,h \rangle$
2	$\langle a, d, c, c, g \rangle$
3	$\langle a, c, d, c, f, b, d, c, g \rangle$
4	$\langle a,d,b,e,h \rangle$
5	$\langle u, c, \dot{u}, \varepsilon, f, \dot{u}, c, \varepsilon, f, c, \dot{u}, \varepsilon, \dot{n} \rangle$
6	$\langle a, c, a, c, \delta \rangle$
	• • •

Another Discovery Example

46

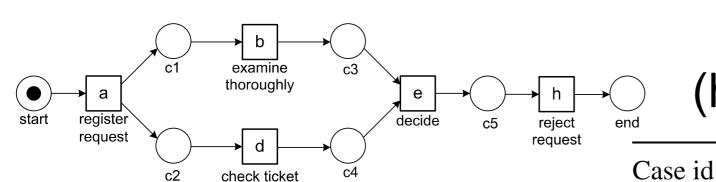
Another net could allow for too many other traces (nets of this kind are called **flower nets**) and deliver little information about the underlying process

Case id	Trace
1	$\langle a,b,d,e,h \rangle$
2	$\langle a, d, c, e, g \rangle$
3	$\langle a, c, d, e, f, b, d, e, g \rangle$
4	$\langle a,d,b,e,h \rangle$
5	$\langle a, c, d, e, f, d, c, e, f, c, d, e, h \rangle$
6	$\langle a, c, d, e, g \rangle$
• • •	•••

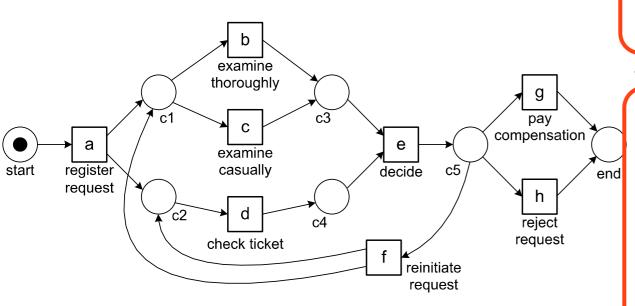
Conformance Example We would like to measure the

We would like to measure the `conformance' between a net and en event log (how well they pair together)

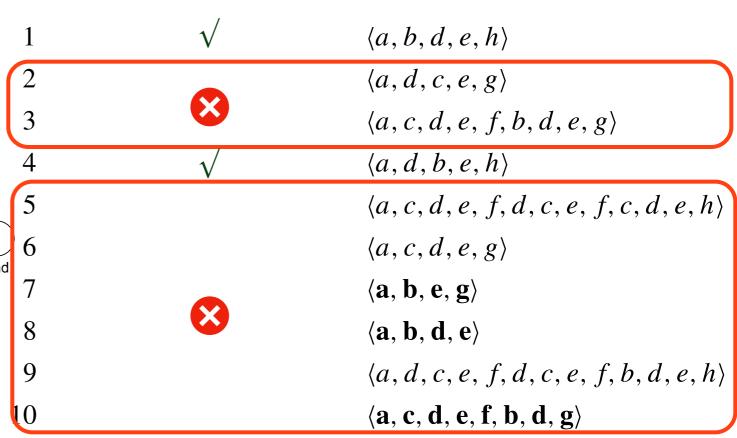
Troop


	Case 1d		Trace
	1		$\langle a,b,d,e,h \rangle$
	2	$\sqrt{}$	$\langle a, d, c, e, g \rangle$
√ b	3	$\sqrt{}$	$\langle a, c, d, e, f, b, d, e, g \rangle$
examine thoroughly	4	$\sqrt{}$	$\langle a,d,b,e,h \rangle$
c1 c3 pay	5	$\sqrt{}$	$\langle a, c, d, e, f, d, c, e, f, c, d, e, h \rangle$
examine casually decide c5 compensation	$\downarrow 6$	$\sqrt{}$	$\langle a, c, d, e, g \rangle$
request	end 7		$\langle \mathbf{a}, \mathbf{b}, \mathbf{e}, \mathbf{g} \rangle$
c2 d c4 reject request	8		$\langle \mathbf{a}, \mathbf{b}, \mathbf{d}, \mathbf{e} \rangle$
reinitiate	9		$\langle a, d, c, e, f, d, c, e, f, b, d, e, h \rangle$
7 ok out of 10	0	(X)	$\langle \mathbf{a}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}, \mathbf{b}, \mathbf{d}, \mathbf{g} \rangle$

Coco id


Conformance Example

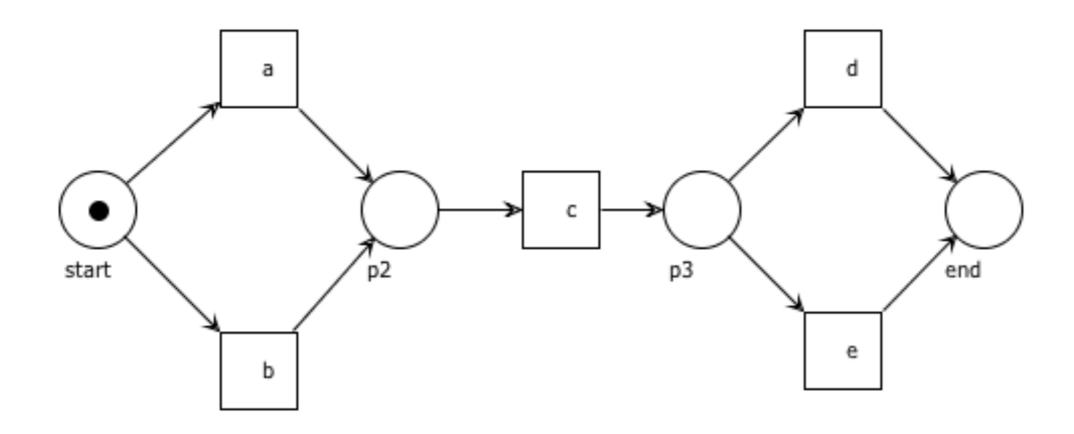
We would like to measure the `conformance" between a net and en event log (how well they pair together)


Trace

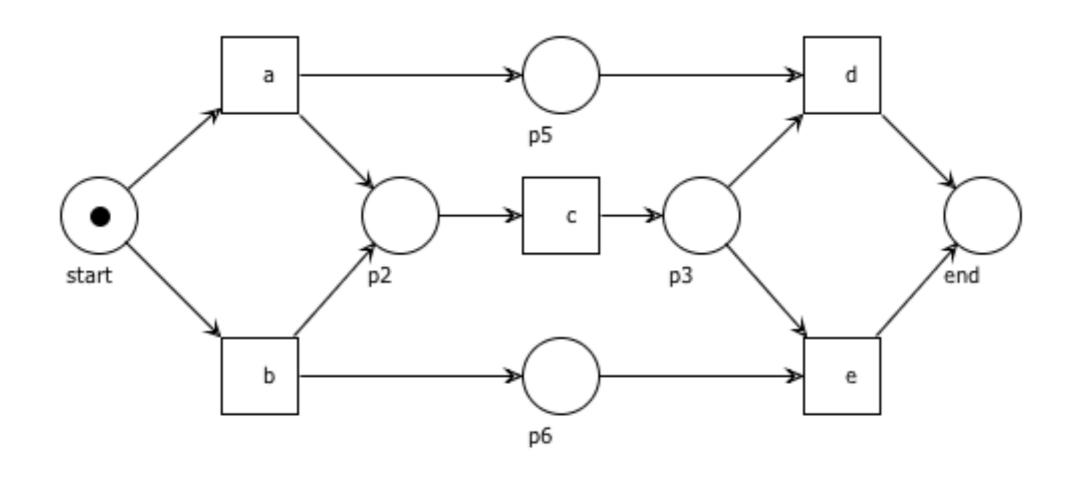
2 ok out of 10

7 ok out of 10


```
Suppose you are given a log with: #6 traces of the form 〈 a , c , d 〉 #3 traces of the form 〈 b , c , e 〉
```


Which model (i.e., Petri net) would you infer?

The Petri net you derive must have exactly five transitions named a, b, c, d, e (and the places / arcs you like)


can start with a or b

can end with d or e

c is always executed in between

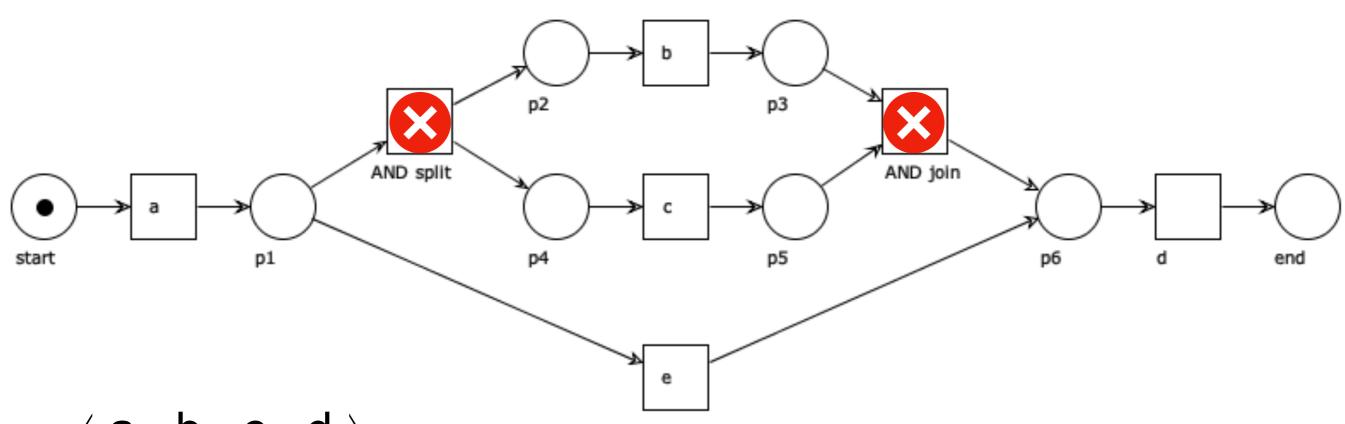
also allowed:

nothing else allowed!

```
Suppose you are given a log with:
```

```
#3 traces of the form 〈a,b,c,d〉
#1 traces of the form 〈a,e,d〉
#2 traces of the form 〈a,c,b,d〉
```

Which model (i.e., Petri net) would you infer?

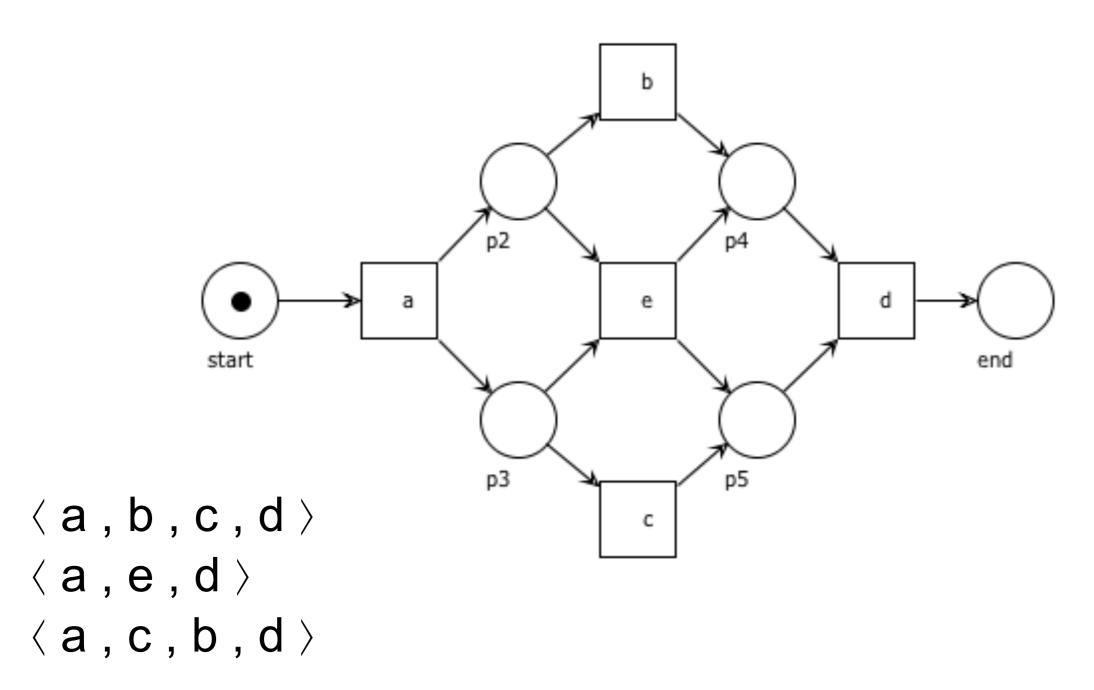

The Petri net you derive must have exactly five transitions named a, b, c, d, e (and the places / arcs you like)

must start with a

must end with d

b/c in any order OR just e

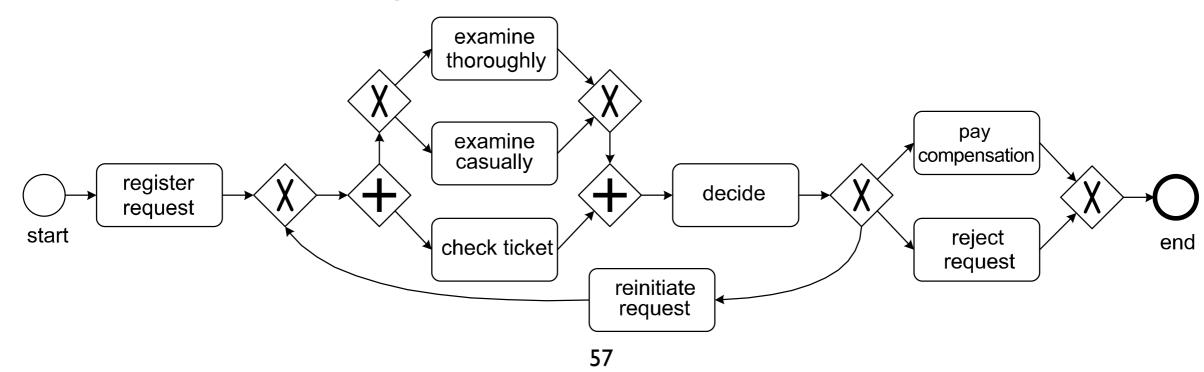
```
<a, b, c, d><a, e, d><a, e, d><a, e, d><a, c, b, d><a, c, b, d><a
```



 $\langle a, b, c, d \rangle$

 $\langle a, e, d \rangle$

 $\langle a, c, b, d \rangle$


contains events
that are not
present in the log

Mining Other Models

We used Petri nets to represent the discovered process models, because Petri nets are a succinct way of representing processes and have unambiguous but intuitive semantics.

However, some mining techniques can apply to other representations as well.

Process Discovery: α -Algorithm

Process Discovery

Process discovery is the activity that combines Discovery with the Control-flow Perspective.

The general problem:

A process discovery algorithm is a function that maps an event log L onto a process model M such that the model M is "representative" for the behaviour seen in the event log L.

We focus on *simple event logs* and Petri net models (possibly sound workflow nets).

Simple Event Log

Let A be a set of activities.

A simple trace σ over A is a finite sequence of activities.

