
Methods for the specification and
verification of business processes

MPB (6 cfu, 295AA)
!

Roberto Bruni
http://www.di.unipi.it/~bruni

23 - Yet another workflow
language

1

http://www.di.unipi.it/~bruni

Object

2

We overview the key features of YAWL and the main
differences with Petri nets

!
!
!
!
!
!

Ch.4.5 of Business Process Management: Concepts, Languages, Architectures

3

Some deficiencies

4

About synchronization patterns
!

Petri nets have difficulties in dealing with or-join patterns
especially, synchronization merge, discriminator

!
!

Examples:
optional booking of flight, train, hotel, rental car, show tickets

!
number of paper submissions to a conference

!

Some deficiencies

5

About multiple instances
!

Petri nets do not provide adequate means
to easily describe multiple instances tasks

!
Examples:

witness statements in processing insurance claim
!

number of paper submissions to a conference
!

Some deficiencies

6

About nonlocal firing behaviour
!

Petri nets do not provide adequate means
to model cancellation patterns

(the firing of a transition should atomically trigger the
cancellation of other tokens in some places,

if there are some tokens there)
!

Examples:
abort of a commercial transaction

!

A wish list

7

Graphical language
!

Formal syntax
!

Rigourous theory
!

Direct support for (all?) workflow patterns
!

Tool support

YAWL

8

Extended workflow net

9

Some transitions are labelled as AND/XOR/OR split
!

Some transitions are labelled as AND/XOR/OR join
!

Some transitions are assigned a set of places
to vacuum-clean when firing

!
Some transitions are assigned a (min, max, threshold)

number of multiple instances to be spawn
(statically or dynamically)

!
Transitions can be connected directly to transitions

Notational elements of
YAWL

10

Discriminator
(via cancellation region)

11

when E fires,
all token in the region

are removed

N-out-of-M
(via multiple instances)

12

(N-out-of-M of the same activity)

min

max threshold

static

Multiples instances
without synchronization

13

Expressiveness...
not in the formal sense

(w.r.t. WF patterns)

14

15

6. Cancellation patterns. The occurrence of an event (e.g., a customer canceling an

order) may lead to the cancellation of activities. In some scenarios such events can

even cause the withdrawal of the whole case.

Figure 1 shows an overview of the 20 patterns grouped into the six categories. A detailed

discussion of these patterns is outside the scope of this paper. The interested reader is

referred to [5–8, 48].

We have used these patterns to evaluate 15 workflow systems: COSA (Ley GmbH,

[43]) , Visual Workflow (Filenet, [13]), Forté Conductor (SUN, [14]), Lotus Domino

Workflow (IBM/Lotus, [34]), Meteor (UGA/LSDIS, [41]), Mobile (UEN, [23]), MQ-

Series/Workflow (IBM, [22]), Staffware (Staffware PLC, [44]), Verve Workflow (Ver-

sata, [46]), I-Flow (Fujitsu, [16]), InConcert (TIBCO, [45]), Changengine (HP, [21]),

SAP R/3 Workflow (SAP, [39]), Eastman (Eastman, [42]), and FLOWer (Pallas Athena,

[9]). Tables 1 and 2 summarize the results of the comparison of the workflow manage-

ment systems in terms of the selected patterns. For each product-pattern combination,

we checked whether it is possible to realize the workflow pattern with the tool. If a

product directly supports the pattern through one of its constructs, it is rated +. If the

pattern is not directly supported, it is rated +/-. Any solution which results in spaghetti

diagrams or coding, is considered as giving no direct support and is rated -.

pattern product

Staffware COSA InConcert Eastman FLOWer Domino Meteor Mobile

1 (seq) + + + + + + + +

2 (par-spl) + + + + + + + +

3 (synch) + + + + + + + +

4 (ex-ch) + + +/- + + + + +

5 (simple-m) + + +/- + + + + +

6 (m-choice) - + +/- +/- - + + +

7 (sync-m) - +/- + + - + - -

8 (multi-m) - - - + +/- +/- + -

9 (disc) - - - + +/- - +/- +

10 (arb-c) + + - + - + + -

11 (impl-t) + - + + - + - -

12 (mi-no-s) - +/- - + + +/- + -

13 (mi-dt) + + + + + + + +

14 (mi-rt) - - - - + - - -

15 (mi-no) - - - - + - - -

16 (def-c) - + - - +/- - - -

17 (int-par) - + - - +/- - - +

18 (milest) - + - - +/- - - -

19 (can-a) + + - - +/- - - -

20 (can-c) - - - - +/- + - -

Table 1. The main results for Staffware, COSA, InConcert, Eastman, FLOWer, Lotus Domino

Workflow, Meteor, and Mobile.

