
10
Statistical Coding

10.1 Huffman coding . 10-1
Canonical Huffman coding • Bounding the length of
codewords

10.2 Arithmetic Coding . 10-11
Bit streams and dyadic fractions • Compression
algorithm • Decompression algorithm • Efficiency •

Arithmetic coding in practice • Range Coding

10.3 Prediction by Partial Matching∞ . 10-23
The algorithm • The principle of exclusion • Zero
Frequency Problem

The topic of this chapter is the statistical coding of sequences of symbols (aka texts) drawn from

an alphabet Σ. Symbols may be characters, in this case the problem is named text compression, or

they can be genomic-bases thus arising the Genomic-DB compression problem, or they can be bits

and in this case we fall in the realm of classic data compression. If symbols are integers, then we

have the Integer coding problem, addressed in the previous Chapter, which can be solved still with

a statistical coder by just deriving statistical information on the integers occurring in the sequence

S . In this latter case, the code we derive is an optimal prefix-free code for the integers of S , but its

coding/decoding time is larger than the one incurred by the integer encoders of the previous Chapter,

and indeed, this is the reason for their introduction.

Conceptually, statistical compression may be viewed as consisting of two phases: a modeling

phase, followed by a coding phase. In the modeling phase the statistical properties of the input

sequence are computed and a model is built. In the coding phase the model is used to compress the

input sequence. In the first sections of this Chapter we will concentrate only on the second phase,

whereas in the last section we will introduce a sophisticated modeling technique. We will survey

the best known statistical compressors: Huffman coding, Arithmetic Coding, Range Coding, and

finally Prediction by Partial Matching (PPM), thus providing a pretty complete picture of what can

be done by statistical compressors. The net result will be to go from a compression performance

that can be bounded in terms of 0-th order entropy, namely an entropy function depending on the

probability of single symbols (which are therefore considered to occur i.i.d.), to the more precise

k-th order entropy which depends on the probability of k-sized blocks of symbols and thus models

the case e.g. of Markovian sources.

10.1 Huffman coding

First published in the early ’50s, Huffman coding was regarded as one of the best methods for

data compression for several decades, until the Arithmetic coding made higher compression rates

possible at the end of ’60s (see next chapter for a detailed discussion about this improved coder).

c© Paolo Ferragina, 2009-2012 10-1

10-2 Paolo Ferragina

Huffman coding is based upon a greedy algorithm that constructs a binary tree whose leaves are

the symbols in Σ, each provided with a probability P[σ]. At the beginning the tree consists only

of its |Σ| leaves, with probabilities set to the P[σ]s. These leaves constitute a so called candidate

set, which will be kept updated during the construction of the Huffman tree. In a generic step, the

Huffman algorithm selects the two nodes with the smallest probabilities from the candidate set, and

creates their parent node whose probability is set equal to the sum of the probabilities of its two

children. That parent node is inserted in the candidate set, while its two children are removed from

it. Since each step adds one node and removes two nodes from the candidate set, the process stops

after |Σ| − 1 steps, time in which the candidate set contains only the root of the tree. The Huffman

tree has therefore size t = |Σ| + (|Σ| − 1) = 2|Σ| − 1.

FIGURE 10.1: Constructing the Huffman tree for the alphabet Σ = {a, b, c, d, e, f }.

Figure 10.1 shows an example of Huffman tree for the alphabet Σ = {a, b, c, d, e, f }. The first

merge (on the left) attaches the symbols a and b as children of the node x, whose probability is set

to 0.05 + 0.1 = 0.15. This node is added to the candidate set, whereas leaves a and b are removed

from it. At the second step the two nodes with the smallest probabilities are the leaf c and the node

x. Their merging updates the candidate set by deleting x and c, and by adding their parent node y

whose probability is set to be 0.15+ 0.15 = 0.3. The algorithm continues until there is left only one

node (the root) with probability, of course, equal to 1.