A simple event log L over A is a multiset of traces.

trace multiplicity
$$L_1 = \left[\langle a,b,c,d \rangle^3, \langle a,c,b,d \rangle^2, \langle a,e,d \rangle \right]$$

$$L_2 = \left[\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^4, \langle a, b, c, e, f, b, c, d \rangle^2, \langle a, b, c, e, f, c, b, d \rangle, \langle a, c, b, e, f, b, c, d \rangle^2, \langle a, c, b, e, f, b, c, e, f, c, b, d \rangle \right]$$

Quality Criteria

"able to replay event log"

fitness

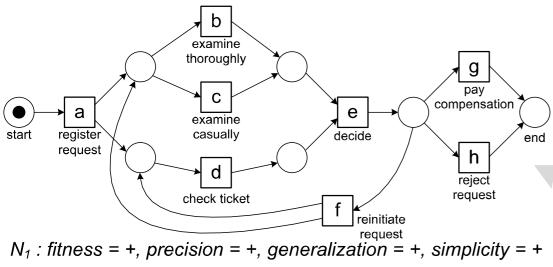
process discovery

generalization

"not overfitting the log"

Other behaviors allowed

Simple structure

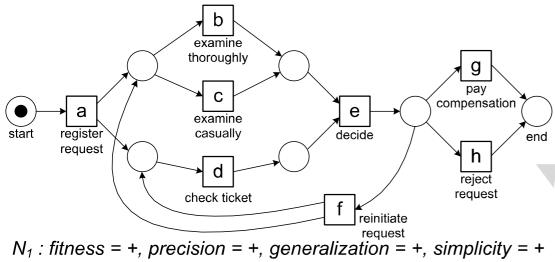

"Occam's razor"

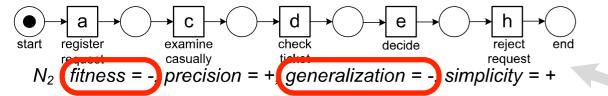
simplicity

precision

"not underfitting the log"

No completely unrelated behavior

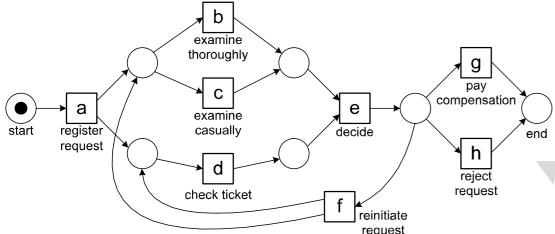



455	acdeh		
191	abdeg		
177	adceh		
144	abdeh		
111	acdeg		
82	adceg		
56	adbeh		
47	acdefdbeh	"able to replay event log"	"Occam's razor"
38	adbeg	fitness	simplicity
33	acdefbdeh	Dragon -	
14	acdefbdeg	process discovery	
11	acdefdbeg	gonorolization	projeion
9	adcefcdeh	generalization "not overfitting the log"	precision "not underfitting the log"
8	adcefdbeh	not overnaling the log	not undermaing the log
5	adcefbdeg		
3	acdefbdefdbeg		
2	adcefdbeg		
2	adcefbdefbdeg		
1	adcefdbefbdeh		
1	adbefbdefdbeg		

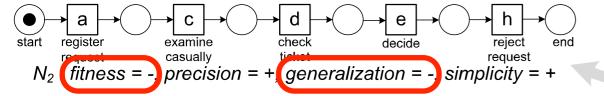
1391

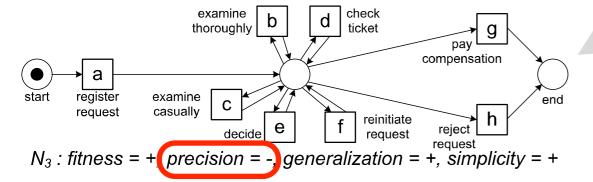
1 adcefdbefcdefdbeg

trace


455	acdeh		
191	abdeg		
177	adceh		
144	abdeh		
111	acdeg		
82	adceg		
56	adbeh		
47	acdefdbeh	"able to replay event log"	"Occam's razor"
38	adbeg	fitness	simplicity
33	acdefbdeh		
14	acdefbdeg	process discovery	J
11	acdefdbeg	ganaralization	nracician
9	adcefcdeh	generalization "not overfitting the log"	precision "not underfitting the log"
8	adcefdbeh	not overnung the log	not undernaing the log
5	adcefbdeg		
3	acdefbdefdbeg		
2	adcefdbeg		
2	adcefbdefbdeg		
1	adcefdbefbdeh		
1	adbefbdefdbeg		

63


1391


1 adcefdbefcdefdbeg

trace

 N_1 : fitness = +, precision = +, generalization = +, simplicity = +

#	trace
455	acdeh
191	abdeg
177	adceh
144	abdeh
111	acdeg
82	adceg
56	adbeh
47	acdefdbeh
38	adbeg
33	acdefbdeh
14	acdefbdeg
11	acdefdbeg
9	adcefcdeh
8	adcefdbeh
5	adcefbdeg
3	acdefbdefdbeg
2	adcefdbeg
2	adcefbdefbdeg
1	adcefdbefbdeh
1	adbefbdefdbeg
1	adcefdbefcdefdbeg
1391	

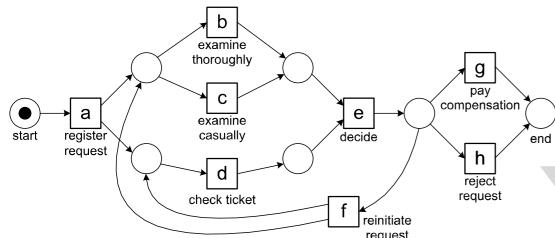
fitness

process discovery

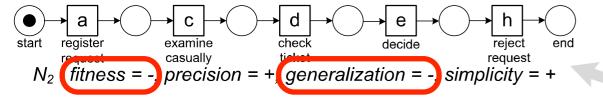
generalization

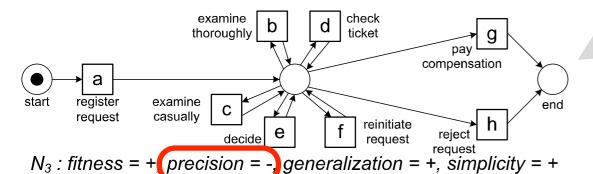
"not overfitting the log"

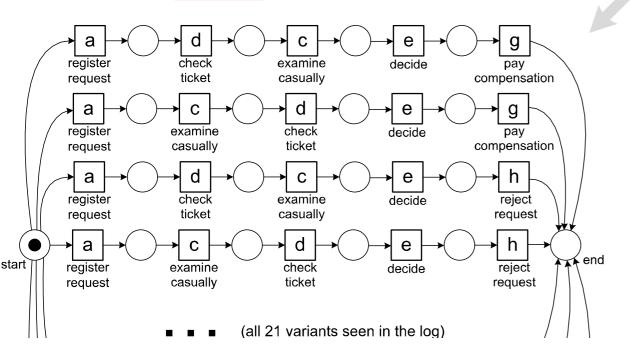
"Occam's razor"


simplicity

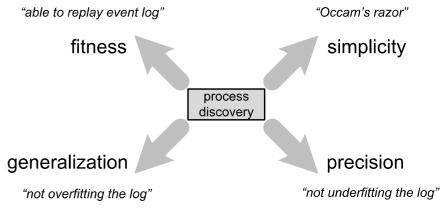
process discovery


process discovery


precision

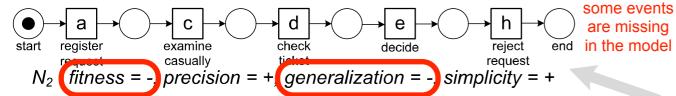

"not underfitting the log"

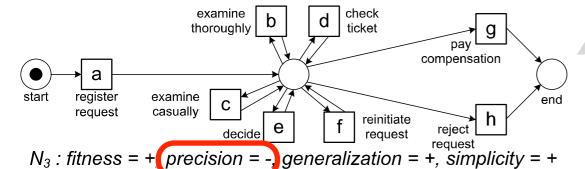
 N_1 : fitness = +, precision = +, generalization = +, simplicity = +

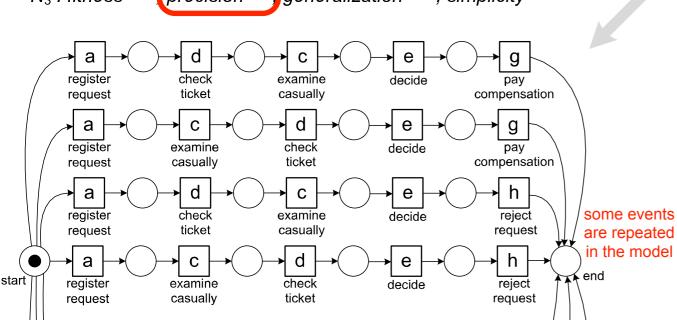


 N_4 : fitness = +, precision = + generalization = -, simplicity = -

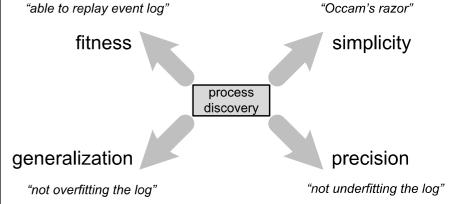
455	acdeh
191	abdeg
177	adceh
144	abdeh
111	acdeg
82	adceg
56	adbeh
47	acdefdbeh
38	adbeg
33	acdefbdeh
14	acdefbdeg
11	acdefdbeg
9	adcefcdeh
8	adcefdbeh
5	adcefbdeg
3	acdefbdefdbeg
2	adcefdbeg
2	adcefbdefbdeg
1	adcefdbefbdeh
1	adbefbdefdbeg
1	adcefdbefcdefdbeg
1391	


trace





 N_1 : fitness = +, precision = +, generalization = +, simplicity = +



(all 21 variants seen in the log)

#	trace
455	acdeh
191	abdeg
177	adceh
144	abdeh
111	acdeg
82	adceg
56	adbeh
47	acdefdbeh
38	adbeg
33	acdefbdeh
14	acdefbdeg
11	acdefdbeg
9	adcefcdeh
8	adcefdbeh
5	adcefbdeg
3	acdefbdefdbeg
2	adcefdbeg
2	adcefbdefbdeg
1	adcefdbefbdeh
1	adbefbdefdbeg
1	adcefdbefcdefdbeg

 N_4 : fitness = +, precision = + generalization = -, simplicity = -

1391

Quality Measures

We have seen four quality criteria: fitness, precision, generalization, and simplicity.

In the example, for each of these models, a subjective judgment is given with respect to the four quality criteria. As the models are rather extreme, the scores +/- for the various quality criteria are easy to assign.

However, in a more realistic setting it would be much more difficult to judge the quality of a model.

We will discuss how the notion of fitness can be quantified.

α -Algorithm

The α -algorithm was one of the first process discovery algorithms that could adequately deal with concurrency.

It has several limitations, but it provides a good introduction into the topic: The α -algorithm is simple and many of its ideas have been embedded in more complex and robust techniques.

The α -algorithm uses the **play-in** strategy to scan the event log for particular patterns, called **log-based ordering relations**, to create a **footprint** matrix of the log.

Log-based Ordering Relations

a is (sometimes) immediately followed by b

 $(a >_L b)$ if and only if there is a trace $\sigma = \langle t_1, t_2, t_3, \dots, t_n \rangle$ and $i \in \{1, \dots, n-1\}$ such that $\sigma \in L$ and $t_i = a$ and $t_{i+1} = b$

Example:
$$L = \{\langle a, c, d \rangle, \langle b, c, e \rangle\}$$

$$a >_L c \qquad b >_L c$$

$$c >_L d \qquad c >_L e$$

$$a >_L d \qquad \text{No!}$$

Log-based Ordering Relations

a is (sometimes) immediately followed by b

 $(a >_L b)$ if and only if there is a trace $\sigma = \langle t_1, t_2, t_3, \dots, t_n \rangle$ and $i \in \{1, \dots, n-1\}$ such that $\sigma \in L$ and $t_i = a$ and $t_{i+1} = b$

- $(a \rightarrow_L b)$ if and only if $a >_L b$ and $b \not>_L a$ (causality)
- $(a \#_L b)$ if and only if $a \not>_L b$ and $b \not>_L a$ (mutual exclusion)
- $(a \parallel_L b)$ if and only if $a >_L b$ and $b >_L a$ (concurrency)

$$x \rightarrow_L y$$
, $y \rightarrow_L x$, $x \#_L y$, or $x \parallel_L y$

Log-based Ordering Relations: Example

$$L_1 = [(a,b) c, d)^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$$

$$>_{L_1} = \{$$
 , , , , , , , , , , , , , , , }

Log-based Ordering Relations: Example

$$L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$$

$$>_{L_1} = \{(a,b), (a,c), (a,e), (b,c), (c,b), (b,d), (c,d), (e,d)\}$$

Log-based Ordering Relations: Example

- $a \rightarrow_L b$ if and only if $a >_L b$ and $b \not>_L a$
- $a \#_L b$ if and only if $a \not>_L b$ and $b \not>_L a$
- $a \parallel_L b$ if and only if $a >_L b$ and $b >_L a$

$$L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$$

$$>_{L_1} = (a,b) (a,c), (a,e), (b,c), (c,b), (b,d), (c,d), (e,d)$$

$$\to_{L_1} = \{ , , , , , , , \}$$

$$\#_{L_1} = \{$$

$$\#_{L_1} = \{ \} \}$$

Log-based Ordering Relations: Example

- $a \rightarrow_L b$ if and only if $a >_L b$ and $b \not>_L a$
- $a \#_L b$ if and only if $a \not>_L b$ and $b \not>_L a$
- $a \parallel_L b$ if and only if $a >_L b$ and $b >_L a$

$$L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$$

$$>_{L_1} = \{(a,b), (a,c), (a,e), (b,c), (c,b), (b,d), (c,d), (e,d)\}$$

$$\to_{L_1} = \{(a,b), (a,c), (a,e), (b,d), (c,d), (e,d)\}$$

$$\#_{L_1} = \{(a,a), (a,d), (b,b), (b,e), (c,c), (c,e), (d,a), (d,d), (e,b), (e,c), (e,e)\}$$

$$\|_{L_1} = \{(b,c), (c,b)\}$$

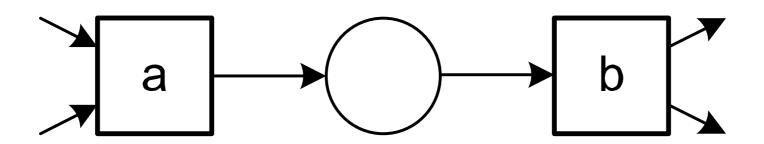
Footprint Matrix

We can record all information about log-based ordering relations in a concise way as a matrix:

one row for each event one column for each event the entry in row a and column b tells us their relation

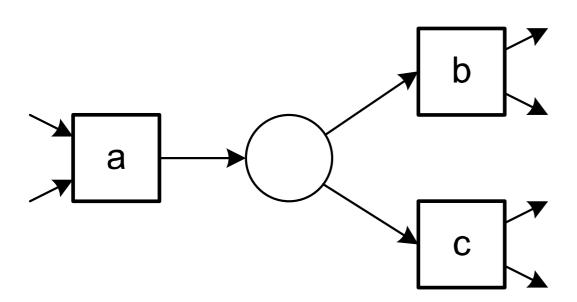
Footprint Matrix: Example

$$L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$$

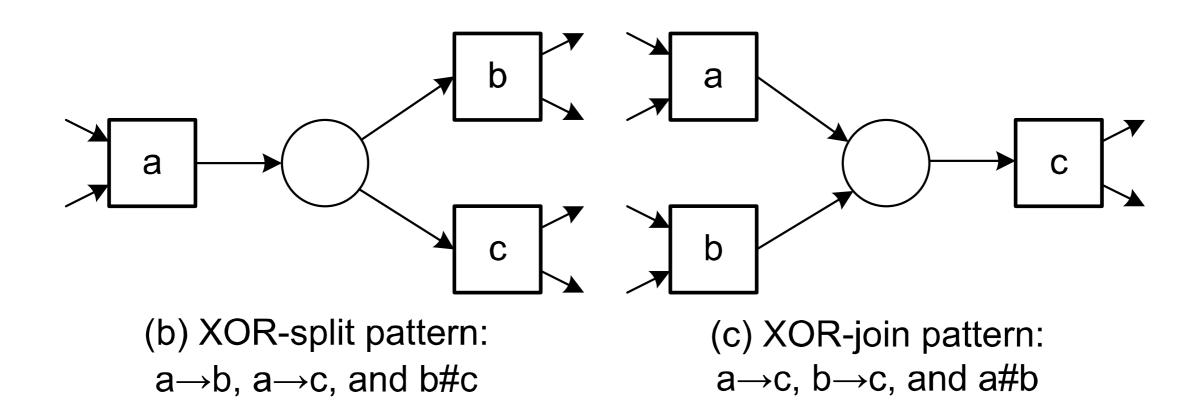

	a	b	$\boldsymbol{\mathcal{C}}$	d	e
\overline{a}	$\#_{L_1}$	\rightarrow_{L_1}	\rightarrow_{L_1}	$\#_{L_1}$	\rightarrow_{L_1}
b	\leftarrow_{L_1}	$\#_{L_1}$	$\ _{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$
C	\leftarrow_{L_1}	$\ _{L_1}$	$\#_{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$
d	$\#_{L_1}$	\leftarrow_{L_1}	\leftarrow_{L_1}	$\#_{L_1}$	\leftarrow_{L_1}
e	\leftarrow_{L_1}	$\#_{L_1}$	$\#_{L_1}$	$\rightarrow L_1$	$\#_{L_1}$

