
8
Integer encoding

scritto da: Tiziano De Matteis

8.1 Unary code . 8-2
8.2 Elias codes: γ and δ . 8-2
8.3 Rice code . 8-3
8.4 Interpolative coding . 8-4
8.5 Variable-byte codes and (s,c)-dense codes 8-5
8.6 PForDelta encoding. 8-7

Suppose that a sequence S = s1, . . . , sn has to be represented, where each symbol si is a positive

integer, possibly unbounded. The goal of integer encoding techniques is to represent the integers of

S over a binary output alphabet {0, 1} using as few as possible output bits.

We may encounter this problem in many real situations. For example, in search engines, the infor-

mation about the locations (the web pages) where a term occurs, are stored in inverted indexes: for

each term t, the index contains an inverted list consisting of a number of index postings, usually the

ID of the document, with some other information. Storing an index explicitly may require consider-

able space, but indexers can reduce demands on disk space and memory by using integer-encoding

algorithms. Sometimes improvement is obtained by replacing each docID, except the first, with the

difference between it and the previous one, the so called d-gap, and then encode the d-gap. This

way, smaller integers have to be encoded with a possible reduction of the compressed output size.

Another example relates to data compressors: many of them produce as intermediate output one or

more sets of integers (e.g. MTF, RLE, ...), with smaller values most probable and larger values

increasingly less probable. The final coding stage must convert these integers into a bit stream, such

that each value is self-delimiting and the total number of bits in the whole stream is minimized.

Why use a variable-length representation? The simplest code for a positive integer is its binary

representation by fixed-length. If the sequence is bounded by a maximum value N, then the binary

encoding takes dlog2 Ne bits for each number. This might be too much if the integers to be encoded

are skewed towards small values. From the Shannon’s theory, ideal code length lx for the symbol x

and its probability Pr[x] are related by the following equation:

lx = log2

1

Pr[x]
(8.1)

Knowing the code length, we may determine the probability distribution for which that code is

optimal. Namely we have:

Pr[x] = 2−lx

Hence, the implicit probability model associated with a fixed-length binary encoding is that each

number will be uniformly distributed in 1, . . . ,N and this is often not a good reflection of reality.

Thus, variable-length representations should be considered, in which smaller values (or, in general,

the more frequent) are considered more likely and coded more economically than the larger (or less

c© Paolo Ferragina, 2009-2012 8-1

8-2 Paolo Ferragina

frequent) ones. It goes without saying that Huffman encoding is optimal and could be applied in

this content too by setting Σ = {1, 2, . . . ,N}. However it would require to store the model (of size

O(N log N) bits) and to access it during the decoding phase (thus extra space and extra time are

required). Conversely, the methods that we are going to discuss have an implicit model that has

not to be stored and, in some cases (e.g. interpolative coding), could perform better than Huffman

because they exploit some particular regularities of the sequence (they go beyond the 0-th order

entropy H0).

8.1 Unary code

This is one of the simplest codes: an integer x ≥ 1 is encoded as x − 1 bits set to 0, ended by a bit

set to 1. For example:

FIGURE 8.1: Unary representation of 5

So the unary code requires x bits and thus strongly favors very small integers, resulting optimal

whenever Pr[x] = 2−x (from Equation 8.1). This is a pretty much skewed distribution of the integers,

indeed.

8.2 Elias codes: γ and δ

The γ-code represents the number x as a unary code for the value length(x) = 1 + blog2 xc followed

by the binary representation of x in dlog2 xe bits. The unary part specifies how many bits are required

to code x (namely the length of x) and then the binary part actually codes x in that many bits. The

final bit of the first field and the first bit of the binary representation (indeed, they are both 1) are

shared, and thus the γ-code requires 2blog2 xc + 1 bits.

For example, suppose that we want to code the integer 9. We have length(9) = 1 + blog2 9c = 4 and

thus:

FIGURE 8.2: γ representation of 9

From Equation 8.1 we derive that the γ-code is optimal whenever the distribution of x-values follows

the formula:

Pr[x] = 2−lx =
1

2x2

The natural evolution of γ-code is δ-code: because the prefix of the γ-representation could be

very long, it is useful to recurse and thus store length(x) not in unary but via its γ-code. So, the δ

representation of a number x is composed by two fields: the first is for the γ representation for the

value length(x) and the second for the binary representation of x.

Integer encoding 8-3

For example, taking x = 14, we have length(x) = 4 and length(4)=3 and thus:

FIGURE 8.3: δ representation of 14

Notice that, since we are using the γ-code for x’s length we can no longer hope that the first and

the second fields share a bit, so they are distinguished. In fact, Bin(4) ends with 0 whereas Bin(14)

starts with 1.

In general, in order to encode an arbitrary integer x, the δ-code requires

lx = 2(log2 length(x)) + 1 + blog2 xc + 1 = blog2 xc + 2blog2(1 + blog2 xc)c + 2 bits.