In order to derive the Huffman code for the symbols in Σ, we assign binary labels to the tree

edges. The typical labeling consists of assigning 0 to the left edge and 1 to the right edge spurring

from each internal node. But this is one of the possible many choices. In fact a Huffman tree can

originate 2|Σ|−1 labeled trees, because we have 2 labeling choices (i.e. 0-1 or 1-0) for the two edges

spurring from each one of the |Σ| − 1 internal nodes. Given a labeled Huffman tree, the Huffman

codeword for a symbol σ is derived by taking the binary labels encountered on the downward path

that connects the root to the leaf associated to σ. This codeword has a length L(σ) bits, which

corresponds to the depth of the leaf σ in the Huffman tree. The Huffman code is prefix-free because

every symbol is associated to a distinct leaf and thus no codeword is the prefix of another codeword.

We observe that the choice of the two nodes having minimum probability may be not unique,

and the actual choices available may induce codes which are different in the structure but, nonethe-

less, they have all the same optimal average codeword length. In particular these codes may offer

Statistical Coding 10-3

a different maximum codeword length. Minimizing this value is useful to reduce the size of the

compression/decompression buffer, as well as the frequency of emitted symbols in the decoding

process. Figure 10.2 provides an illustrative example of these multiple choices.

FIGURE 10.2: An example of two Huffman codes having the same average codeword length 22
10

,

but different maximum codeword length.

A strategy to minimize the maximum codeword length is to choose the two oldest nodes among

the ones having same probability and belonging to the current candidate set. Oldest nodes means

that they are leaves or they are internal nodes that have been merged farther in the past than the

other nodes in the candidate set. This strategy can be implemented by using two queues: the first

one contains the symbols ordered by increasing probability, the second queue contains the internal

nodes in the order they are created by the Huffman algorithm. It is not difficult to observe that the

second queue is sorted by increasing probability too. In the presence of more than two minimum-

probability nodes, the algorithm looks at the nodes in the first queue, after which it looks at the

second queue. Figure 10.2 shows on the left the tree resulting by this algorithm and, on the right,

the tree obtained by using an approach that makes an arbitrary choice.

The compressed file originated by Huffman algorithm consists of two parts: the preamble which

contains an encoding of the Huffman tree, and thus has size Θ(|Σ|), and the body which contains

the codewords of the symbols in the input sequence S . The size of the preamble is usually dropped

from the evaluation of the length of the compressed file; even if this might be a significant size

for large alphabets. So the alphabet size cannot be underestimated, and it must be carefully taken

into account. In the rest of the section we will concentrate on the evaluation of the size in bits for

the compressed body, and then turn to the efficient encoding of the Huffman tree by proposing the

elegant Canonical Huffman version which offers space succinctness and very fast decoding speed.

Let LC =
∑

σ∈Σ L(σ) P[σ] be the average length of the codewords produced by a prefix-free code

C, which encodes every symbol σ ∈ Σ in L(σ) bits. The following theorem states the optimality of

Huffman coding:

THEOREM 10.1 If C is an Huffman code, then LC is the shortest possible average length

among all prefix-free codes C′, namely it is LC ≤ LC′ .

10-4 Paolo Ferragina

To prove this result we first observe that a prefix-free code can be seen as a binary tree (more

precisely, we should say binary trie), so the optimality of the Huffman code can be rephrased as

the minimality of the average depth of the corresponding binary tree. This latter property can be

proved by deploying the following key lemma, whose proof is left to the reader who should observe

that, if the lemma does not hold, then a not minimum-probability leaf occurs at the deepest level

of the binary tree; in which case it can be swapped with a minimum-probability leaf (therefore not

occurring at the deepest level) and thus reduce the average depth of the resulting tree.

LEMMA 10.1 Let T be a binary tree whose average depth is minimum among the binary trees

with |Σ| leaves. Then the two leaves with minimum probabilities will be at the greatest depth of T ,

children of the same parent node.