Footprint Matrix: Example

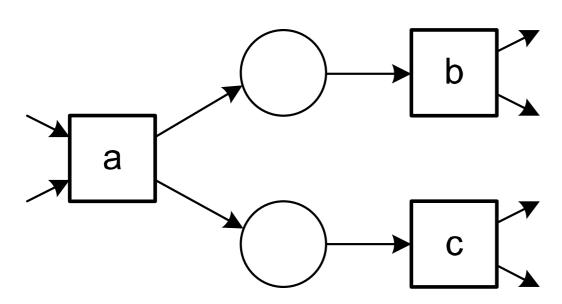
Note the symmetry w.r.t. the diagonal


	a	b	C	d	e
\overline{a}	•# _{1.1} •	\rightarrow_{L_1}	\rightarrow_{L_1}	$\#_{L_1}$	\rightarrow_{L_1}
b	\leftarrow_{L_1}	$\#_{L_1}$	\parallel_{L_1}	\rightarrow_{L_1}	$\#_{L_1}$
C	\leftarrow_{L_1}	\parallel_{L_1}	$\#_{L_1}$	$\rightarrow L_1$	$\#_{L_1}$
d	$\left(\begin{array}{c} \#_{L_1} \end{array} \right)$	\leftarrow_{L_1}	\leftarrow_{L_1}	$\#_{L_1}$	\leftarrow_{L_1}
e	\leftarrow_{L_1}	$\#_{L_1}$	$\#_{L_1}$	$\rightarrow L_1$	$\#_{L_1}$

Footprints are useful to discover typical patterns of activities in the corresponding process model

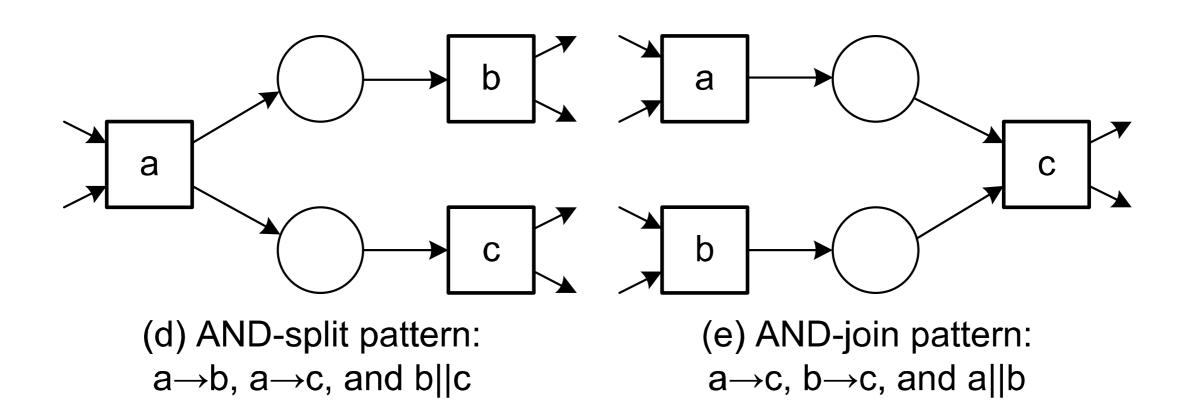

(a) sequence pattern: a→b

Footprints are useful to discover typical patterns of activities in the corresponding process model



(b) XOR-split pattern:a→b, a→c, and b#c

Footprints are useful to discover typical patterns of activities in the corresponding process model



Footprints are useful to discover typical patterns of activities in the corresponding process model

(d) AND-split pattern: a→b, a→c, and b||c

Footprints are useful to discover typical patterns of activities in the corresponding process model

The α -Algorithm

- 1. $T_L = \{ t \in T \mid \exists_{\sigma \in L} \ t \in \sigma \}$ transitions
- 2. $T_I = \{ t \in T \mid \exists_{\sigma \in L} \ t = first(\sigma) \}$ start events
- 3. $T_O = \{ t \in T \mid \exists_{\sigma \in L} \ t = last(\sigma) \}$ end events

$$4. \ X_L = \left\{ \begin{array}{cccc} A, B \subseteq T_L & \wedge & A, B \neq \emptyset & \wedge \\ \forall a \in A} \forall_{b \in B} & a \rightarrow_L b & \wedge \\ \forall_{a_1, a_2 \in A} & a_1 \#_L a_2 & \wedge \\ \forall_{b_1, b_2 \in B} & b_1 \#_L b_2 & \end{array} \right\} \quad \text{decision points}$$

5.
$$Y_L = \left\{ \begin{array}{ll} A \subseteq A' \wedge B \subseteq B' \\ (A,B) \in X_L \mid \forall_{(A',B') \in X_L} & \Rightarrow \\ (A',B') = (A,B) \end{array} \right\} \text{ max. dec. points}$$

6.
$$P_L = \{ p_{(A,B)} \mid (A,B) \in Y_L \} \cup \{ i_L, o_L \}$$
 places

7.
$$F_L = \{ (a, p_{(A,B)}) \mid (A,B) \in Y_L \land a \in A \} \cup \{ (p_{(A,B)},b) \mid (A,B) \in Y_L \land b \in B \} \cup \{ (i_L,t) \mid t \in T_I \} \cup \{ (t,o_L) \mid t \in T_O \}$$
 arcs

8. $\alpha(L) = (P_L, T_L, F_L, i_L)$ net

The α -Algorithm

one transition for each event in the log

1.
$$T_L = \{ t \in T \mid \exists_{\sigma \in L} \ t \in \sigma \}$$
 transitions

2.
$$T_I = \{ t \in T \mid \exists_{\sigma \in L} \ t = first(\sigma) \}$$
 start events

3.
$$T_O = \{ t \in T \mid \exists_{\sigma \in L} \ t = last(\sigma) \}$$
 end events

transitions that start/end at least one trace

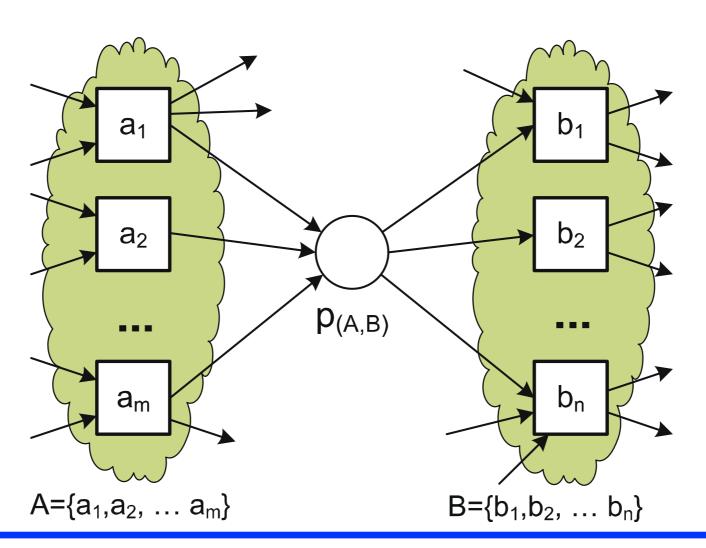
Steps 1-3: Example

$$L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$$

```
1. T_L = \{t \in T \mid \exists_{\sigma \in L} \ t \in \sigma\} transitions
2. T_I = \{t \in T \mid \exists_{\sigma \in L} \ t = \mathit{first}(\sigma)\} start events
3. T_O = \{t \in T \mid \exists_{\sigma \in L} \ t = \mathit{last}(\sigma)\} end events

T_L = \{a, b, c, d, e\}

T_I = \{a\}
```


The α -Algorithm

we collect pairs of sets of events with certain features

$$4. \ X_L = \left\{ \begin{array}{cccc} A, B \subseteq T_L & \wedge & A, B \neq \emptyset & \wedge \\ \forall a \in A} \forall_{b \in B} & a \rightarrow_L b & \wedge \\ \forall_{a_1, a_2 \in A} & a_1 \#_L a_2 & \wedge \\ \forall_{b_1, b_2 \in B} & b_1 \#_L b_2 & \end{array} \right\} \quad \text{decision points}$$

each event in A causes all events in B all events in A are mutually exclusive all events in B are mutually exclusive

The Core of the α -Algorithm: Steps 4, 5

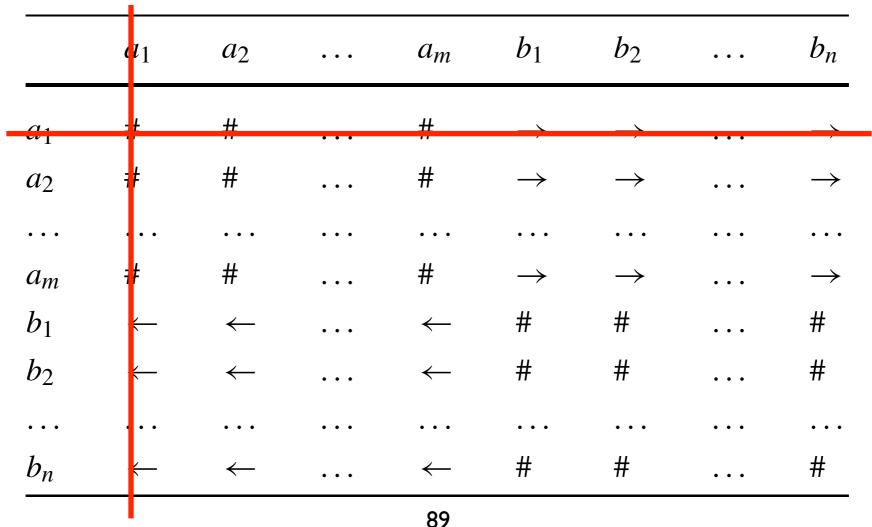
we are going to insert a place for each pair (A,B) to represent some sort of decision point

α -Algorithm: Steps 4, 5

$$\forall_{a \in A} \forall_{b \in B} \quad a \to_L b$$

$$\forall_{a_1, a_2 \in A} \quad a_1 \#_L a_2$$

$$\forall_{b_1, b_2 \in B} \quad b_1 \#_L b_2$$


		a_1	a_2	• • •	a_m	b_1	b_2	•••	b_n
	$\overline{a_1}$	#	#		#	\rightarrow	\rightarrow		\rightarrow
\boldsymbol{A}	a_2	#	#		#	\rightarrow	\rightarrow	• • •	\rightarrow
7 1	• • •		• • •	• • •			• • •	• • •	• • •
	a_m	#	#	• • •	#	\rightarrow	\rightarrow	• • •	\rightarrow
	b_1	\leftarrow	\leftarrow		\leftarrow	#	#		#
D	b_2	\leftarrow	\leftarrow	• • •	\leftarrow	#	#	• • •	#
B	• • •	• • •	• • •	• • •	• • •		• • •	• • •	
	b_n	\leftarrow	\leftarrow	• • •	\leftarrow	#	#	• • •	#

α -Algorithm: Step 5

```
\forall_{a \in A} \forall_{b \in B}
\forall_{a_1, a_2 \in A}
\forall_{b_1, b_2 \in B}
```

```
a \rightarrow_L b
a_1 \#_L a_2
b_1 \#_L b_2
```

If (A,B) is a decision point any pair (A',B') with A'⊆A, B'⊆B is also a decision point

α -Algorithm: Step 5

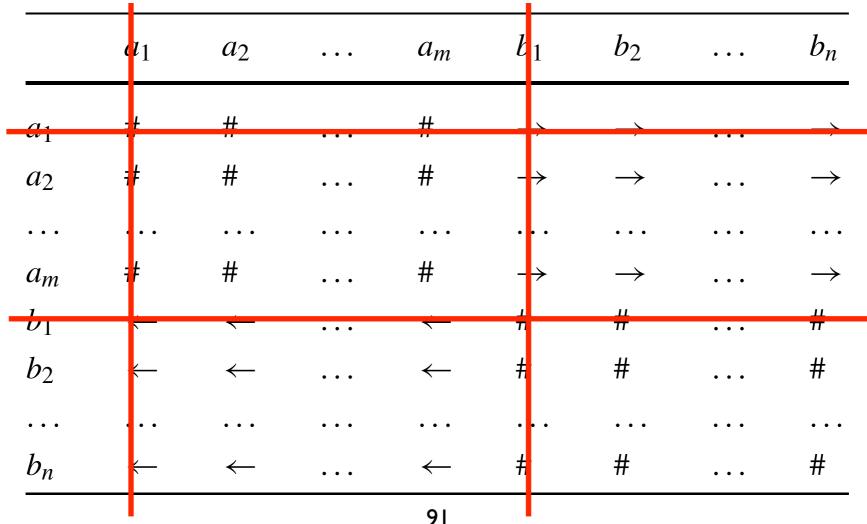
```
\forall_{a \in A} \forall_{b \in B}
\forall_{a_1, a_2 \in A}
\forall_{b_1, b_2 \in B}
```

```
a \to_L b
a_1 \#_L a_2
b_1 \#_L b_2
```

If (A,B) is a decision point any pair (A',B') with A'⊆A, B'⊆B is also a decision point

	· · · · · · · · · · · · · · · · · · ·								
	a_1	a_2	• • •	a_m	\boldsymbol{k}_1	b_2	• • •	b_n	
a_1	#	#	• • •	#	- →	\rightarrow		\rightarrow	
a_2	#	#	• • •	#	→	\rightarrow	• • •	\rightarrow	
• • •	• • •	• • •	• • •			• • •	• • •	• • •	
a_m	#	#	• • •	#	→	\rightarrow	•••	\rightarrow	
b_1			• • •		1 1	#	• • •	#	
b_2	\leftarrow	\leftarrow	•••	\leftarrow	#	#	•••	#	
• • •	• • •	• • •	• • •	• • •			• • •		
b_n	\leftarrow	\leftarrow	• • •	\leftarrow	#	#	• • •	#	
				90					

α -Algorithm: Step 5


```
\forall_{a \in A} \forall_{b \in B}
\forall_{a_1, a_2 \in A}
\forall_{b_1, b_2 \in B}
```

$$a \to_L b$$

$$a_1 \#_L a_2$$

$$b_1 \#_L b_2$$

If (A,B) is a decision point any pair (A',B') with A'⊆A, B'⊆B is also a decision point

The α -Algorithm

We take only the largest pairs (A,B)

5.
$$Y_L = \left\{ \begin{array}{ll} A \subseteq A' \wedge B \subseteq B' \\ (A,B) \in X_L \mid \forall_{(A',B') \in X_L} & \Rightarrow \\ (A',B') = (A,B) \end{array} \right\}$$
 max. dec. points

