3B · VISUAL VARIABLES

TEACHER Salvo Rinzivillo

University of Pisa · Department of Computer Science Course: Visual Analytics (602AA) Academic Year 2024–2025

Data Types

- Nominal (N)
 - Equality relation
 - Apples, bananas, pears...
- Ordinal (O)
 - Ordering relation
 - Small, medium, large, darker, light...
- Quantitative (Q)
 - Arithmetic relations
 - 10m, 32 degrees, 2 bars...

Data Types - Operators

- Nominal
 - ≠, =
- Ordinal
 - ≠, =, >, <
- Quantitative Interval (no reference point)
 - ≠, =, >, <, +, -
 - $\circ~$ Dates, Location
 - Distances: A is 3 degrees hotter than B
- Quantitative Ratio (reference point)
 - $\circ \neq, =, >, <, +, -, \times, \div$
 - Length, mass
 - $\circ~$ Proportions: A is twice as large as B

From Data to Conceptual Model

- Data Model: low-level representation of data and operations
- Conceptual Model: mental and semantic construction

Data	Concept	
1D number	Temperature	
2D numbers	Geographic Coordinate	
3D numbers	Spatio-temporal position	

From Data to Conceptual Model

- From data model...
 - 70.8, 27.2, **-**10.2...
- ...using conceptual model...
 - Temperature
- ...to data type
 - Continuous variation
 - Warm, hot, cold
 - $\circ~$ Burned vs not burned

Visual Variables

- Jacques Bertin (1918-2010), cartographer
- Theoretical principles of visual encodings
- Semiology of Graphics (1967)

[Graphics] is a strict and simple system of signs, which anyone can learn to use and which leads to better understanding.

Jacques Bertin —

AZQUOTES

Bertin's Visual Variables

This is a visual summary of Bertin's classification of visual variables

Characteristics of Visual Variables

- Selective
 - May I distinguish a symbol from the others?
- Associative
 - May I identify groups?
- Quantitative
 - May I quantify the difference of two values?
- Order
 - May I identify an ordering?

Characteristics of Visual Variables

VV: Position

- Strongest visual variable
- Compatible for all data types
- Cons:
 - Not always applicable (e.g. nD data)
 - Cluttering

VV: Size and Length

- Easy to compare dimensions
- Grouping
- Estimate differences
 - Quantitative encoding
 - Changes in lengths
 - $\circ~$ Worse for change in area

VV: Shapes

- Strong for nominal encoding
- No ordering
- No grouping

VV: Value (Intensity)

- Quantitative representation (when size and length are used)
- Limited number of shades
- Support grouping

VV: Color (Tint)

- Good for qualitative data
- Limited number of classes (!!!)
- Not good for quantitative data
- Be careful!!

Bertin Visual Variables

	Nominal	Ordinal	Quantitative
Position	\checkmark	\checkmark	\checkmark
Size	\checkmark	\checkmark	~
Value (intensity)	\checkmark	\checkmark	~
Texture	✓ ~	~	× × ×
Color	\checkmark	×	
Orientation	\checkmark	×	
Shape	\checkmark	×	×

Visual Encoding/Decoding

- A graph encodes a set of information as a set of graphical attributes
- The observer has to decode the graphical attributes to extract the original information

TAXONOMY OF VISUAL VARIABLES

Cleveland McGill [1984]

William S. Cleveland; Robert McGill, "Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods." 1984

Figure 4. Graphs from position-length experiment.

Figure 3. Graphs from position-angle experiment.

Cleveland & McGill: Graphical Encodings

- Angle
- Area
- Color Hue
- Color Saturation
- Density
- Length
- Position on a common scale
- Position on non-aligned scale
- Slope
- Volume

Angle Decoding

- It is difficult to compare angles
 - Underestimation of acute angles
 - Overestimation of obtuse angles
 - Easier if bisectors are aligned
- Area estimation helps

Angle Decoding

- It is difficult to compare angles
 - Underestimation of acute angles
 - Overestimation of obtuse angles
 - Easier if bisectors are aligned

Slopes Decoding

- Same difficulties as angles
- Easier task since one branch is aligned with x-axis