From Equation 8.1 follows that the code is optimal when:

Pr[x] = 2−lx =
1

2x log2 x

We notice that γ-code is a factor 2 from the optimal representation of an integer x (i.e. blog(x)c+1

bits), whereas δ-code is a factor

1 + O(
log log x

log x
) = 1 + o(1)

optimal. This is the reason why γ and δ codes are called Universal codes, in that the representation

they produce is a constant-factor from the optimal one. Nevertheless, these codes are not often used

because they are particularly slow during the decoding phase, due to the numerous bits-operations

required.

8.3 Rice code

There are situations in which integers are concentrated around some value, here Rice coding be-

comes advantageous both in compression ratio and decoding speed.

Rice code is a parametric code: fixed a positive integer k it encodes x computing the quotient

q = b
(x−1)

2k c and the remainder r = x−2kq−1. Then the value is encoded in two parts: the quotient is

stored in unary code using q+ 1 bits and the remainder is stored in binary using k bits (field of fixed

length). If k is less than or equal to the length of the machine word, this operation can be performed

in constant time, since it is equivalent to bit shifts.

To encode an integer x, the rice code requires

lx ≤
x

2k
+ k + 1 bits

For example, suppose that we want to encode x = 83 with k = 4. So we have q = b 82
16
c = 5 and

r = 83 − 80 − 1 = 2. The final representation is shown in Figure 8.4.

Rice code is useful when the integers are concentrated near 2k: in this case the unary represen-

tation of q is short and thus fast decodable and the rest can be fetched in O(1) time, being of fixed

length.

8-4 Paolo Ferragina

FIGURE 8.4: Rice representation for 83

This code is a particular case of the Golomb Code [4]. These codes are optimal when the x-values

follow a geometric distribution corresponding to Bernoulli trials with the probability of success

given by p. Namely we have:

Pr[x] = (1 − p)x−1 p

In this case, if 2k is chosen so that

2k '
ln(2)

p
' 0.69mean(x)

where mean(x) is the mean of the sequence to be encoded, these coding methods generate an optimal

prefix code for that distribution.

8.4 Interpolative coding

The interpolative coding is a technique that is ideal for the types of clustered integer sequences that

tipically arise in the storage of posting lists in search engines. This is a recursive coding that works

on increasing integer sequences s = s1, . . . , sn, so that si < si + 1 ∀i < n.

At each iteration we know, for the current subsequence to be encoded, the following parameters:

• the number n of elements in that subsequence;

• the left index l and the right index r, delimiting the subsequence (i.e. sl, sl+1, . . . , sr);

• a lower-bound low to the lowest value and an upper-bound hi to the highest value, hence

low ≤ sl and hi ≥ sr.

Initially we have l = 1, r = n, low = s1 and hi = sn. At each step we first encode the middle

element sm where m = b l+r
2
c and then recursively encode the two subsequences sl, . . . , sm−1 and

sm+1, . . . , sr, by using a properly recomputed parameters [l, r, low, hi] for each of them. In order

to encode the middle element, we deploy as much information as possible we can derive from the

quadruple [l, r, low, hi] so to use the fewest number of bits to encode it. Specifically, we observe

that, for sure, it will be sm ≥ low +m − l (in the first part of this subsequence we have m − l distinct

values and the smallest has value low) and sm ≤ hi − (r − m) (same reasoning). Thus, sm lies in the

range [low+m− l, hi− r+m] and we can encode it using dlog2 le bits, where l = hi− low− r+ l is the

size of that interval. We are actualy assuming that we are encoding sm − (low + m − l). In this way,

interpolative coding can use very few bits per value for dense sequences or even zero bits whenever

we have sequences of increasing numbers such as [i, i + 1, . . . , i + n − 1].

With the exception of the values of the first iteration, which must be known to both the encoder

and the decoder, all values for the subsequent iterations can be easily derived from the previous ones.

In particular, at the generic step of the encoding phase (but same reasoning hold for the decoding

phase), we make the recursive call in the following way:

• for the subsequence sl, . . . , sm−1, the parameter low is the same of the previous step,

since sl has not changed, but hi = sm − 1, since sm−1 ≤ sm − 1;

• for the subsequence sm+1, . . . , sr the parameter hi is the same as before, since sr has not

changed, but low = sm + 1, since sm+1 ≥ sm + 1;

Integer encoding 8-5

• the parameters l and r are modified accordingly.

The following figure shows a running example of the behavior of the algorithm:

FIGURE 8.5: In the figure the blue and the red boxes are, respectively, the left and the right subse-

quence of each iteration. In the green boxes is indicated the number to be encoded. The procedure

performs, in practice, a preorder traversal of a balanced binary tree. Notice that, when it encounters

a subsequence in the form [low, low + 1, . . . , low + n − 1], it doesn’t emit anything. Thus, the items

are encoded in the following order (in brackets the actual number encoded): 9 (3), 3 (3), 5 (1), 7 (1),

18 (6), 11 (1), 15 (4).

8.5 Variable-byte codes and (s,c)-dense codes

Whenever speed is a primary concern, researcher have proposed different codes that trade com-

pression ratio by decoding speed. Their main idea is to reduce as much as possible bit-operations

on the integer encodings and thus force the codes to be of fixed-length or, possibly, byte aligned.