 Y_L contains all pairs in X_L that are not dominated by other pairs

	а	b	С	d	e
a	$\#_{L_1}$	\rightarrow_{L_1}	\rightarrow_{L_1}	$\#_{L_1}$	\rightarrow L_1
b	\leftarrow_{L_1}	$\#_{L_1}$	$\ _{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$
\boldsymbol{c}	\leftarrow_{L_1}	$\ _{L_1}$	$\#_{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$
d	$\#_{L_1}$	\leftarrow_{L_1}	\leftarrow_{L_1}	$\#_{L_1}$	\leftarrow_{L_1}
e	\leftarrow_{L_1}	$\#_{L_1}$	$\#_{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$

$$X_{L_1} = \{ (\{a\}, \{b\}), (\{a\}, \{c\}), (\{a\}, \{e\}), (\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{b\}, \{d\}), (\{c\}, \{d\}), (\{e\}, \{d\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\}) \}$$

	a	b	С	d	e
a	$\#_{L_1}$	\rightarrow_{L_1}	\rightarrow_{L_1}	$\#_{L_1}$	\rightarrow_{L_1}
b	\leftarrow_{L_1}	$\#_{L_1}$	$\ _{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$
\mathcal{C}	\leftarrow_{L_1}	\parallel_{L_1}	$\#_{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$
d	$\#_{L_1}$	\leftarrow_{L_1}	\leftarrow_{L_1}	$\#_{L_1}$	\leftarrow_{L_1}
e	\leftarrow_{L_1}	$\#_{L_1}$	$\#_{L_1}$	\rightarrow_{L_1}	$\#_{L_1}$

$$X_{L_1} = \{ (\{a\}, \{b\}) \} (\{a\}, \{c\}), (\{a\}, \{e\}), (\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{b\}, \{d\}), (\{c\}, \{d\}), (\{e\}, \{d\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\}) \}$$

$$X_{L_1} = \{ (\{a\}, \{b\}), (\{a\}, \{c\}), (\{a\}, \{e\}), (\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{b\}, \{d\}), (\{c\}, \{d\}), (\{e\}, \{d\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\}) \}$$

$$X_{L_1} = \{ (\{a\}, \{b\}), (\{a\}, \{c\}), (\{a\}, \{e\})) (\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{b\}, \{d\}), (\{c\}, \{d\}), (\{e\}, \{d\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\}) \}$$

$$X_{L_1} = \{ (\{a\}, \{b\}), (\{a\}, \{c\}), (\{a\}, \{e\}), (\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{b\}, \{d\}), (\{c\}, \{d\}), (\{e\}, \{d\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\}) \}$$

$$X_{L_1} = \{ (\{a\}, \{b\}), (\{a\}, \{c\}), (\{a\}, \{e\}), (\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{b\}, \{d\}), (\{c\}, \{d\}), (\{e\}, \{d\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\}) \}$$

$$X_{L_1} = \{ (\{a\}, \{b\}), (\{a\}, \{c\}), (\{a\}, \{e\}), (\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{b\}, \{d\}), (\{c\}, \{d\}), (\{e\}, \{d\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\}) \}$$

and so on for the other pairs

$$a \qquad \#_{L_1} \qquad \to_{L_1} \qquad \to_{L_1} \qquad \#_{L_1} \qquad \to_{L_1}$$

$$b \qquad \leftarrow_{L_1} \qquad \#_{L_1} \qquad \#_{L_1} \qquad \#_{L_1} \qquad \#_{L_1}$$

$$c \qquad \leftarrow_{L_1} \qquad \#_{L_1} \qquad \#_{L_1} \qquad \to_{L_1} \qquad \#_{L_1}$$

$$d \qquad \#_{L_1} \qquad \leftarrow_{L_1} \qquad \leftarrow_{L_1} \qquad \#_{L_1} \qquad \leftarrow_{L_1}$$

$$e \qquad \leftarrow_{L_1} \qquad \#_{L_1} \qquad \#_{L_1} \qquad \to_{L_1} \qquad \#_{L_1}$$

$$X_{L_1} = \left\{ (\{a\}, \{b\}), (\{a\}, \{c\}), (\{a\}, \{e\}), (\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{b\}, \{d\}), (\{c\}, \{d\}), (\{c$$

We take only the largest pairs

$$a \qquad b \qquad c \qquad d \qquad e$$

$$a \qquad \#_{L_1} \qquad \to_{L_1} \qquad \to_{L_1} \qquad \#_{L_1} \qquad \to_{L_1}$$

$$b \qquad \leftarrow_{L_1} \qquad \#_{L_1} \qquad \|L_1 \qquad \to_{L_1} \qquad \#_{L_1}$$

$$c \qquad \leftarrow_{L_1} \qquad \|L_1 \qquad \#_{L_1} \qquad \to_{L_1} \qquad \#_{L_1}$$

$$d \qquad \#_{L_1} \qquad \leftarrow_{L_1} \qquad \leftarrow_{L_1} \qquad \#_{L_1} \qquad \leftarrow_{L_1}$$

$$e \qquad \leftarrow_{L_1} \qquad \#_{L_1} \qquad \#_{L_1} \qquad \to_{L_1} \qquad \#_{L_1}$$

$$X_{L_1} = \left\{ \left(\{a\}, \{b\} \right), \left(\{a\}, \{c\} \right), \left(\{a\}, \{e\} \right), \left(\{a\}, \{b, e\} \right), \left(\{a\}, \{c, e\} \right), \left(\{b\}, \{d\} \right), \left(\{c\}, \{d\} \right), \left(\{b\}, \{d\} \right), \left(\{c\}, \{d\} \right$$

We take only the largest pairs

 $Y_{L_1} = \{ (\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\}) \}$

$$a \qquad b \qquad c \qquad d \qquad e$$

$$a \qquad \#_{L_1} \qquad \to_{L_1} \qquad \to_{L_1} \qquad \#_{L_1} \qquad \to_{L_1}$$

$$b \qquad \leftarrow_{L_1} \qquad \#_{L_1} \qquad \#_{L_1} \qquad \#_{L_1} \qquad \#_{L_1}$$

$$c \qquad \leftarrow_{L_1} \qquad \#_{L_1} \qquad \#_{L_1} \qquad \to_{L_1} \qquad \#_{L_1}$$

$$d \qquad \#_{L_1} \qquad \leftarrow_{L_1} \qquad \leftarrow_{L_1} \qquad \#_{L_1} \qquad \leftarrow_{L_1}$$

$$e \qquad \leftarrow_{L_1} \qquad \#_{L_1} \qquad \#_{L_1} \qquad \to_{L_1} \qquad \#_{L_1}$$

$$X_{L_1} = \left\{ \left(\{a\}, \{b\} \right), \left(\{a\}, \{c\} \right), \left(\{a\}, \{e\} \right), \left(\{a\}, \{b, e\} \right), \left(\{a\}, \{c, e\} \right), \left(\{b\}, \{d\} \right), \left(\{c\}, \{d\} \right), \left(\{c\},$$

We take only the largest pairs

 $Y_{L_1} = \{ (\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\}) \}$

$$a \qquad b \qquad c \qquad d \qquad e$$

$$a \qquad \#_{L_1} \qquad \to_{L_1} \qquad \to_{L_1} \qquad \#_{L_1} \qquad \to_{L_1}$$

$$b \qquad \leftarrow_{L_1} \qquad \#_{L_1} \qquad \|L_1 \qquad \to_{L_1} \qquad \#_{L_1}$$

$$c \qquad \leftarrow_{L_1} \qquad \|L_1 \qquad \#_{L_1} \qquad \to_{L_1} \qquad \#_{L_1}$$

$$d \qquad \#_{L_1} \qquad \leftarrow_{L_1} \qquad \leftarrow_{L_1} \qquad \#_{L_1} \qquad \leftarrow_{L_1}$$

$$e \qquad \leftarrow_{L_1} \qquad \#_{L_1} \qquad \#_{L_1} \qquad \to_{L_1} \qquad \#_{L_1}$$

$$X_{L_1} = \{(\{a\}, \{b\}), (\{a\}, \{c\}), (\{a\}, \{e\}), (\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{a$$

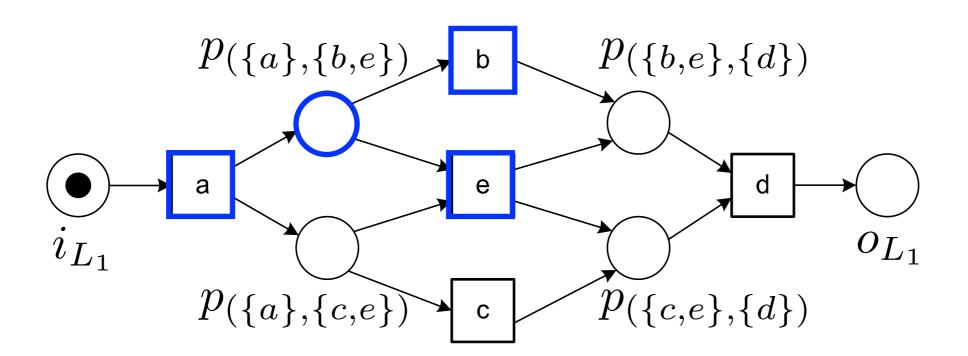
$$Y_{L_1} = \{ (\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\}) \}$$

 $(\{b\}, \{d\}), (\{c\}, \{d\}), (\{e\}, \{d\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\}))$

We take only the largest pairs

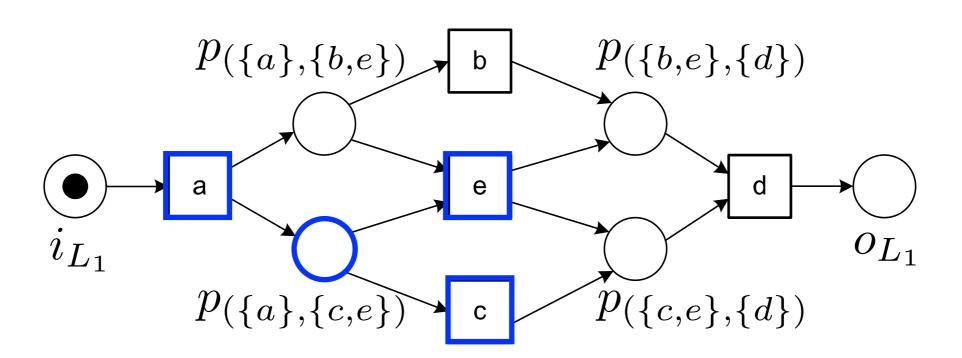
The α -Algorithm

One place for each pair

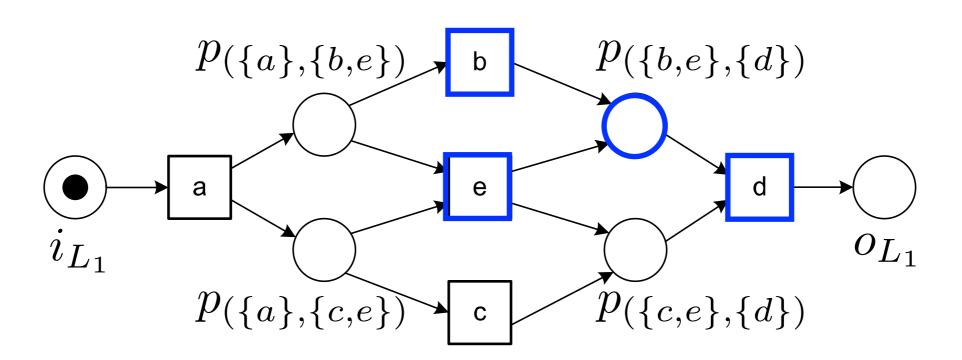

6.
$$P_L = \{ p_{(A,B)} \mid (A,B) \in Y_L \} \cup \{ i_L, o_L \}$$
 places

7.
$$F_L = \{ (a, p_{(A,B)}) \mid (A,B) \in Y_L \land a \in A \} \cup \{ (p_{(A,B)},b) \mid (A,B) \in Y_L \land b \in B \} \cup \{ (i_L,t) \mid t \in T_I \} \cup \{ (t,o_L) \mid t \in T_O \}$$
 arcs

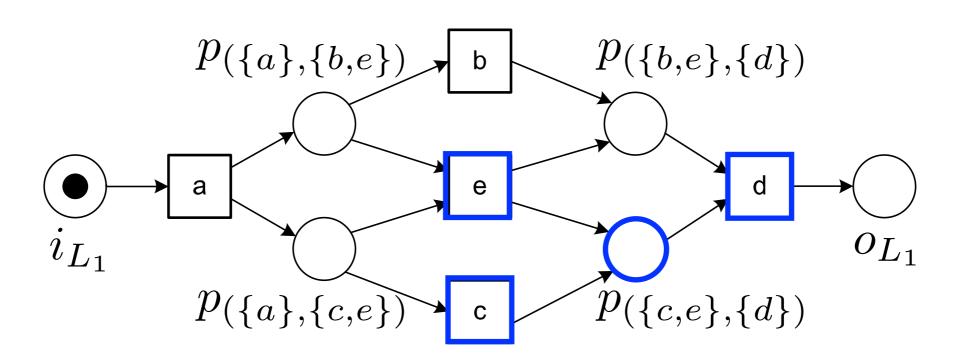
8.
$$\alpha(L) = (P_L, T_L, F_L, i_L)$$
 net


$$L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$$

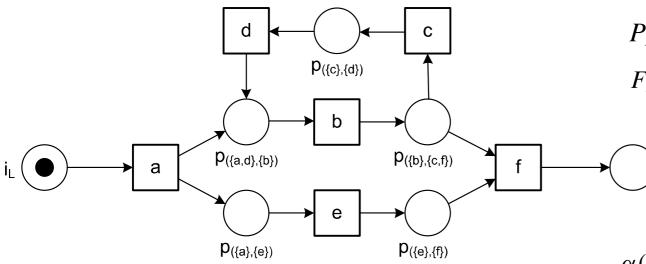
$$Y_{L_1} = \{ \{a\}, \{b, e\}\}, (\{a\}, \{c, e\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\}) \}$$


$$L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$$

$$Y_{L_1} = \{(\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\})\}\}$$


$$L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$$

$$Y_{L_1} = \{(\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\})\}\}$$


$$L_1 = [\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle]$$

$$Y_{L_1} = \{(\{a\}, \{b, e\}), (\{a\}, \{c, e\}), (\{b, e\}, \{d\}), (\{c, e\}, \{d\})\}\}$$

Another Example

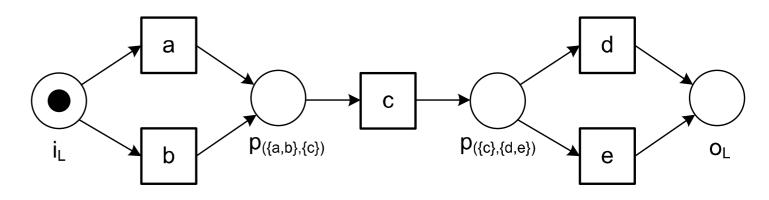
 $L_5 = \left[\langle a, b, e, f \rangle^2, \langle a, b, e, c, d, b, f \rangle^3, \langle a, b, c, e, d, b, f \rangle^2, \\ \langle a, b, c, d, e, b, f \rangle^4, \langle a, e, b, c, d, b, f \rangle^3 \right]$

$$F_L = \left\{ (a, p_{\{a\}, \{e\})}), (p_{\{a\}, \{e\})}, e), (c, p_{\{c\}, \{d\})}), (p_{\{c\}, \{d\})}, d), \right.$$

$$(e, p_{\{e\}, \{f\})}), (p_{\{e\}, \{f\})}, f), (a, p_{\{a,d\}, \{b\})}), (d, p_{\{a,d\}, \{b\})}),$$

$$o_L \quad (p_{\{a,d\}, \{b\})}, b), (b, p_{\{b\}, \{c,f\})}), (p_{\{b\}, \{c,f\})}, c), (p_{\{b\}, \{c,f\})}, f),$$

$$(i_L, a), (f, o_L) \right\}$$

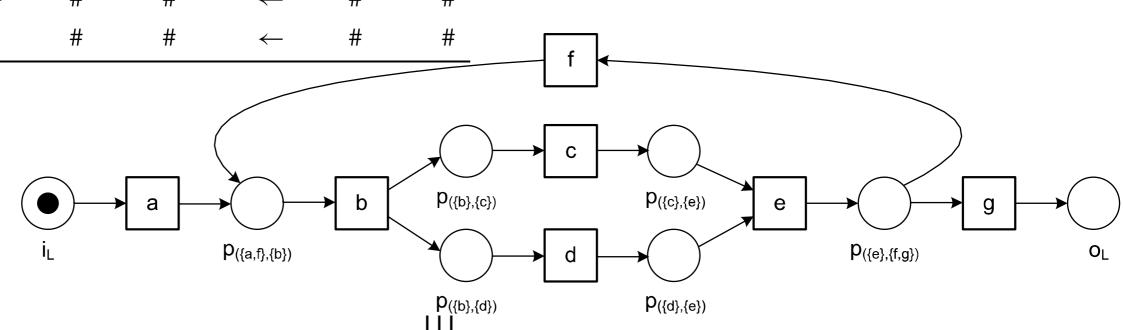

$$\alpha(L) = (P_L, T_L, F_L)$$

Exercises

$$L_4 = \left[\langle a, c, d \rangle^{45}, \langle b, c, d \rangle^{42}, \langle a, c, e \rangle^{38}, \langle b, c, e \rangle^{22} \right]$$

	a	b	c	d	e
a	#	#	\rightarrow	#	#
b	#	#	\rightarrow	#	#
c	\leftarrow	\leftarrow	#	\rightarrow	\rightarrow
d	#	#	\leftarrow	#	#
e	#	#	\leftarrow	#	#