16

pattern product

MQSeries Forté Verve Vis. WF Changeng. I-Flow SAP/R3

1 (seq) + + + + + + +

2 (par-spl) + + + + + + +

3 (synch) + + + + + + +

4 (ex-ch) + + + + + + +

5 (simple-m) + + + + + + +

6 (m-choice) + + + + + + +

7 (sync-m) + - - - - - -

8 (multi-m) - + + - - - -

9 (disc) - + + - + - +

10 (arb-c) - + + +/- + + -

11 (impl-t) + - - - - - -

12 (mi-no-s) - + + + - + -

13 (mi-dt) + + + + + + +

14 (mi-rt) - - - - - - +/-

15 (mi-no) - - - - - - -

16 (def-c) - - - - - - -

17 (int-par) - - - - - - -

18 (milest) - - - - - - -

19 (can-a) - - - - - - +

20 (can-c) - + + - + - +

Table 2. The main results for MQSeries, Forté Conductor, Verve, Visual WorkFlo, Changengine,

I-Flow, and SAP/R3 Workflow.

Please apply the results summarized in tables 1 and 2 with care. First of all, the

organization selecting a workflow management system should focus on the patterns

most relevant for the workflow processes at hand. Since support for the more advanced

patterns is limited, one should focus on the patterns most needed. Second, the fact that

a pattern is not directly supported by a product does not imply that it is not possible to

support the construct at all.

From the comparison it is clear that no tool supports all the of the 20 selected pat-

terns. In fact, many of the tools only support a relatively small subset of the more

advanced patterns (i.e., patterns 6 to 20). Specifically the limited support for the dis-

criminator, and its generalization, the -out-of- -join, the state-based patterns (only

COSA), the synchronization of multiple instances (only FLOWer) and cancellation ac-

tivities/cases, is worth noting.

The goal of providing the two tables is not to advocate the use of specific tools.

However, they illustrate that existing tools and languages are truly different and that

most languages provide only partial support for the patterns appearing in real life work-

flow processes. These observations have been our main motivation to look into the

expressiveness of high-level Petri nets (Section 3) and come up with a new language

(Section 4).

17

Pattern-Based Analysis of BPML (and WSCI) 24

pattern standard
BPEL XLANG WSFL BPML WSCI

Sequence + + + + +
Parallel Split + + + + +
Synchronization + + + + +
Exclusive Choice + + + + +
Simple Merge + + + + +
Multi Choice + – + – –
Synchronizing Merge + – + – –
Multi Merge – – – +/– +/–
Discriminator – – – – –
Arbitrary Cycles – – – – –
Implicit Termination + – + + +
MI without Synchronization + + + + +
MI with a Priori Design Time Knowledge + + + + +
MI with a Priori Runtime Knowledge – – – – –
MI without a Priori Runtime Knowledge – – – – –
Deferred Choice + + – + +
Interleaved Parallel Routing +/– – – – –
Milestone – – – – –
Cancel Activity + + + + +
Cancel Case + + + + +
Request/Reply + + + + +
One-Way + + + + +
Synchronous Polling + + + + +
Message Passing + + + + +
Publish/Subscribe – – – – –
Broadcast – – – – –

Table 1. Comparison of BPEL4WS, XLANG, WSFL, BPML and WSCI using both
workflow and communication patterns.

– BPML does not o�er direct support for the Multi Choice and Synchro-
nizing Merge while BPEL4WS does. This comes from the fact that
BPEL4WS borrows the concept of “dead-path elimination” charac-
teristic of WSFL/IBM MQSeries.

– Each of the languages supports Multiple Instances without Synchro-
nization, Multiple Instances with a Priori Design Time Knowledge,
Cancel Activity, and Cancel Case.

– Most of the languages support the Implicit Termination and the De-
ferred Choice.

– None of the compared languages support arbitrary cycles, although
all of them directly support structured cycles.

When comparing BPEL4WS, XLANG, WSFL, BPML and WSCI to
contemporary workflow systems [3] on the basis of the patterns discussed

FIT Technical Report FIT-TR-2002-05

18

pattern high-level Petri nets YAWL

1 (seq) + +

2 (par-spl) + +

3 (synch) + +

4 (ex-ch) + +

5 (simple-m) + +

6 (m-choice) + +

7 (sync-m) − +

8 (multi-m) + +

9 (disc) − +

10 (arb-c) + +

11 (impl-t) − −
12 (mi-no-s) + +

13 (mi-dt) + +

14 (mi-rt) − +

15 (mi-no) − +

16 (def-c) + +

17 (int-par) + +

18 (milest) + +

19 (can-a) − +

20 (can-c) − +

(i) The synchronizing merge is not supported because the designer has to keep track

of the number of parallel threads and decide to merge or synchronize flows (cf.

Section 3.2).

(ii) The discriminator is not supported because the designer needs to keep track of the

number of threads running and the number of threads completed and has to reset

the construct explicitly by removing all tokens corresponding to the iteration (cf.

Section 3.2).

(iii) Implicit termination is not supported because the designer has to keep track of

running threads to decide whether the case is completed.