Area Decoding

- Area is not well decoded
- Different regular shapes
- Irregular shapes
- Context influences (thin area within compact thick area)

Length Decoding

- Straight forward to encode numerical values
- Difficulties with relative lengths

Position on a Common Scale

• Widely used in statistical charts

Position on Non-Aligned Scale

- Not as good as common scale
- Still acceptable

Designing Effective Visualizations

- If possible, use graphical encoding that is easily decoded
- Graphical Attributes ordered (Cleveland & McGill):
 - i. Position along a common scale
 - ii. Position on non-aligned scales
 - iii. Length
 - iv. Angle and Slope
 - v. Area
 - vi. Volume, density, color saturation vii. Color Hue

Most Efficient to Least Efficient

PERCEPTION LAWS

Weber's Law

- Just-noticeable difference between two stimuli is proportional to their magnitudes
- Case study on length:
 - $\circ~$ Given two lines with lengths x and x+w
 - If w is small, it is difficult to notice difference between the two lines
 - If w is larger, it is easier to catch the difference
- How large should w be?
 - \circ The probability of detecting the change is proportional to the relative value w/x

Weber's Law

- Given values (90, 92)
- Detect with probability of 2/90

- Given values (90, 92)
- Detect with probability of 2/10

Stevens' Law

- Model the relation between a stimulus and its perceived intensity
- Given a stimulus x encoded with a visual attribute
- An observer decodes a perceived value p(x)
- Stevens' law states that:
 - $p(x) = kx^{\beta}$
 - $\circ~$ where ${\color{black}{\textbf{k}}}$ is constant and
 - $\circ~\beta$ is a constant that depends on the nature of stimulus

Stevens' Law

- Better effectiveness when $p(x) = kx^{\beta}$ is linear
- Linearity depends only on $\boldsymbol{\beta}$
- Different visual encodings yields typical ranges for β:
 - Lengths: 0.9 1.1
 - Area: 0.6 0.9
 - Volume: 0.5 0.8

Stevens' Law graph showing over/underestimation of values

Weber and Stevens' Laws

- Given two values x_1 and x_2
- Let the perceived values be $p(x_1)$ and $p(x_2)$

$$rac{p(x_1)}{p(x_2)} = \left(rac{x_1}{x_2}
ight)^eta$$

Weber and Stevens' Laws: Areas

- For areas β =0.7
- Let x₁=2 and x₂=1
- The perceived difference will be:

- For areas $\beta = 0.7$
- Let $x_1=0.5$ and $x_2=1$
- The perceived difference will be:

$$rac{p(2)}{p(1)} = \left(rac{2}{1}
ight)^{0.7} = 1.6245$$

$$rac{p(rac{1}{2})}{p(1)} = \left(rac{1/2}{1}
ight)^{0.7} = 0.6155$$

Weber and Stevens' Laws: Areas vs Lengths

- For areas β =0.7
- Let x₂=x₁+w
- The perceived difference will be:

- Let x₂=x₁+w
- The perceived difference will be:

$$\left(rac{x+w}{x}
ight)^{0.7}pprox 1+rac{0.7w}{x}$$

$$\left(rac{x+w}{x}
ight)^1 = 1 + rac{w}{x}$$

Takeaway Messages

- Data type for entities and relationships
- Visual variables for representation
- Mapping of types to VVs
- Some VVs are more appropriate for specific data types

Suggested Readings

Fundamentals of Data Visualization

A Primer on Making Informative and Compelling Figures

Claus O. Wilke

Example

Month	Day	Location	Station ID	Temperature
Jan	1	Chicago	USW00014819	25.6
Jan	1	San Diego	USW00093107	55.2
Jan	1	Houston	USW00012918	53.9
Jan	1	Death Valley	USC00042319	51.0
Jan	2	Chicago	USW00014819	25.5
Jan	2	San Diego	USW00093107	55.3
Jan	2	Houston	USW00012918	53.8
Jan	2	Death Valley	USC00042319	51.2
Jan	3	Chicago	USW00014819	25.3
Jan	3	San Diego	USW00093107	55.3
Jan	3	Death Valley	USC00042319	51.3
Jan	3	Houston	USW00012918	53.8

Visual Solution (1)