Check in full autonomy that the footprint matrix corresponds to the log and that the net below is the one discovered by the alpha-algorithm

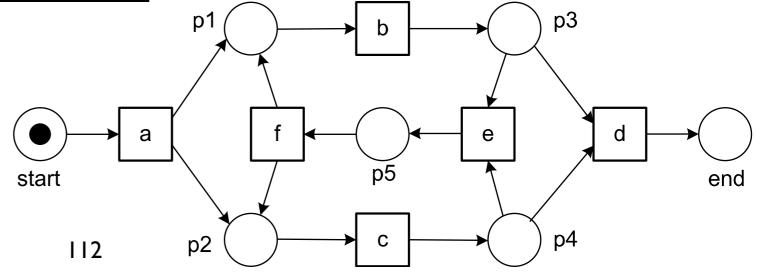

Exercises

 $L_3 = [\langle a, b, c, d, e, f, b, d, c, e, g \rangle, \langle a, b, d, c, e, g \rangle^2,$

 $\langle a, b, c, d, e, f, b, c, d, e, f, b, d, c, e, g \rangle$

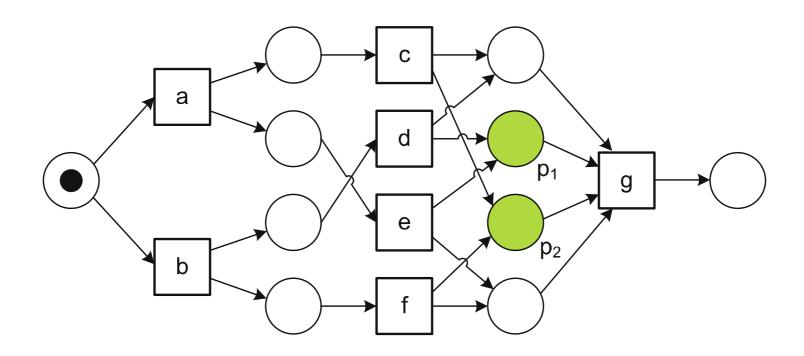
	а	b	С	d	e	f	g
a	#	\rightarrow	#	#	#	#	#
b	\leftarrow	#	\rightarrow	\rightarrow	#	\leftarrow	#
C	#	\leftarrow	#		\rightarrow	#	#
d	#	\leftarrow		#	\rightarrow	#	#
e	#	#	\leftarrow	\leftarrow	#	\rightarrow	\rightarrow
f	#	\rightarrow	#	#	\leftarrow	#	#
g	#	#	#	#	\leftarrow	#	#

Check in full autonomy that the footprint matrix corresponds to the log and that the net below is the one discovered by the alpha-algorithm


Exercises

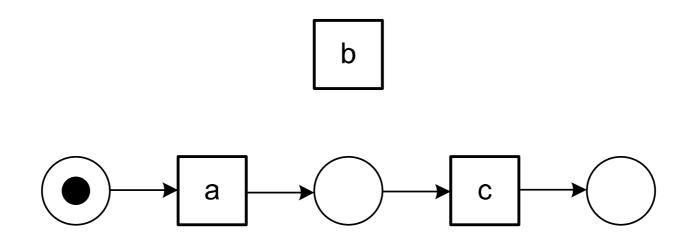
 $L_2 = \left[\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^4, \langle a, b, c, e, f, b, c, d \rangle^2, \langle a, b, c, e, f, c, b, d \rangle, \right]$

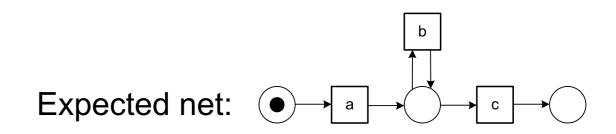
 $\langle a, c, b, e, f, b, c, d \rangle^2, \langle a, c, b, e, f, b, c, e, f, c, b, d \rangle$


	а	b	c	d	e	f
a	#	\rightarrow	\rightarrow	#	#	#
b	\leftarrow	#		\rightarrow	\rightarrow	\leftarrow
\mathcal{C}	\leftarrow		#	\rightarrow	\rightarrow	\leftarrow
d	#	\leftarrow	\leftarrow	#	#	#
e	#	\leftarrow	\leftarrow	#	#	\rightarrow
f	#	\rightarrow	\rightarrow	#	\leftarrow	#

Check in full autonomy that the footprint matrix corresponds to the log and that the net below is the one discovered by the alpha-algorithm

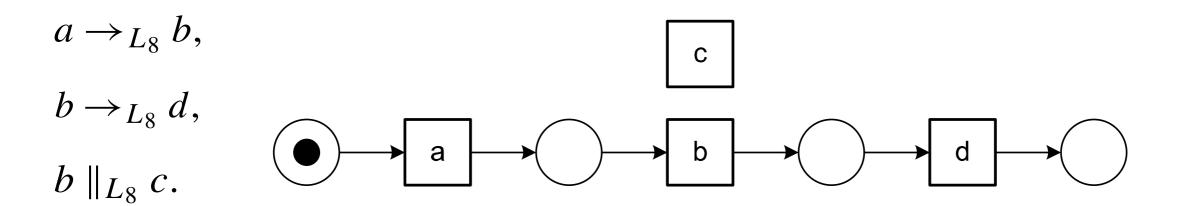
Limitation: Implicit Dependencies


$$L_6 = \left[\langle a, c, e, g \rangle^2, \langle a, e, c, g \rangle^3, \langle b, d, f, g \rangle^2, \langle b, f, d, g \rangle^4 \right]$$

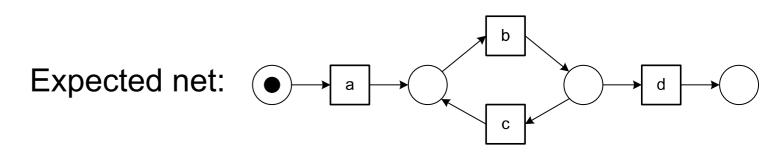

p₁ and p₂ are redundant

Limitation: Short Loop

$$L_7 = \left[\langle a, c \rangle^2, \langle a, b, c \rangle^3, \langle a, b, b, c \rangle^2, \langle a, b, b, b, b, c \rangle^1 \right]$$



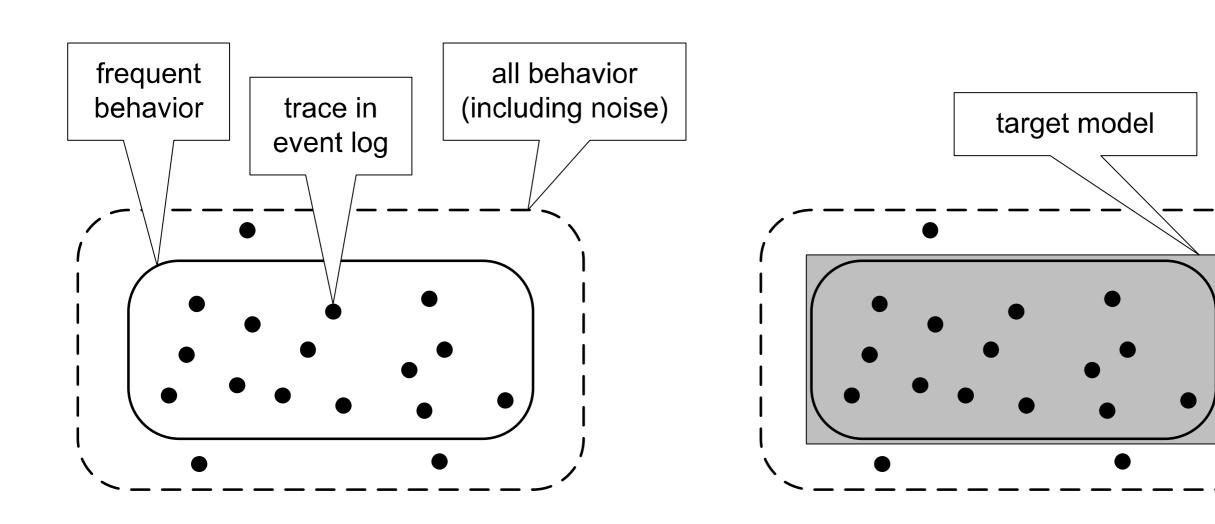
b is disconnected from the model



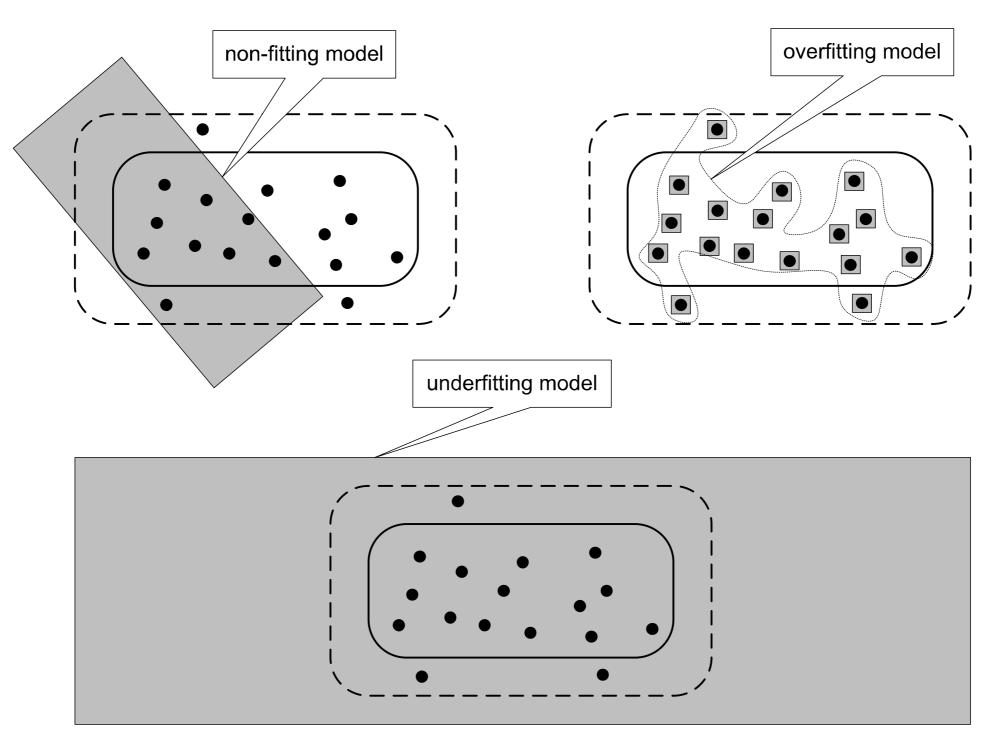
Limitation: Short Loop

$$L_8 = \left[\langle a, b, d \rangle^3, \langle a, b, c, b, d \rangle^2, \langle a, b, c, b, c, b, d \rangle \right]$$

c is disconnected from the model

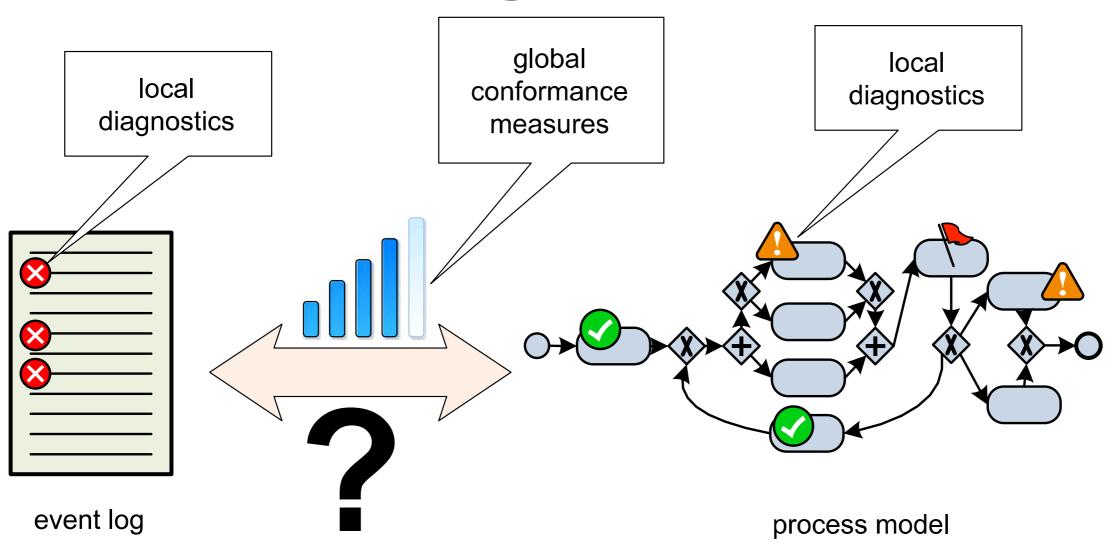


Limitation: Noise


We use the term "noise" to refer to rare and infrequent behaviour rather than errors related to event logging.

For example, frequencies are not taken into account by the α -algorithm (should we disregard less frequent traces?).

Limitation: Noise



Limitation: Noise

Conformance Checking: fitness measures

Measures and Diagnostic

Fig. 7.1 Conformance checking: comparing observed behavior with modeled behavior. Global conformance measures quantify the overall conformance of the model and log. Local diagnostics are given by highlighting the nodes in the model where model and log disagree. Cases that do not fit are highlighted in the visualization of the log 120

Measuring Fitness

Fitness measures "the proportion of behaviour in the event log possible according to the model".

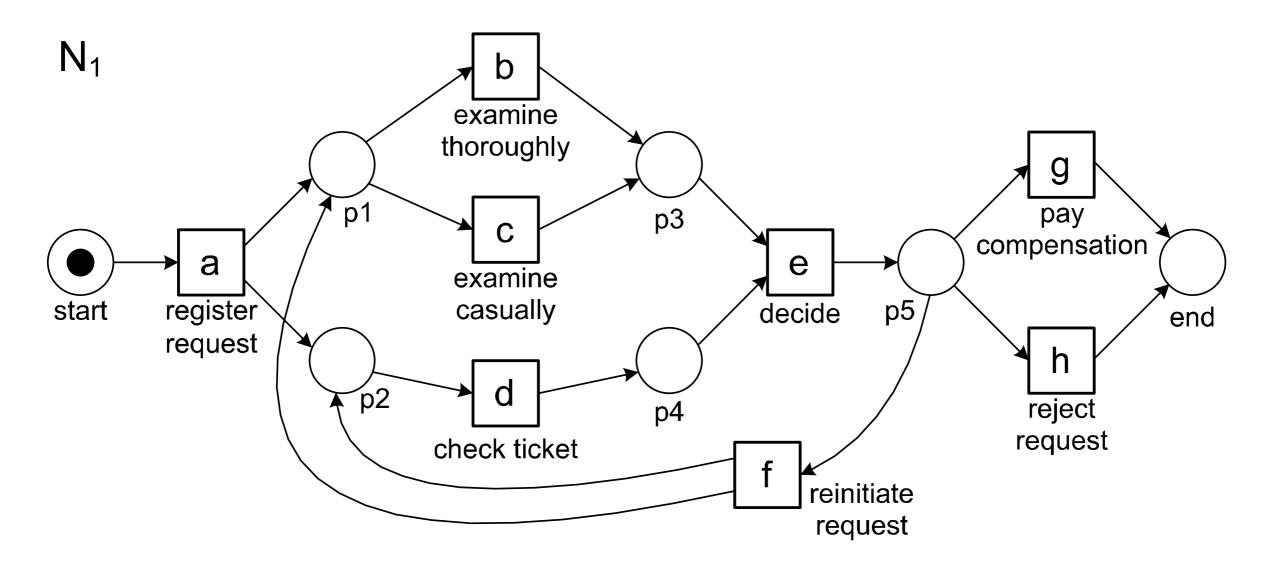
Of the four quality criteria, fitness is the closest to conformance.

A naïve approach toward conformance checking would be to count the fraction of cases that can be "replayed" (i.e., the proportion of cases corresponding to firing sequences leading from [start] to [end]).