Let us assume that the alphabet Σ consists of n symbols, and symbols x and y have the smallest

probability. Let TC be the binary tree generated by a code C applied onto this alphabet; and let us

denote by RC the reduced tree which is obtained by dropping the leaves for x and y. Thus the parent,

say z, of leaves x and y is a leaf of RC with probability P[z] = P[x] + P[y]. So the tree RC is a tree

with n − 1 leaves corresponding to the alphabet Σ − {x, y} ∪ {z} (see Figure 10.3).

FIGURE 10.3: Relationship between a tree T and its corresponding reduced tree R.

LEMMA 10.2 The relation between the average depth of the tree T with the one of its reduced

tree R is given by the formula LT = LR + (P[x] + P[y]), where x and y are the symbols having the

smallest probability.

Proof It is enough to write down the equalities for LT and LR, by summing the length of all root-

to-leaf paths multiplied by the probability of the landing leaf. So we have LT =
(∑

σ,x,y P[σ] L(σ)
)

+

(P[x]+P[y])(LT (z)+1), where z is the parent of x and y and thus LT (x) = LT (y) = LT (z)+1. Similarly,

we can write LR =
(∑

σ,x,y P[σ]L(σ)
)

+ L(z)(P[x] + P[y]). So the thesis follows.

The optimality of Huffman code (claimed in the previous Theorem 10.1) can now be proved by

induction on the number n of symbols in Σ. The base n = 2 is obvious, because any prefix-free

code must assign at least one bit to |Σ|’s symbols; therefore Huffman is optimal because it assigns

the single bit 0 to one symbol and the single bit 1 to the other.

Let us now assume that n > 2 and, by induction, assume that Huffman code is optimal for an

alphabet of n − 1 symbols. Take now |Σ| = n, and let C be an optimal code for Σ and its underlying

Statistical Coding 10-5

distribution. Our goal will be to show that LC = LH , so that Huffman is optimal for n symbols too.

Clearly LC ≤ LH because C was assumed to be an optimal code for Σ. Now we consider the two

reduced trees, say RC and RH , which can be derived from TC and TH , respectively, by dropping the

leaves x and y with the smallest probability and leaving their parent z. By Lemma 10.1 (for the

optimal C) and the way Huffman works, this reduction is possible for both trees TC and TH . The

two reduced trees define a prefix-code for an alphabet of n − 1 symbols; so, given the inductive

hypothesis, the code defined by RH is optimal for the ”reduced” alphabet Σ ∪ {z} − {x, y}. Therefore

LRH
≤ LRC

over this ”reduced” alphabet. By Lemma 10.2 we can write LH = LRH
+ P[x] + P[y]

and, according to Lemma 10.1, we can write LC = LRC
+ P[x] + P[y]. So it turns out that LH ≤ LC

which, combined with the previous (opposite) inequality due to the optimality of C, gives LH = LC .

This actually means that Huffman is an optimal code also for an alphabet of n symbols, and thus

inductively proves that it is an optimal code for any alphabet size.

We remark that this statement does not mean that C = H, and indeed do exist optimal prefix-free

codes which cannot be obtained via the Huffman algorithm (see Figure 10.4). Rather, the previous

statement indicates that the average codeword length of C and H is equal. The next fundamental

theorem provides a quantitative upper-bound to this average length.

FIGURE 10.4: Example of an optimal code not obtainable by means of the Huffman algorithm.

THEOREM 10.2 Let H be the entropy of the source emitting the symbols of an alphabet Σ, of

size n, hence H =
∑n

i=1 P[σi] log2
1

P[σi]
. The average codeword length of the Huffman code satisfies

the inequalities H ≤ LH < H + 1.

