DATA VISUALIZATION AND VISUAL ANALYTICS

S. Rinzivillo – rinzivillo@isti.cnr.it

- Data main focus is relationship
- Study the patterns of connection among different parts of a complex system
- Visualization has a key roles to add insights to numerical analysis

NETWORKS AND GRAPHS

BASIC ELEMENTS

- components: nodes, vertices
- interactions: links, edges

Ν

(N,L)

• system: network, graph

NETWORKS OR GRAPHS? A COMMON LANGUAGE

Network refer to a real system Graph refers to mathematical representation of a network

va602aa

UNDIRECTED VS DIRECTED

Actor network, protein-protein interactions

WWW, citation networks

UNWEIGHTED VS WEIGHTED

protein-protein interactions, www

Call Graph, metabolic networks

NETWORK INTERNAL REPRESENTATION

- Three main methods
 - a) Adjacency Lists
 - b) Matrices
 - c) Node-link diagrams

ADJACENCY MATRIX

- Each cell ij represents an edge from vertex i to vertex j
- Effectiveness of visualization depens on rows/columns ordering
- First example by Jacques bertin (with paper strips rearranged by hand)
- Effective also for highly connected graphs

https://observablehq.com/@bstaats/matrix-diagram

NODE-LINK REPRESENTATION

- Symbolic elements for nodes
- Lines for connection among nodes
- Physical networks (roads, power grids) have a natural spatial encoding
- Abstract networks need layouts to infer a spatial position for nodes

https://observablehq.com/@d3/force-directed-graph

PROBLEMS OF NODE-LINK DIAGRAMS

- Occlusion of node and link crossings
- Large networks may produce hairball like networks
- Many algorithms to produce effective layouts to reduce cluttering

- Interaction to switch between different layouts
- Effective positioning of labels
 - Centered on nodes
 - Visualization based on interaction and mouse hover

http://projects.flowingdata.com/tut/interactive_network_demo/

• Collapsing nodes into clusters

http://www.theyrule.net/

• Zooming and context distortion

https://bost.ocks.org/mike/fisheye/

• Zooming and context distortion

http://www.nytimes.com/interactive/2008/05/05/science/20080506_DISEASE.html?_r=0

CASE STUDY: FORCE DIRECTED

http://projects.flowingdata.com/tut/interactive_network_demo/

CASE STUDY: INFORMATION FLOW

Circular Layout

http://www.eigenfactor.org/projects/well-formed/

CASE STUDY: SANKEY TYPE DIAGRAMS