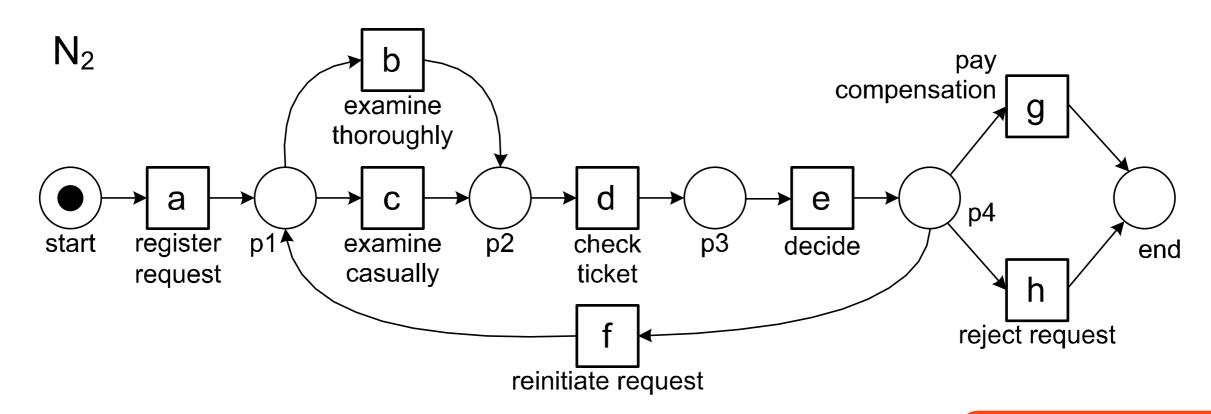
Ability to replay

Can the net N replay the trace σ ?

is equivalent to ask if

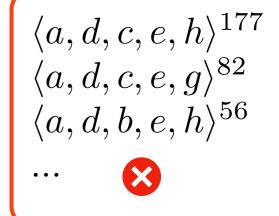

does $\sigma \in L(N)$? (is σ in the language of N ?)

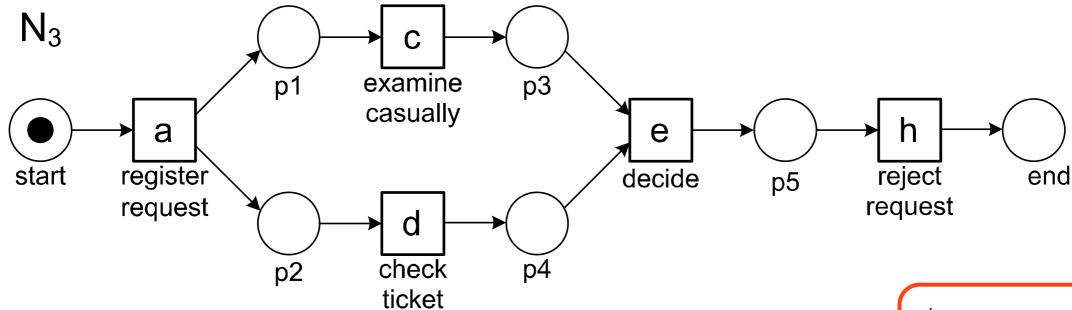
when $\sigma \notin L(N)$ we say that σ is **non-fitting** for N


Table 7.1 Event log L_{full} : $a = register\ request$, $b = examine\ thoroughly$, $c = examine\ casually$, $d = check\ ticket$, e = decide, $f = reinitiate\ request$, $g = pay\ compensation$, and $h = reject\ request$

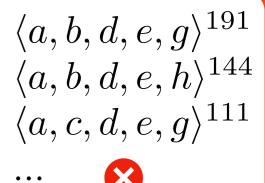
1391 cases

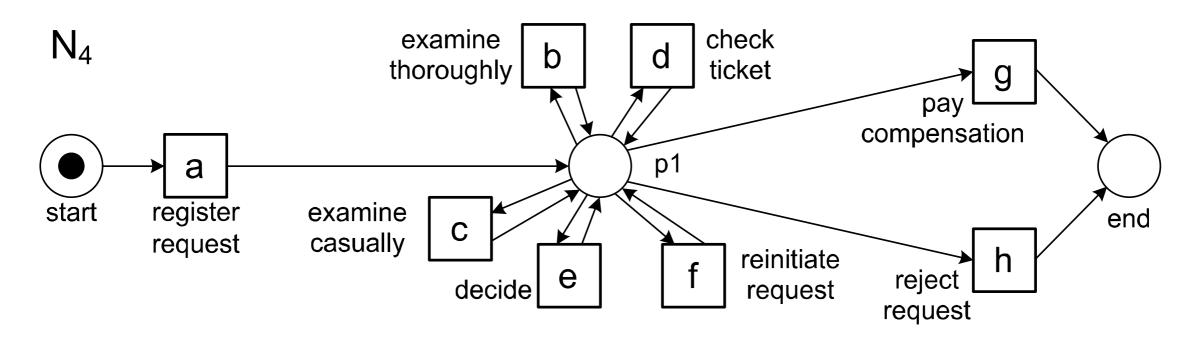
Frequency	Reference	Trace
455	LAUIII	$\langle a, c, d, e, h \rangle$
191	σ_2	$\langle a, b, d, e, g \rangle$
177	σ_3	$\langle a, d, c, e, h \rangle$
144	σ_4	$\langle a, b, d, e, h \rangle$
111	σ_5	$\langle a, c, d, e, g \rangle$
82	σ_6	$\langle a, d, c, e, g \rangle$
56	σ_7	$\langle a, d, b, e, h \rangle$
47	σ_8	$\langle a, c, d, e, f, d, b, e, h \rangle$
38	σ_9	$\langle a, d, b, e, g \rangle$
33	σ_{10}	$\langle a, c, d, e, f, b, d, e, h \rangle$
14	σ_{11}	$\langle a, c, d, e, f, b, d, e, g \rangle$
11	σ_{12}	$\langle a, c, d, e, f, d, b, e, g \rangle$
9	σ_{13}	$\langle a, d, c, e, f, c, d, e, h \rangle$
8	σ_{14}	$\langle a, d, c, e, f, d, b, e, h \rangle$
5	σ_{15}	$\langle a, d, c, e, f, b, d, e, g \rangle$
3	σ_{16}	$\langle a, c, d, e, f, b, d, e, f, d, b, e, g \rangle$
2	σ_{17}	$\langle a, d, c, e, f, d, b, e, g \rangle$
2	σ_{18}	$\langle a, d, c, e, f, b, d, e, f, b, d, e, g \rangle$
1	σ_{19}	$\langle a, d, c, e, f, d, b, e, f, b, d, e, h \rangle$
1	σ_{20}	$\langle a,d,b,e,f,b,d,e,f,d,b,e,g \rangle$
1	σ_{21}	$\langle a, d, c, e, f, d, b, e, f, c, d, e, f, d, b, e, g \rangle$




naïve fitness $\frac{1391}{1391} = 1$ The net can ``replay' any trace

443 cases do not correspond to a firing sequence


naïve fitness
$$\frac{948}{1391} = 0.6815$$



759 cases do not correspond to a firing sequence

naïve fitness
$$\frac{632}{1391} = 0.4543$$

"flower model" (poorly structured)

naïve fitness
$$\frac{1391}{1391} = 1$$
 The net can ``replay" any trace

Almost Fitting Traces

This naïve fitness notion seems to be too strict as traces can differ only slightly and not be counted at all.

$$\sigma = \langle a_1, a_2, \dots, a_{100} \rangle$$

Consider a model N1 that cannot replay σ , but that can replay 99 of the 100 events in σ . Then, consider another model N2 that can only replay 10 of the 100 events in σ .

Using the naïve fitness metric, the trace would simply be classified as non-fitting for both models without acknowledging that σ was almost fitting in N1 and in complete disagreement with N2.

Missing and Remaining Tokens

We next introduce a more accurate fitness notion.

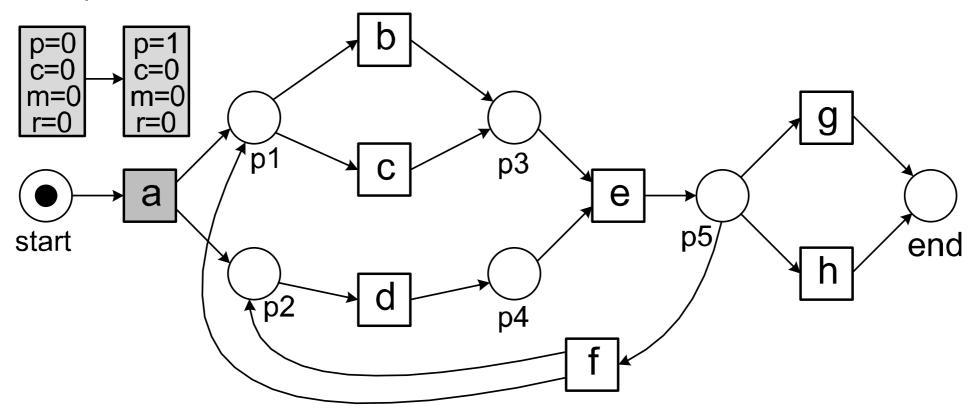
When computing the naïve fitness, we stop replaying a trace as soon as we find a problem (and tag that trace as non-fitting).

Let us instead just continue replaying the trace on the model but record all situations where a transition is forced to fire without being enabled, i.e., we count all **missing** tokens.

Moreover, we record the tokens that **remain** at the end.

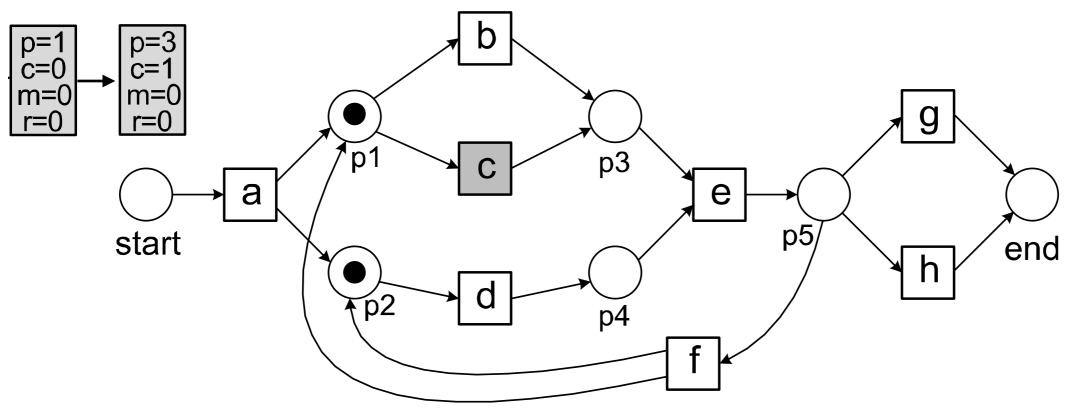
Four Counters

p (produced tokens)

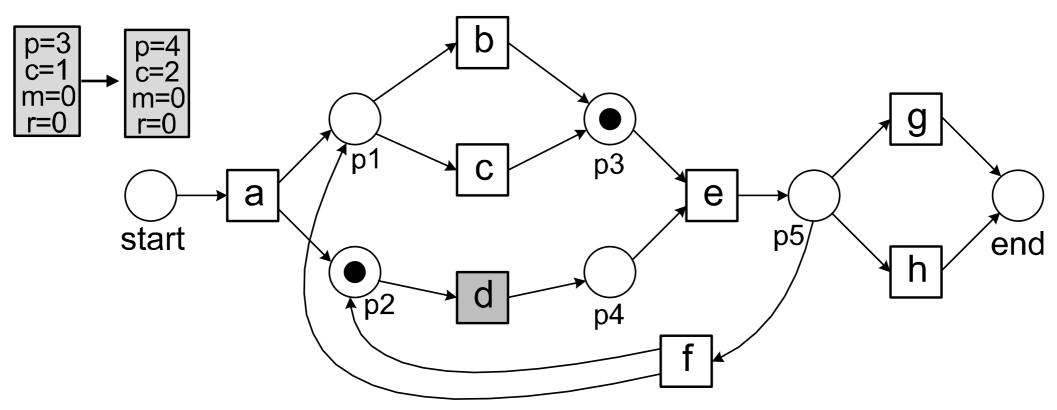

r (remaining tokens)

c (consumed tokens)

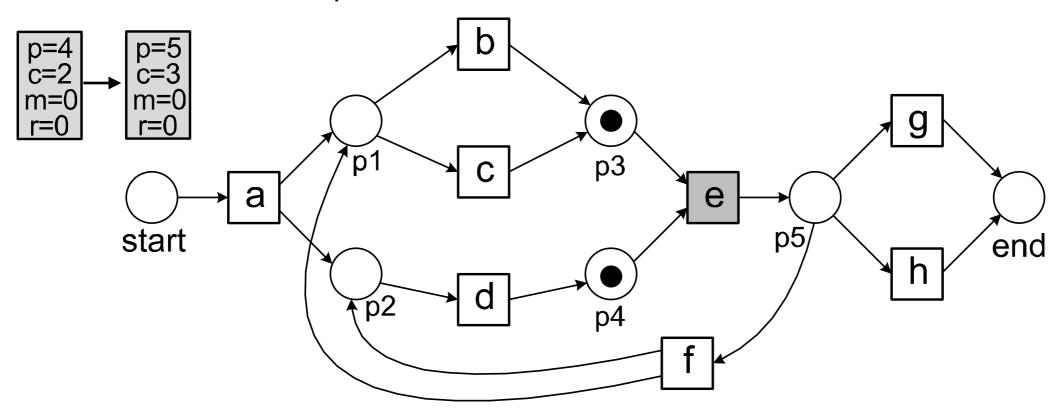
m (missing tokens)


$$fitness(\sigma, N) = \frac{1}{2} \left(1 - \frac{m}{c} \right) + \frac{1}{2} \left(1 - \frac{r}{p} \right)$$
 proportions of misplacement