This theorem states that the Huffman code can loose up to 1 bit per compressed symbol with

respect to the entropy H of the underlying source. This extra-bit is a lot or a few depending on the

value of H . Clearly H ≥ 0, and it is equal to zero whenever the source emits just one symbol with

probability 1 and all the other symbols with probability 0. Moreover it is also H ≤ log2 |Σ|, and it

is equal to this upper bound for equiprobable symbols. As a result if H � 1, the Huffman code is

effective and the extra-bit is negligible; otherwise, the distribution is skewed, and the bit possibly

lost by the Huffman code makes it inefficient. On the other hand Huffman, as any prefix-free code,

cannot encode one symbol in less than 1 bit, so the best compression ratio that Huffman can obtain

10-6 Paolo Ferragina

is ≥ 1
log2 |Σ|

. If Σ is ASCII, hence |Σ| = 256, Huffman cannot achieve a compression ratio for any

sequence S which is less than 1/8 = 12, 57%.

In order to overcome this limitation, Shannon proposed in its famous article of 1948 a sim-

ple blocking scheme which considers an extended alphabet Σk whose symbols are substrings of

k-symbols. This way, the new alphabet has size |Σ|k and thus, if we use Huffman on the symbol-

blocks, the extra-bit lost is for a block of size k, rather than a single symbol. This actually means

that we are loosing a fractional part of a bit per symbol, namely 1/k, and this is indeed negligible

for larger and larger values of k.

So why not taking longer and longer blocks as symbols of the new alphabet Σk? This would

improve the coding of the input text, because of the blocking, but it would increase the encoding

of the Huffman tree which constitutes the preamble of the compressed file: in fact, as k increases,

the number of leaves/symbols also increases as |Σ|k. The compressor should find the best trade-off

between these two quantities, by possibly trying several values for k. This is clearly possible, but

yet it is un-optimal; Section 10.2 will propose a provably optimal solution to this problem.

10.1.1 Canonical Huffman coding

Let us recall the two main limitations incurred by the Huffman code:

- It has to store the structure of the tree and this can be costly if the alphabet Σ is large, as

it occurs when coding blocks of symbols, possibly words as symbols.

- Decoding is slow because it has to traverse the whole tree for each codeword, and every

edge of the path (bit of the codeword) may elicit a cache miss.

There is an elegant variant of the Huffman code, denoted as Canonical Huffman, that alleviates

these problems by introducing a special restructuring of the Huffman tree that allows extremely fast

decoding and a small memory footprint. This will be the topic of this subsection.

The Canonical Huffman code works as follows:

1. Compute the codeword length L(σ) for each symbol σ ∈ Σ according to the classical

Huffman’s algorithm.

2. Construct the array num which stores in the entry num[`] the number of symbols having

Huffman codeword of `-bits.

3. Construct the array symb which stores in the entry symb[`] the list of symbols having

Huffman codeword of `-bits.

4. Construct the array f c which stores in the entry f c[`] the first codeword of all symbols

encoded with ` bits;

5. Assign consecutive codewords to the symbols in symb[`], starting from the codeword

fc[`].

Figure 10.5 provides an example of an Huffman tree which satisfies the Canonical property. The

num array is actually useless, so that the Canonical Huffman needs only to store fc and symb

arrays, which means at most max2 bits to store fc (i.e. max codewords of length at most max),

and at most (|Σ| + max) log2 (|Σ| + 1) bits to encode table symb. Consequently the key advantage of

Canonical Huffman is that we do not need to store the tree-structure via pointers, with a saving of

Θ(|Σ| log2 (|Σ| + 1) bits.

The other important advantage of the Canonical Huffman algorithm is with the decoding proce-

dure which does not need to percolate the Huffman tree, but it only operates on the two available

arrays, thus inducing at most one cache-miss per decoded symbol. The pseudo-code is summarized

in the following 6 lines:

Statistical Coding 10-7

FIGURE 10.5: Example of canonical Huffman coding.

v = next_bit();

l = 1;

while(v < fc[l])

v = 2v + next_bit();

l++;

return symb[l, v-fc[l]];

A running example of the decoding process is given un Figures 10.6–10.7. Let us assume that

the compressed sequence is 01. The function next bit() reads the incoming bit to be decoded,

namely 0. At the first step (Figure 10.6), we have ` = 1, v = 0 and fc[1] = 2; so the while condition

is satisfied (because v = 0 < 2 = fc[1]) and therefore ` is incremented to 2 and v gets the next bit

1, thus assuming the value v = 01 = 1. At the second step (Figure 10.7), the while condition is no

longer satisfied because v = 1 < fc[2] is false and the loop has to stop. The decoded codeword has

length ` = 2 and, since v − fc[2] = 0, the algorithm returns the first symbol of symb[2] = D.