(iv) Implicit termination is not supported because the designer is forced to identify one

unique final node. Any model with multiple end nodes can be transformed into a

net with a unique end node (simply use a synchronizing merge). This has not been

added to YAWL to force the designer to think about successful completion of the

case. This requirement allows for the detection of unsuccessful completion (e.g.,

deadlocks).

(v) Multiple instances with synchronization are not supported by high-level Petri nets

(cf. Section 3.1).

(vi) Also not supported, cf. Section 3.1.

(vii) Cancel activity is only partially supported since one can remove tokens from the

input place of a transition but additional bookkeeping is required if there are multi-

ple input places and these places may be empty (cf. Section 3.3).

(viii) Cancel activity is not supported because one needs to model a vacuum clearer to

remove tokens which may of may not reside in specific places (cf. Section 3.3).

(about YAWL)

pattern high-level Petri nets YAWL

1 (seq) + +

2 (par-spl) + +

3 (synch) + +

4 (ex-ch) + +

5 (simple-m) + +

6 (m-choice) + +

7 (sync-m) − +

8 (multi-m) + +

9 (disc) − +

10 (arb-c) + +

11 (impl-t) − −
12 (mi-no-s) + +

13 (mi-dt) + +

14 (mi-rt) − +

15 (mi-no) − +

16 (def-c) + +

17 (int-par) + +

18 (milest) + +

19 (can-a) − +

20 (can-c) − +

(i) The synchronizing merge is not supported because the designer has to keep track

of the number of parallel threads and decide to merge or synchronize flows (cf.

Section 3.2).

(ii) The discriminator is not supported because the designer needs to keep track of the

number of threads running and the number of threads completed and has to reset

the construct explicitly by removing all tokens corresponding to the iteration (cf.

Section 3.2).

(iii) Implicit termination is not supported because the designer has to keep track of

running threads to decide whether the case is completed.

(iv) Implicit termination is not supported because the designer is forced to identify one

unique final node. Any model with multiple end nodes can be transformed into a

net with a unique end node (simply use a synchronizing merge). This has not been

added to YAWL to force the designer to think about successful completion of the

case. This requirement allows for the detection of unsuccessful completion (e.g.,

deadlocks).

(v) Multiple instances with synchronization are not supported by high-level Petri nets

(cf. Section 3.1).

(vi) Also not supported, cf. Section 3.1.

(vii) Cancel activity is only partially supported since one can remove tokens from the

input place of a transition but additional bookkeeping is required if there are multi-

ple input places and these places may be empty (cf. Section 3.3).

(viii) Cancel activity is not supported because one needs to model a vacuum clearer to

remove tokens which may of may not reside in specific places (cf. Section 3.3).

pattern high-level Petri nets YAWL

1 (seq) + +

2 (par-spl) + +

3 (synch) + +

4 (ex-ch) + +

5 (simple-m) + +

6 (m-choice) + +

7 (sync-m) − +

8 (multi-m) + +

9 (disc) − +

10 (arb-c) + +

11 (impl-t) − −
12 (mi-no-s) + +

13 (mi-dt) + +

14 (mi-rt) − +

15 (mi-no) − +

16 (def-c) + +

17 (int-par) + +

18 (milest) + +

19 (can-a) − +

20 (can-c) − +

(i) The synchronizing merge is not supported because the designer has to keep track

of the number of parallel threads and decide to merge or synchronize flows (cf.

Section 3.2).

(ii) The discriminator is not supported because the designer needs to keep track of the

number of threads running and the number of threads completed and has to reset

the construct explicitly by removing all tokens corresponding to the iteration (cf.

Section 3.2).

(iii) Implicit termination is not supported because the designer has to keep track of

running threads to decide whether the case is completed.

(iv) Implicit termination is not supported because the designer is forced to identify one

unique final node. Any model with multiple end nodes can be transformed into a

net with a unique end node (simply use a synchronizing merge). This has not been

added to YAWL to force the designer to think about successful completion of the

case. This requirement allows for the detection of unsuccessful completion (e.g.,

deadlocks).

(v) Multiple instances with synchronization are not supported by high-level Petri nets

(cf. Section 3.1).

(vi) Also not supported, cf. Section 3.1.

(vii) Cancel activity is only partially supported since one can remove tokens from the

input place of a transition but additional bookkeeping is required if there are multi-

ple input places and these places may be empty (cf. Section 3.3).

(viii) Cancel activity is not supported because one needs to model a vacuum clearer to

remove tokens which may of may not reside in specific places (cf. Section 3.3).

Advantages and
drawbacks

19

Graphical presentation closely related to WF nets
Formal semantics (state- transitions model)

Support for Multiple Instance patterns
Support for cancellation region

!
Unfortunately soundness properties are undecidable

when reset arcs are used
!

But you can still play with YAWL by downloading it from
http://www.yawlfoundation.org/

http://www.yawlfoundation.org

