Reusable modules

VISUALIZATION ON THE WEB

From Javascript code to Modules

= D3.js provides a vast library of examples

" |n many projects, an example is modified and
adapted for a specific use

= However, the code is difficult to maintain and
adapt to different scenarios

= Solution: encapsulate all the code within a
module that is bound to data and a container

I Javascript and Objects

= We want to organize our visualization into components for

= Modularity: separate the different parts of a complicated
visualization

= Composability and reusability: reuse smaller pieces in different
visualization

= Simplification: concentrate on smaller part of the main problem
first
= To implement this approach we use objects, i.e. entities
with properties and functions

= QObjects are not fully supported in Javascript (prior to
ES2016)

= We exploit function closuers

An example for Barchart

// Creates bar chart component and configures its margins
barChart = chart()
.margin({top: 5, left: 10});

container = d3.select('.chart-container');

// Calls bar chart with the data-fed selector
container.datum(dataset).call(barChart);

General schema for a chart

function chart() {)
var width = 720, // default width Internal properties of the

height = 80; // default height object: width and height

function my(selection) {
// generate chart here, using "width and "height Constructor and preparation

; for the chart attached to the
my.width = function(value) { selection
if ('arguments.length) return width;
width = value; Getter and setter for width
return my;
h

my.height = function(value) {
if ('arguments.length) return height;

height = value; Getter and setter for height
return my;

b

return my; Export the internal function

; outside this scope

Line chart to a reusable component

= Specification
" |nput: the component takes in input an array of
numbers

= Visualization: each number is rendered as a line
proportional to its value; an axis provide
reference for the values

NVD3.js

#A Home | ® |

NVD3 Re-usable charts for d3.js

This project is an attempt to build re-usable charts and chart
components for d3.js without taking away the power that d3.js

gives you. This is a very young collection of components, with the

goal of keeping these components very customizeable, staying

away from your standard cookie cutter solutions.

View more examples »

GitHub Repo

3.4

3.0 /_\
25
2.0
15

1.0

0.5
0.1
0

10

3.4

3.0

25

0.5

20

@ Grouped Stacked

30

“”Hl'll.nll‘
7 15

36

® ZIP TARGZ

@® Stream0 Stream1 @ Stream2

‘IIIII'
31

23

4.5
4.0

3.0

20

1.0

0.0
0 10 20 30 36

I NVD3

= An high level library built on top of D3js

" Provides reusable charts
= A large library of components
= Manage annotations and interaction support

= Extensible with new plugins

I NVD3 — Getting Started

= |nstall NVD3 via NPM

" npm install nvd3 —save

" |Include the library files within HTML page:
= CSSand JS

" |[mportant: d3js should be imported before nvd3

NVD3 — Skeletal HTML

<IDOCTYPE html>

<html>

<head>
<meta charset="utf-8">
<title>My First Chart</title>
<link href="nv.d3.css" rel="stylesheet" type="text/css">
<script src="d3.v3.js"></script>
<script src="nv.d3.js"></script>

</head>

<body>
<svg style='height:600px'/>
<script type=“text/javascript”>

// your code here

</script>

</body>

</html>

NVD3 — Chart Initialization code

nv.addGraph(function() { //This adds the chart to a global rendering queue.
var chart = nv.models.lineChart(); //Create instance of nvd3 lineChart

chart.xAxis
.axisLabel("X-axis Label"); //Set X-axis attributes
chart.yAxis
.axisLabel("Y-axis Label") //Set Y-Axis attributes.
.tickFormat(d3.format("d")) //Set Y-Axis label formatting.
5
d3.select("svg") //Select the document's <svg> element
.datum(myData()) //Attach data to the <svg> element.
.call(chart); //Passthe d3.selection to our lineChart.
nv.utils.windowResize(//Updates the window resize event callback.
function() {
chart.update(); //Renders the chart when window is resized.
}
)

return chart; //Must return the enclosed chart variable so the global rendering queue can store
it.
}s

NVD3 - Data format

[
{
key: "<Series name>",
color: "<CSS color>",
values: [
{x: 0, y: 10},
{x: 1, y: 20},
{x: 2, y: 30}
]
}s
{
key: "<Series name>"
}

I Exercise — Colors of Art