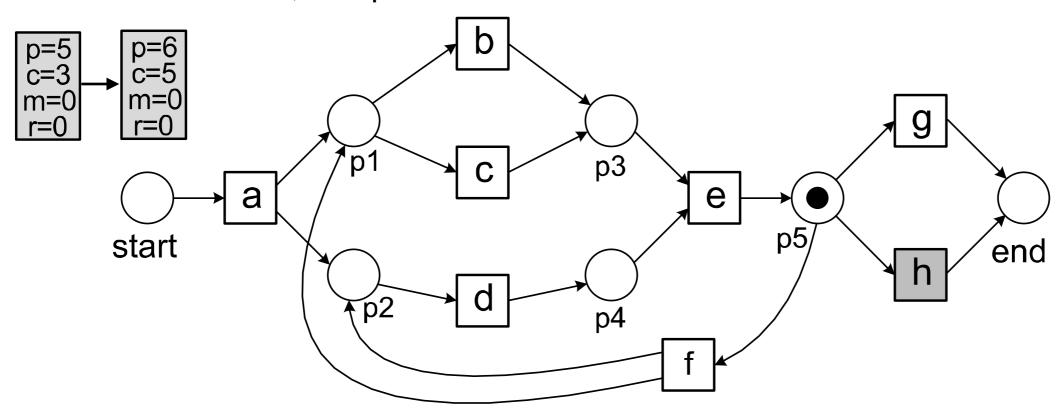
the environment produces a token for place start


$$\sigma_1 = \langle a, c, d, e, h \rangle$$

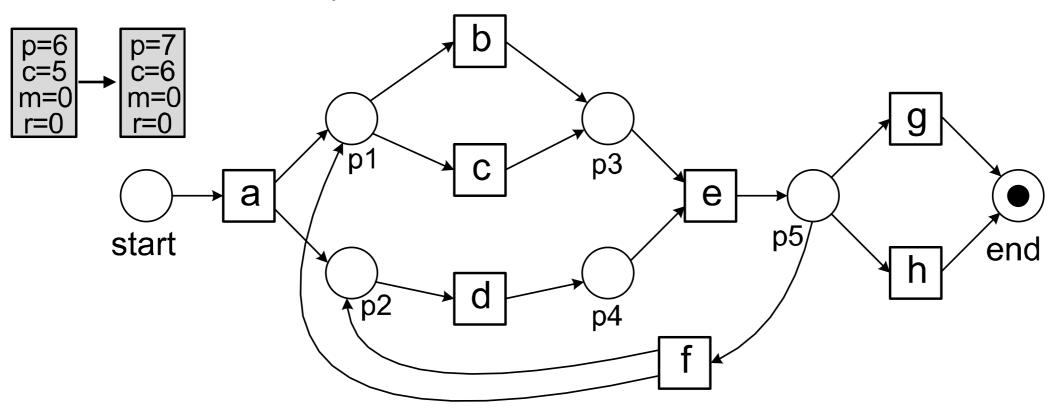
replaying a is possible one token is consumed, two produced


$$\sigma_1 = \langle a, c, d, e, h \rangle$$

replaying c is possible one token is consumed, one produced

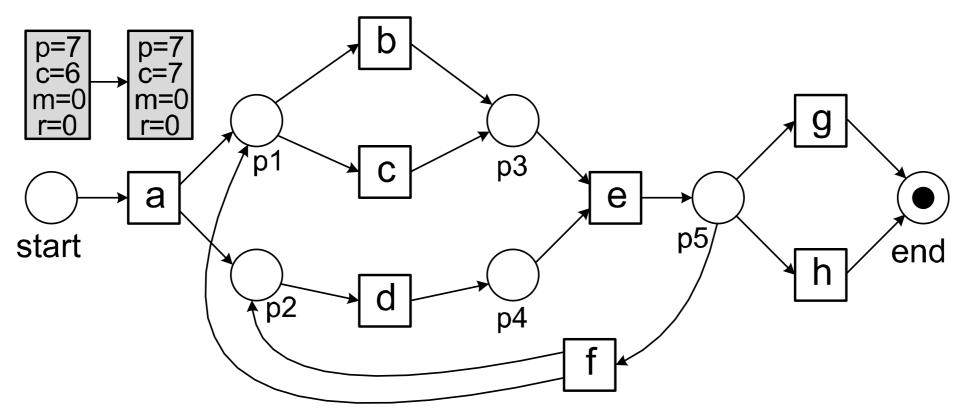

$$\sigma_1 = \langle a, c, d, e, h \rangle$$

replaying d is possible one token is consumed, one produced


$$\sigma_1 = \langle a, c, d, e, h \rangle$$

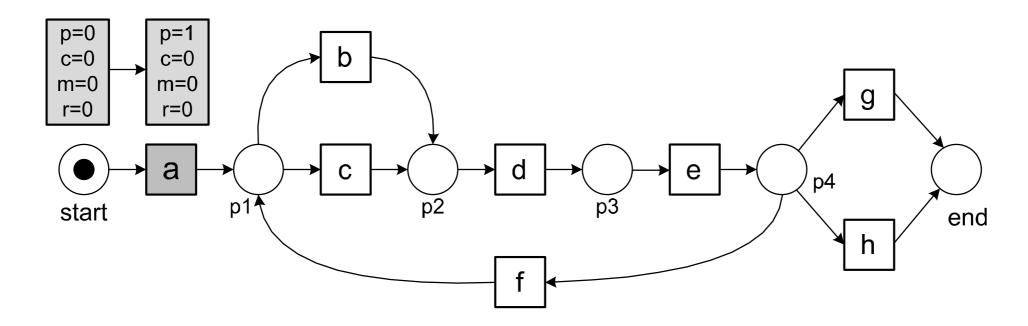
replaying e is possible two tokens are consumed, one produced

$$\sigma_1 = \langle a, c, d, e, h \rangle$$

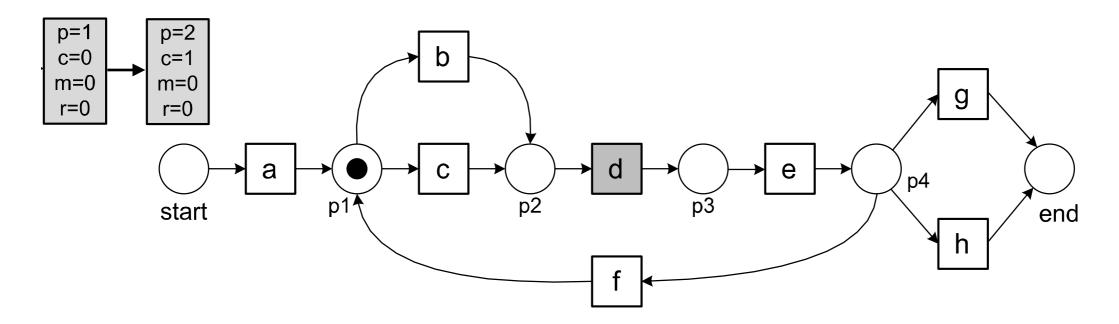

replaying h is possible one token is consumed, one produced

$$\sigma_1 = \langle a, c, d, e, h \rangle$$

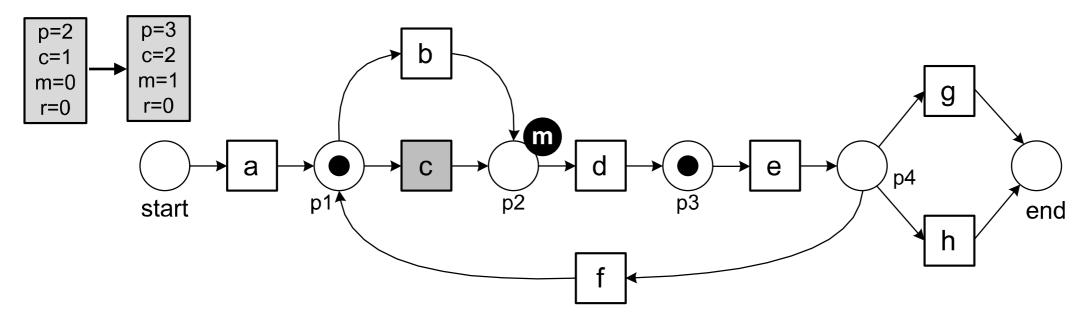
Example: none missing, At the end, none remaining


the environment consumes a token from place end.

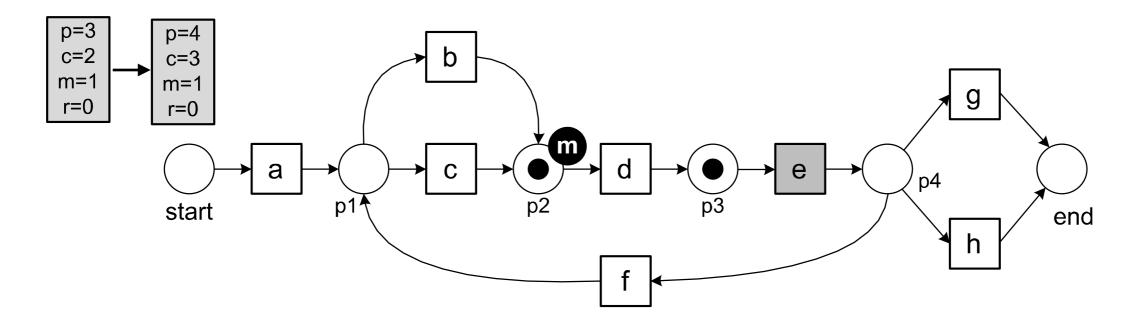
fitness
$$(\sigma_1, N_1) = \frac{1}{2}(1 - \frac{0}{7}) + \frac{1}{2}(1 - \frac{0}{7}) = 1$$


$$\sigma_1 = \langle a, c, d, e, h \rangle$$

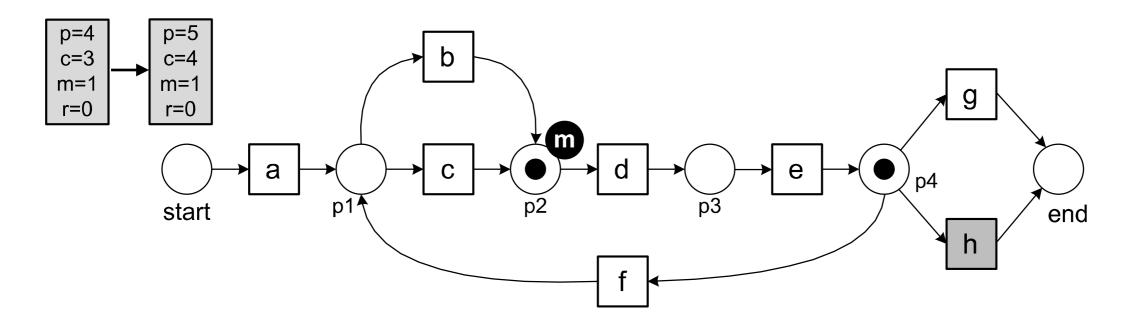
the environment produces a token for place start


$$\sigma_3 = \langle a, d, c, e, h \rangle$$

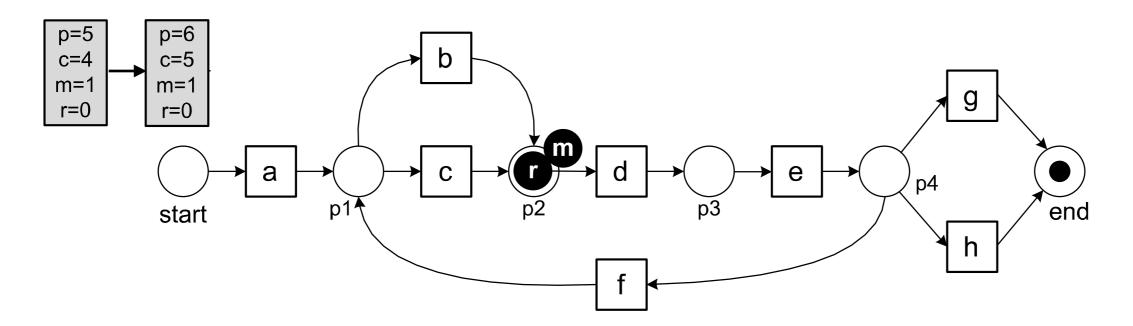
replaying a is possible one token is consumed, one produced


$$\sigma_3 = \langle a, d, c, e, h \rangle$$

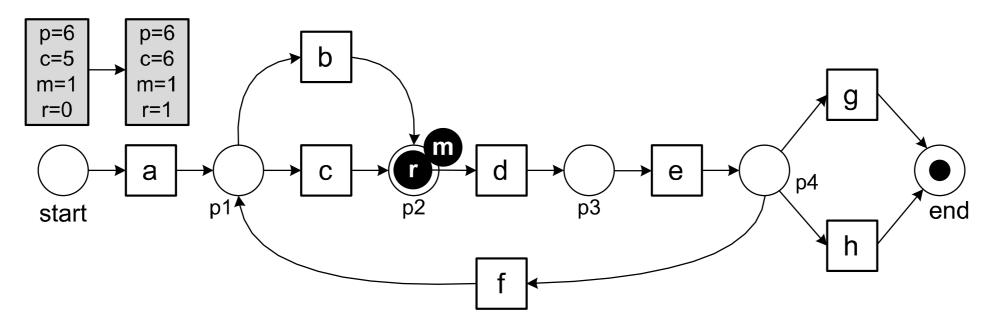
replaying d is NOT possible one token is missing, one produced, one consumed


$$\sigma_3 = \langle a, d, c, e, h \rangle$$

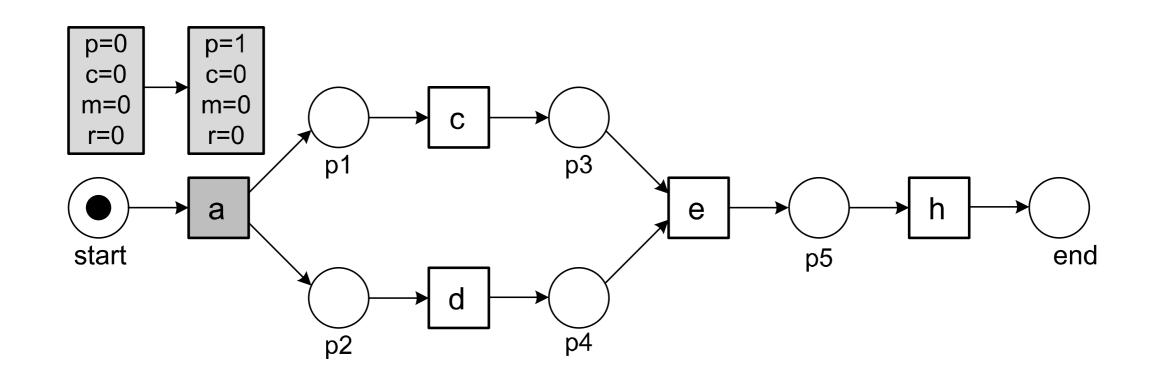
replaying c is possible one token is produced, one consumed


$$\sigma_3 = \langle a, d, c, e, h \rangle$$

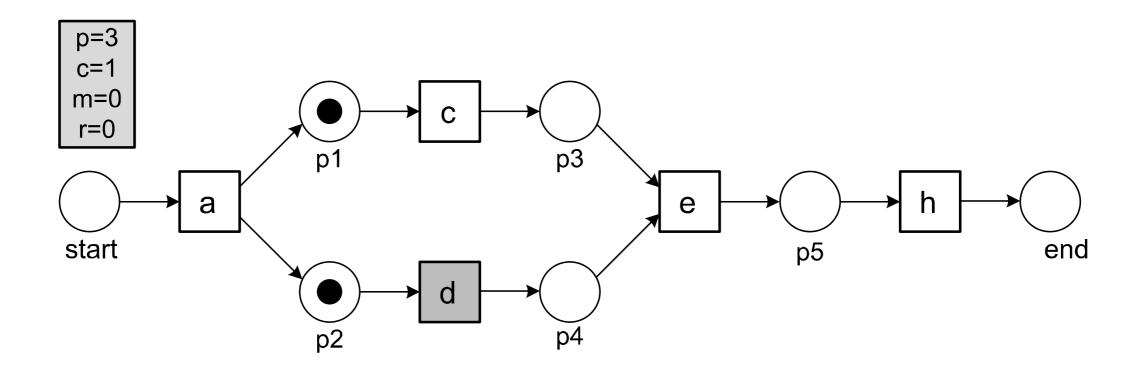
replaying e is possible one token is produced, one consumed


$$\sigma_3 = \langle a, d, c, e, h \rangle$$

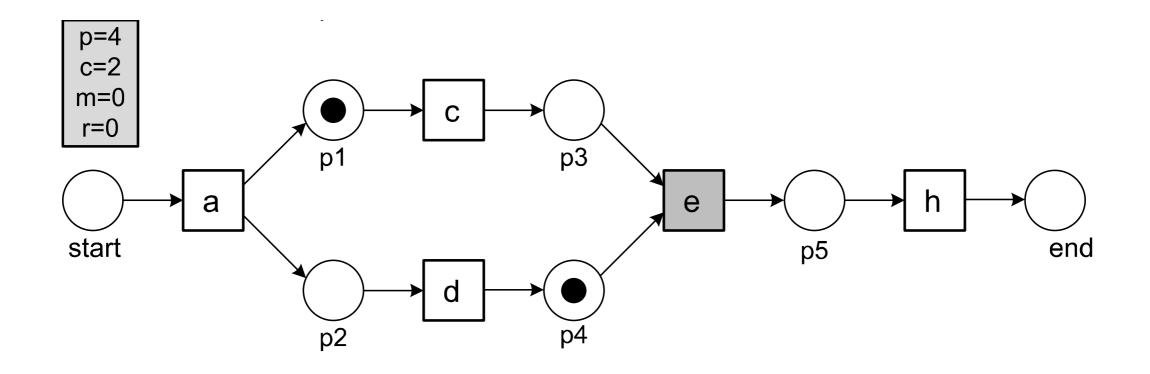
replaying h is possible one token is produced, one consumed


$$\sigma_3 = \langle a, d, c, e, h \rangle$$

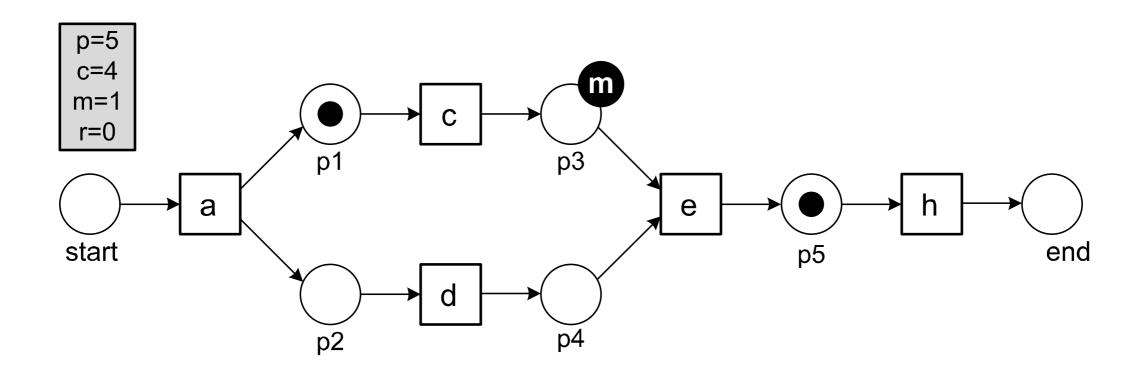
At the end, the environment consumes a token from place end.

