
VISUAL	ANALYTICS	
Salvatore	Rinzivillo	



Announcment 		

§  No	lesson	on	March	5th	
§ We	will	meet	on	March	6th	from	11	to	13	in	
Aula	N1	



DEVELOPMENT	FRAMEWORK	



Objectives	

§  Setup	a	developing	environment	
§  Install	Node.js	and	NPM	
§  Configure	and	initialize	a	project	

§  Install	and	configure	git	
§  Create	a	repository	and	import	project	files	

§  IDEs	
§  GitKraken,	Git	Desktop	
§ WebStorm,	Atom.io,	Textmate	



Node.js	and	NPM	



What	is	Node.js	

§  “An	asynchronous	event	
driven	Javascript	
runtime”	
§  Non-blocking,	event-driven	
I/O	operations	

§  Lightweight	and	efficient	
for	data-intensive	
applications	

§  Distributed	computation	
and	load	balancing	

§  Available	for	download	at	
https://nodejs.org/		

Image	source:	https://www.toptal.com/nodejs/why-the-hell-
would-i-use-node-js	



NPM	–	Node	Package	Manager	

§  Node.js	has	a	large	library	of	public	available,	
reusable	components	

§  Components	are	available	through	a	
repository	

§ Manage	libraries	for	global	use	and	local	
projects	

§  Handle	all	dependencies	



NPM	-	Commands	

§  npm	init	
§  Initialize	a	project,	creating	a	file	package.json	

§  npm	install	<module>	
§  Download	and	install	module	within	the	directory	
node_modules	

§ With	the	flag	--save,	add	the	module	to	the	
package.json	list	of	dependencies	

§ With	the	flag	--global	(or	-g)	the	module	is	
installed	globally	on	the	system	



Most	used	packages	

§  Express:	a	web	application	development	framework	
for	node.js	

§  Lodash:	general	utilities	for	handling	data	structures	in	
javascript	

§  http-server	
§  Specifically	for	the	course:	

§  D3	
§  Nvd3	
§  Bootstrap	
§  Jquery	
§  …	



Exercise	–	Create	a	project	with	Node.js	

§  Demo	



Web	server	



Web	Server	for	Node.js	



Web	Server	in	Node.js	

§  There	are	several	modules	available	for	
running	a	web	server	

§  A	very	simple	http	server:	
§  npm	install	-g	http-server	

§  A	more	sophisticated	application	server:	
§  npm	install	-g	express	



Exercise	–	Use	http-server	to	access	our	project	

§  Demo	



Version	Control	with	GIT	



What	is	Version	Control?	

Image	Source:	https://www.git-tower.com/learn/git/ebook/en/command-line/basics/what-is-version-control	



Why	Use	a	Version	Control	System?	

§  Collaboration	
§  Any	member	of	a	team	can	work	on	any	file	at	any	time	
§  Merge	of	contribution	is	handle	by	the	VCS	

§  Storing	versions	
§  Tracking	of	changes	through	periodic	saves	of	snapshots	
§  Only	one	version	of	a	project	at	any	time	

§  Other	versions	are	packed	within	the	VCS	
§  Restore	previous	versions	
§  Follow	the	development	of	the	project	
§  Backup,	when	using	external	repositories	



Which	VCS?	Introducing	GIT	

§  Download	a	client	from	public	repositories	
§  For	example:	GITHub,	BitBucket	

§  Use	clients	specific	for	your	OS	
§  For	example:	brew	install	git	(for	MacOsX)	

§  Initial	configuration	
§  git	config	--global	user.name	“rinziv”	
§  git	config	--global	user.email	“rinzivillo@isti.cnr.it”	
§  git	config	--global		



GIT	–	Creating	a	Repository	

§  GIT	handles	two	kinds	of	repositories	
§  Local	repository	

§ Contained	within	a	folder	.git	in	the	root	of	the	
project	folder	

§ Only	on	person	access	this	repo	
§  Remote	repository	

§  Located	into	a	remote	server	
§  Locally	stored	within	the	.git	folder	
§  Team	members	work	concurrently	on	remote	
repository	



GIT	–	Create	a	local	repository	

§  Move	within	the	project	root	directory	
§  Use	git	init	to	start	versioning	tracking	
§  The	root	of	the	project	is	called	working	copy	

§  There	is	only	one	working	copy	at	any	moment	
§  It	is	possible	to	update	the	current	working	copy	with	
previous	versions	from	the	repository	

§  Some	files	(usually	related	to	the	OS)	can	be	
ignored	for	the	versioning	
§  Create	a	file	called	.gitignore	in	the	root	of	the	
project	folder	

§  List	the	files	to	ignore	within	the	file	



GIT	–	Clone	a	remote	repository	

§  A	remote	repository	have	a	URL	of	the	form:	
§  ssh://user@server/git-repo.git	
§  user@server:git-repo.git	
§  http://example.com/git-repo.git	
§  https://example.com/git-repo.git	
§  git://example.com/git-repo.git	



GIT	-	Commit	

§  Commit	operation	save	the	snapshot	of	the	
working	copy	on	the	repository	
§  git	add	–A	
§  git	commit	–m	“Initial	commit”	



GIT	–	Status	of	the	project	

§  Each	file	within	the	project	have	one	of	the	
following	state	
§  Untracked:	the	file	is	not	under	version	control.	
GIT	do	not	track	any	change	on	this	file	

§  Tracked:	GIT	reports	changes	on	these	files	
§  git	status	reports	the	list	of	files	within	
the	project	that	have	changed	and	those	that	
are	not	tracked	



GIT	–	Staging	Area	

Image	Source:	https://www.git-tower.com/learn/git/ebook/en/command-line/basics/working-on-your-project#start		



GIT	–	Preparing	the	staging	area	and	commit	

§  Add	the	files	to	include	in	the	staging	area	
§  git	add	new-page.html	index.html	css/*	
§  git	rm	error.html	
§  Check	the	status	with:	git	status	

§  Commit	changes	
§  git	commit	-m	"Implement	the	new	login	box”	



When	to	commit?	

§  Each	commit	should	contains	changes	related	
to	a	single	topic	

§  Save	only	completed	work	(for	temporary	
saving	use	Stash)	

§  Test	the	project	before	commiting	
§  Add	descriptive	message	
§  Commit	often	



Desktop	GUI	Version	



GitKraken	



Exercise	–	Create	a	repository	for	our	project	

§  Demo	



Classroom	Spring	2018	repository	
https://goo.gl/yVcwYt	https://github.com/VA602AA-master	