A subtle comment is in order at this point, the value fc[1] = 2 seems impossible, because we

cannot represent the value 2 with a codeword consisting of one single bit. This is a special value

for two reasons: first, it indicates that no codeword of length 1 does exist in this Canonical Huffman

code; second, when ` = 1, v will be surely ≤ 1 because it consists of only one bit. Therefore

v ≤ fc[1], so that the decoding procedure will correctly fetch another bit.

The correctness of the decoding procedure can be inferred informally from Figure 10.8. The

while-guard v < fc[`] actually checks whether the current codeword v is to the left of fc[`] and

thus it is to the left of all symbols which are encoded with ` bits. In the figure this corresponds to

the case v = 0 and ` = 4, hence v = 0000 and fc[4] = 0001. If this is the case, since the Canonical

Huffman tree is skewed to the left, the codeword to be decoded has to be longer and thus a new bit

is fetched by the while-body. In the figure this corresponds to fetch the bit 1, and thus set v = 1 and

` = 5, so v = 00001. In the next step the while-guard is false, v ≥ fc[`] (as indeed fc[5] = 00000),

and thus v lies to the right of fc[`] and can be decoded by looking at the symbols symb[5].

The only issue it remains to detail is how to get a Canonical Huffman tree, whenever the under-

lying symbol distribution does not induce one with such a property. Figure 10.5 actually derived an

Huffman tree which was canonical, but this is not necessarily the case. Take for example the distri-

bution: P[a] = P[b] = 0.05, P[c] = P[g] = 0.1, P[d] = P[f] = 0.2, P[e] = 0.3, as shown in Figure

10.9. The Huffman algorithm on this tree generates a non Canonical tree, which can be turned into

10-8 Paolo Ferragina

FIGURE 10.6: First Step of decoding 01 via the Canonical Huffman of Figure 10.5.

FIGURE 10.7: Second Step of decoding 01 via the Canonical Huffman of Figure 10.5.

a Canonical one by means of the following few lines of pseudo-code, in which max indicates the

longest codeword length assigned by the Huffman algorithm:

fc[max]=0;

for(l= max-1; l>=1; l--)

fc[l]=(fc[l+1] + num[l+1])/2;

There are two key remarks to be done before digging into the proof of correctness of the algo-

rithm. First, fc[`] is the value of a codeword consisting of ` bits, so the reader should keep in

mind that fc[5] = 4 means that the corresponding codeword is 00100, which means that the binary

representation of the value 4 is padded with zeros to have length 5. Second, since the algorithm sets

fc[max] = 0, the longest codeword is a sequence of max zeros, and so the tree built by the Canonical

Huffman is totally skewed to the left. If we analyze the formula that computes fc[`] we can guess

the reason of its correctness. The pseudo-code is reserving num[`+1] codewords of length `+1 bits

to the symbols in symb[` + 1] starting from the value fc[` + 1]. The first unused codeword of ` + 1

Statistical Coding 10-9

FIGURE 10.8: Tree of codewords.

bits is therefore given by the value fc[`+ 1]+ num[`+ 1]. So the formula then divides this value by

2, which corresponds to dropping the last (` + 1)-th bit from the binary encoding of that number. It

can be proved that the resulting sequence of `-bits can be taken as the first-codeword fc[`] because

it does not prefix any other codeword already assigned. The ”reason” can be derived graphically by

looking at the binary tree which is being built by Canonical Huffman. In fact, the algorithm is taking

the parent of the node at depth `+ 1, whose binary-path represents the value fc[`+ 1]+ num[`+ 1].