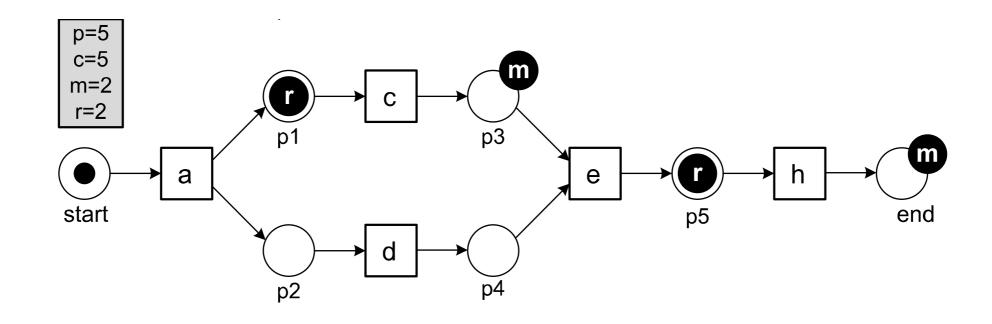

$$fitness(\sigma_3, N_2) = \frac{1}{2} \left(1 - \frac{1}{6} \right) + \frac{1}{2} \left(1 - \frac{1}{6} \right) = 0.8333$$

$$\sigma_3 = \langle a, d, c, e, h \rangle$$



events b and g are not present in the net therefore we remove them from the trace


$$\sigma_2 = \langle a, b, d, e, g \rangle$$
 $\sigma'_2 = \langle a, d, e \rangle$


$$\sigma_2' = \langle a, d, e \rangle$$

$$\sigma_2' = \langle a, d, e \rangle$$

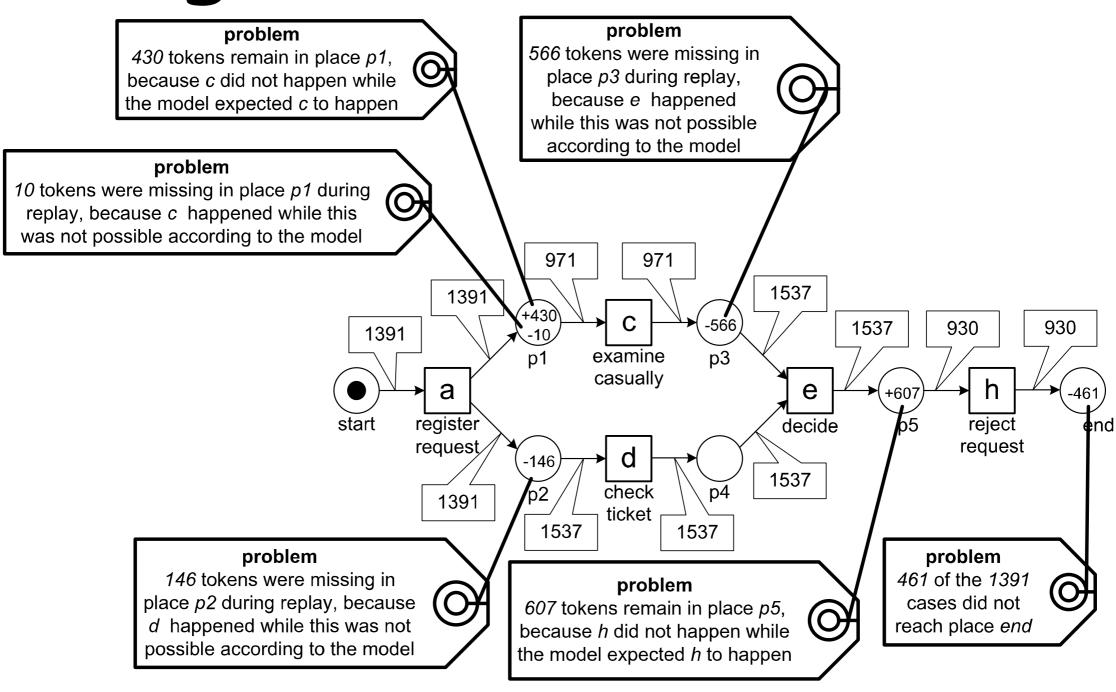
$$\sigma_2' = \langle a, d, e \rangle$$

$$fitness(\sigma_2, N_3) = \frac{1}{2} \left(1 - \frac{2}{5} \right) + \frac{1}{2} \left(1 - \frac{2}{5} \right) = 0.6$$

$$\sigma_2' = \langle a, d, e \rangle$$

Fitness of a Log

$$fitness(L,N) = \frac{1}{2} \left(1 - \frac{\sum_{\sigma \in L} L(\sigma) \times m_{N,\sigma}}{\sum_{\sigma \in L} L(\sigma) \times c_{N,\sigma}} \right) + \frac{1}{2} \left(1 - \frac{\sum_{\sigma \in L} L(\sigma) \times r_{N,\sigma}}{\sum_{\sigma \in L} L(\sigma) \times p_{N,\sigma}} \right)$$


 $L(\sigma)$ is just the multiplicity of the trace σ in the $\log L$

$$fitness(L_{full}, N_1) = 1$$
 $fitness(L_{full}, N_2) = 0.9504$
 $fitness(L_{full}, N_3) = 0.8797$
 $fitness(L_{full}, N_4) = 1$

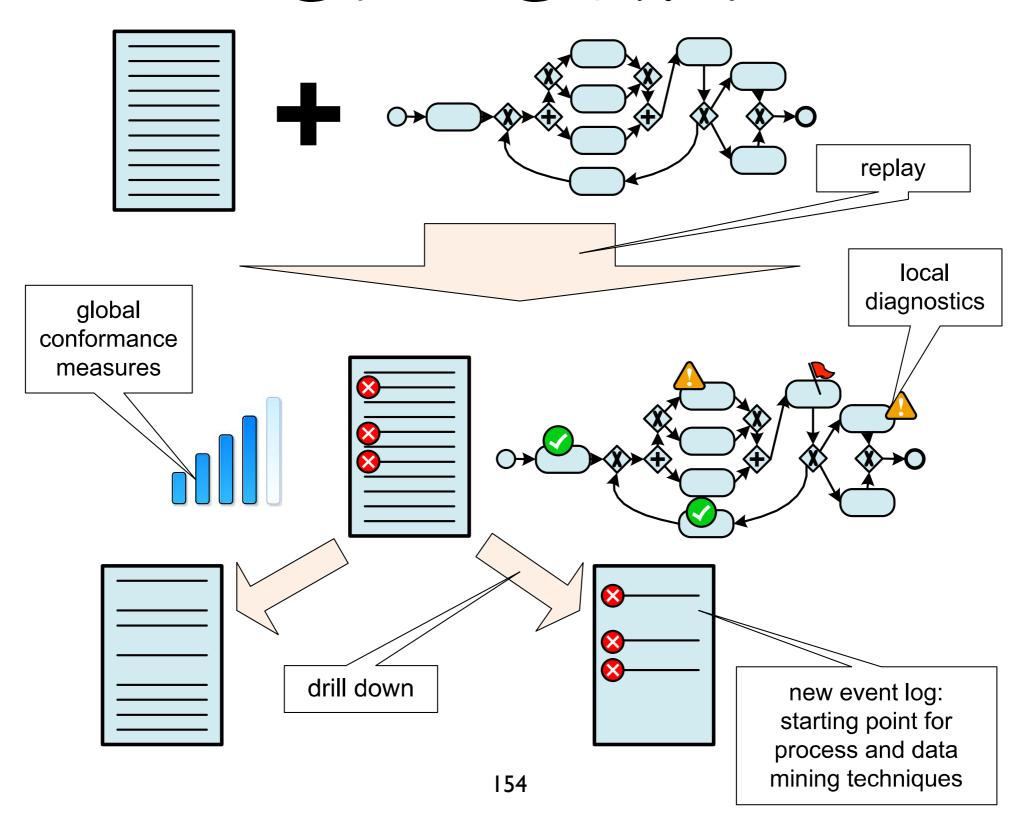
Diagnostic Information 566 566 971 971 1537 1537 461 461 1391 1391 b 1537 1537 examine thoroughly pay compensation +443 d a е p4 p2 register p1 examine check **8**a decide start end casually ticket request h 930 reject request problem 443 tokens remain in place p2, reinitiate 930 because *d* did not occur although 146 request the model expected d to happen 146 problem 443 tokens were missing in place p2 during replay, because *d* happened even though this was not possible according to the model

Fig. 7.6 Diagnostic information showing the deviations ($fitness(L_{full}, N_2) = 0.9504$)

Diagnostic Information

Fig. 7.7 Diagnostic information showing the deviations ($fitness(L_{full}, N_3) = 0.8797$)

Drill Down


An event log can be split into two sublogs: one event log containing only fitting cases and one event log containing only non-fitting cases.

The second event log can be used to discover a different process model.

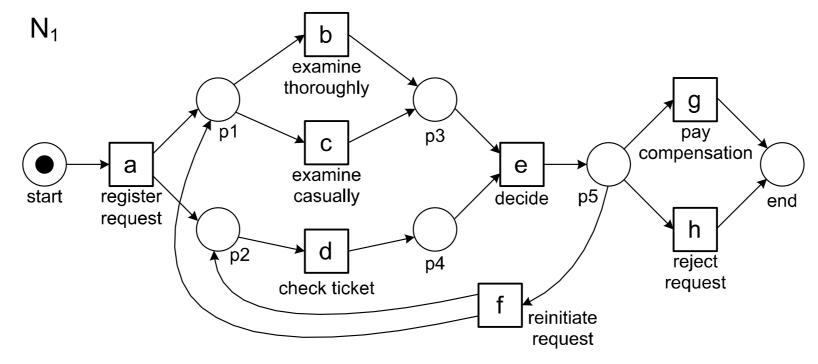
Also other data and process mining techniques can be used. For instance, it is interesting to know which people handled the deviating cases and whether these cases took longer or were more costly.

In case fraud is suspected, one may create a social network based on the event log with deviating cases.

Drill Down

Comparing Footprints (optional reading)

Footprint from Play-out


Given a workflow net, the **play-out** technique can be used to extract a **local complete** set of traces.

If we see the set of traces as an event log (without multiplicities), then we can derive the relation >.

Then, we can construct the footprint (i.e. a matrix showing causal dependencies between events) of the net model based on such relation >.

(From the viewpoint of a footprint matrix, an event log is complete if and only if all activities that can follow one another do so at least once in the log.)

Example: complete set

 $\langle a b d e g \rangle$ $\langle a c d e f b d e g \rangle$ $\langle a d b e f d c e h \rangle$ $\langle a d b e f c d e h \rangle$

Footprint-based Conformance

Footprints are available for logs and models (nets).

This allows for:

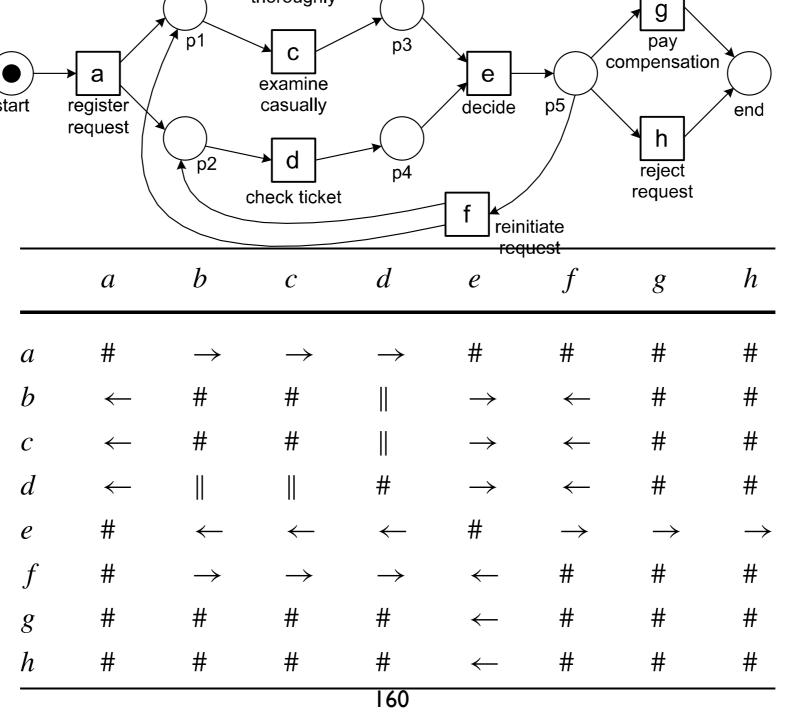
log vs model conformance (do the log and the model agree?)

model vs model conformance (quantification of their similarities)

log vs log comparison (concept drift: how does the work changes in sub-logs?)

Conformance based on footprints

The conformance based on footprints can be computed by taking:


n: total number of cells in the footprint matrix

d: number of cells in the same positions but with different content between the two matrices

$$1-\frac{d}{n}$$

examine thoroughly

 N_1

 $\langle a \ b \ d \ e \ g \rangle$

 $\langle a d b e f d c e h \rangle$

 $\langle a \ c \ d \ e \ f \ b \ d \ e \ g \rangle$

 $\langle a d b e f c d e h \rangle$

Also

Footprint of L_{full}

 $\langle a \ b \ d \ e \ f \ b \ d \ e \ g \rangle$ N_2 b pay compensation examine $\langle a \ c \ d \ e \ f \ c \ d \ e \ h \rangle$ thoroughly С a p4 register examine p2 decide p3 start p1₹ check end ticket request casually reject request reinitiate request bd hg a \mathcal{C} e# # # \boldsymbol{a} b# # # # # # $\boldsymbol{\mathcal{C}}$ # # # # # # e \rightarrow # # # # # # # # # # h# # # # # #

161

	a a	b b	<i>c c</i>	d d	e e	f f	<i>g g</i>	h
a a	# #	$\rightarrow \rightarrow$	$\rightarrow \rightarrow$	→#	# #	# #	# #	# #
b b	$\leftarrow \leftarrow$	# #	# #	\parallel \rightarrow	$\rightarrow \#$	$\leftarrow \leftarrow$	# #	# #
c c	$\leftarrow \leftarrow$	# #	# #	\parallel \rightarrow	\rightarrow #	$\leftarrow \leftarrow$	# #	# #
d d	←#	∥ ←	∥ ←	# #	$\rightarrow \rightarrow$	←#	# #	# #
e e	# #	← #	← #	$\leftarrow \leftarrow$	# #	$\rightarrow \rightarrow$	$\rightarrow \rightarrow$	$\rightarrow \rightarrow$
f f	# #	$\rightarrow \rightarrow$	$\rightarrow \rightarrow$	$\rightarrow \#$	$\leftarrow \leftarrow$	# #	# #	# #
g g	# #	# #	# #	# #	$\leftarrow \leftarrow$	# #	# #	# #
h h	# #	# #	# #	# #	$\leftarrow \leftarrow$	# #	# #	# #

$$1 - \frac{12}{64} = 0.8125$$

	a	b	c	d	e	f	g	h
\overline{a}				→:#				
b				$\ :\to$	→:#			
C				$\ :\to$	→:#			
d	←:#	∥:←	∥:←			←:#		
e		←:#	←:#					
f				→:#				
g								
h								