An integer is represented in a variable number of bytes, where each byte consists of one status bit,

followed by 7 data bits (padding if necessary). The status bit is zero if the actual byte is the last of

the codeword, one otherwise. Figure 8.6 shows an exemple of this coding method.

FIGURE 8.6: Var-byte representation for 216

8-6 Paolo Ferragina

The minimum amount of bits necessary to encode a number, is now one byte; thus, this method

doesn’t work very well for small values. In particular, in order to encode a value x it requires

lx = d
length(x)

7
e bytes

and thus we have an average waste of 4 bits per integer.

The use of the status bit induces a subtle issue, in that it partitions byte-configurations into two

sets: the values smaller than 128 (status bit equal to 0, called stoppers hereafter) and the values

larger or equal than 128 (status bit equal to 1, called continuers). For the sake of presentation we

denote the cardinalities of the two sets s and c, with s = c = 128.

During the decoding phase, whenever we encounter a continuer byte, we continue to read, other-

wise we stop. Instead of having the same number of continuers and stoppers, nothing prevent us to

choose different values, provided that s + c = 256, just because we are working on 8 bits. In this

way, if we have more stoppers, with one byte we may encode more items than in the previous case,

but we reduce the number of items that can be encoded with more bytes. In particular, s items are

encode with one byte, sc with two bytes, sc2 with three and so on. Which values choose for s and c

depend on the distribution of the numbers to be encode.

For example, assume that we want to encode a sequence containing the values 1, . . . , 15 of decreas-

ing frequency. Supposing that our word-length is of 3 bits (instead of 8), The table below shows

the encoded values using two different choices for s and c: in the first case the number of stoppers

and continuers is 4; in the second, the number of stoppers is 6 and the number of continuers is 2. In

Values s = c = 4 s = 6, c = 2

1 001 001

2 010 010

3 011 011

4 100 000 100

5 100 001 101

6 100 010 110 000

7 100 011 110 001

8 101 000 110 010

9 101 001 110 011

10 101 010 110 100

11 101 111 110 101

12 110 000 111 000

13 110 001 111 001

14 110 010 111 010

15 110 011 111 011
TABLE 8.1 Example of encoding using two different pairs (s, c)

both cases, two words (i.e. 6 bits) are enough to encode all the 15 numbers, but while in the former

case we can encode only the first four values with one word, in the latter the values encoded using

one word are six. This can lead to a more compressed sequence depending on the skewness of the

distribution of {1, . . . , 15}.

This example shows that can be advantageous to adapt the number of stoppers and continuers to the

probability distribution of x-values.

Figure 8.7 shows the compression ratio as a funcion of s, for two different distributions of values.

When s is very small, the number of high frequency values encoded with one byte is also very

small, but in this case c is large and therefore many words with low frequency will be encoded with

Integer encoding 8-7

FIGURE 8.7: An example of how compression rate varies according to the choice of s

few bytes. From that point, as s grows, we gain compression in more frequent values and loose

compression in less frequent ones. At some later point, the compression lost in the last values is

larger than the compression gained in values at the beginning, and therefore the global compression

ratio worsens. That point give us the optimal s value. In [5] it is shown that the minimum is unique

and an efficient algorithm is proposed to calculate it.

8.6 PForDelta encoding

This method for compressing integers has been recently proposed and supports extremely fast de-

compression achieving a small size in the compressed output. Suppose to have a gaussian distribu-

tion for the input values and that the majority of them fall in an interval [base, base + 2b − 1]. We

can translate the values in the new interval [0, 2b − 1] so to encode them in b bits. The values out of

range (the so called exceptions), are encoded separately with a full representation, inserting in the

compressed list an escape character where they occur.

FIGURE 8.8: An example for PForDelta: suppose that b = 3 and base = 0. So the values in the

blue box are encoded using 3 bits while the out of range values (green box) are encoded separately.

Now, two problems arise:

• How to choose b: in the original work, b was choosen such that about the 90% of the

values are smaller than 2b. An alternative solution is to trade between space wasting

8-8 Paolo Ferragina

(choosing a greater b) or space saving (more exceptions, smaller b). In [3] it has been

proposed an optimal method based on dynamic programming, that computes the optimal

b for a desidered compression ratio. In particular, it returns the largest b that minimizes

the number of exceptions and, thus, ensures a faster decompression.

• How to encode the escape character: a possible solution is to assign a special bit se-

quence for it. thus leaving 2b − 2 configurations for the values in the range.

References

[1] Alistair Moffat. Compressing Integer Sequences and Sets. In Encyclopedia of Algorithms.

Springer, 2009.

[2] Peter Fenwick. Universal Codes. In Lossless Data Compression Handbook. Academic

Press, 2003.

[3] Hao Yan, Shuai Ding, Torsten Suel. Inverted Index Compression and Query Processing

with Optimized Document Ordering. In Procs of WWW, pp. 401-410, 2009.

[4] Ian H. Witten, Alistair Moffat, Timoty C. Bell. Managing Gigabytes. Morgan Kauffman,

second edition, 1999.

[5] Nieves R. Brisaboa, Antonio Farina, Gonzalo Navarro, José R. Paramá. Lightweight

natural language text compression. Information Retrieval, 10:1-33, 2007.