Since the tree is a fully binary and we are allocating leaves in the tree from left to right, this node is

always a left child of its parent, so its parent is not an ancestor of any (` + 1)-bit codeword assigned

before.

In Figure 10.9 we notice that fc[1] = 2 which is an impossible codeword because we cannot

encode 2 in 1 bit; nevertheless this is the special case mentioned above that actually encodes the

fact that no codeword of that length exists, and thus allows the decoder to find always v < fc[1]

after having read just one single bit, and thus execute next bit() to fetch another bit from the

input and thus consider a codeword of length 2.

10.1.2 Bounding the length of codewords

If the codeword length exceeds 32 bits the operations can become costly because it is no longer

possible to store codewords as a single machine word. It is therefore interesting to survey how

likely codeword overflow might be in the Huffman algorithm.

Given that the optimal code assigns a codeword length L(σ) ≈ log2 1/P[σ] bits to symbol σ,

one could conclude that P[σ] ≈ 2−33 in order to have L(σ) > 32, and hence conclude that this bad

situation occurs only after about 233 symbols have been processed. This first approximation is an

excessive upper bound, as the tree in Figure 10.10 allows to argue.

To obtain this tree, we construct the function F(i) that gives the frequency of symbol i in an

input sequence and induces the tree structure shown in Figure 10.10. Of course F(i) has to be an

increasing function and it should be such that F(i + 1) < F(i + 2) and
∑i

j=1 F(j) < F(i + 2) in

order to induce the Huffman algorithm to join F(i + 1) with x rather than with leaf i + 2 (or all the

other leaves i + 3, i + 4, . . .). It is not difficult to observe that F(i) may be taken to be the Fibonacci

sequence, possibly with different initial conditions, such as F(1) = F(2) = F(3) = 1. The following

two sequences show F’s values and their cumulative sums for the modified Fibonacci sequence:

F = (1, 1, 1, 3, 4, 7, . . .) and
∑l+1

i=1 F(i) = (2, 3, 6, 10, 17, 28, . . .). In particular it is F(33) = 3.01 ∗ 106

10-10 Paolo Ferragina

FIGURE 10.9: From Huffman tree to a Canonical Huffman Tree.

FIGURE 10.10: Example of a skewed Huffman tree.

Statistical Coding 10-11

and
∑33

i=1 F(i) = 1.28 ∗ 107. The cumulative sum indicates how much the text has to be read in order

to force a codeword of length l. Thus, the pathological case can occur just after 10 Mb; considerably

less than the preceding estimation!

They do exist methods to reduce the codeword lengths still guaranteeing a good compression

performance. One approach consists of scaling the frequency counts until they form a good ar-

rangement. An appropriate scaling rule is

ĉi =

⌈

ci

∑L+2
i=1 F′(i) − 1 − |Σ|

(
∑|Σ|

i=1
ci)/cmin

⌉

where ci is the actual frequency count of the i−th symbol in the actual sequence, cmin is the minimum

frequency count, ĉi is the scaled approximate count for i-th symbol, L is the maximum bit length

permitted in the final code and
∑L+2

i=1 F(i) represents the length of the text which may induce a code

of length L + 1.

Although simple to implement, this approach could fail in some situations. An example is when

32 symbols have to be coded in codewords with no more than L = 5 bits. Applying the scaling rule

we obtain
∑L+2

i=1 F(i)−1−|Σ| = 28−1−32 = −5 and consequently negative frequency counts ĉi. It is

nevertheless possible to build a code with 5 bits per symbol, just take the fixed-length one! Another

solution, which is more time-consuming but not subject to the previous drawback, is the so called

iterative scaling process. We construct a Huffman code and, if the longest codeword is larger than

L bits, all the counts are reduced by some constant ratio (e.g. 2 or the golden ratio 1.618) and a new

Huffman code is constructed. This process is continued until a code of maximum codeword length

L or less is generated. In the limit, all symbols will have their frequency equal to 1 thus leading to

a fixed-length code.

10.2 Arithmetic Coding

The principal strength of this coding method, introduced by Elias in the ’60s, is that it can code

symbols arbitrarily close to the 0-th order entropy, thus resulting much better tha Huffman on skewed

distributions. So in Shannon’s sense it is optimal.

For the sake of clarity, let us consider the following example. Take an input alphabet Σ = {a, b}

with a skewed distribution: P[a] = 99
100

and P[b] = 1
100

. According to Shannon, the self information

of the symbols is respectively i(a) = log2
1
pa
= log2

100
99

' 0, 015 bits and i(b) = log2
1
pb
=

log2
100
99

' 6, 67 bits. Hence the 0-th order entropy of this source is H0 = P[a] i(a) + P[b] i(b) '

0, 08056 bits. In contrast a Huffman coder, like any prefix-coders, applied to texts generated by this

source must use at least one bit per symbol thus having average length LH = P[a] L(a)+P[b] L(b) =

P[a] + P[b] = 1 � H0. Consequently Huffman is far from the 0-th order entropy, and clearly, the

more skewed is the symbol distribution the farthest is Huffman from optimality.

The problem is that Huffman replaces each input symbol with a codeword, formed by an integral

number of bits, so the average length of a text T compressed by Huffman is Ω(|T |) bits. Therefore

Huffman cannot achieve a compression ratio better than 1
log2 |Σ|

, the best case is when we substitute

one symbol (i.e. log2 |Σ|) with 1 bit. This is 1/8 = 12.5% in the case that Σ are the characters of the

ASCII code.

To overcome this problem, Arithmetic Coding relaxes the request to be a prefix-coder by adopting

a different strategy:

• the compressed output is not a concatenation of codewords associated to the symbols of

the alphabet.

• rather, a bit of the output can represent more than one input symbols.

10-12 Paolo Ferragina

This results in a better compression, at the cost of slowing down the algorithm and of loosing the

capability to access/decode the compressed output from any position.

Another interesting feature of Arithmetic coding is that it works easily also in the case of a

dynamic model, namely a model in which probabilities P[σ] are updated as the input sequence S

is processed. It is enough to set P[σ] = (`σ + 1)/(` + |Σ|) where ` is the length of the prefix of S

processed so far, and `σ is the number of occurrences of symbol σ in that prefix. The reader can

check that this is a sound probability distribution, initially set to the uniform one. Easily enough,

these dynamic probabilities can be also kept updated by the decompression algorithm, so that both

compressor and decompressor look at the same input distribution and thus decode the same symbols.

10.2.1 Bit streams and dyadic fractions

A bit stream b1b2b3 . . . bk, possibly k → ∞, can be interpreted as a real number in the range [0, 1)

by prepending ”0.” to it:

b1b2b3 . . . bk → 0.b1b2b3 . . . bk =

k∑

i=1

bi · 2−i

A real number x in the range [0, 1) can be converted in a (possibly infinite) sequence of bits with the

algorithm Converter, whose pseudocode is given below. This algorithm consists of a loop where

the variable output is the output bitstream and where :: expresses concatenation among bits. The

loop has to end when the condition accuracy is satisfied: we can decide a level of accuracy in the

representation of x, we can stop when we emitted a certain number of bits in output or when we

establish that the representation of x is periodic.

Algorithm 10.1 Converter (x)

Require: A real number x ∈ [0, 1).

Ensure: The string of bits representing x.

1: repeat

2: x = 2 ∗ x

3: if x < 1 then

4: output = output :: 0

5: else

6: output = output :: 1

7: x = x − 1

8: end if

9: until accuracy

A key concept here is the one of dyadic fraction, namely a fraction of the form v
2k where v and

k are positive integers. The real number associated to a finite bit stream b1b2b3 . . . bk is indeed the

dyadic fraction
val(b1b2b3...bk)

2k , where val(s) is the value of the binary string s. Vice versa a fraction v
2k

can be written as .bink(v), where bink(v) is the binary representation of the integer v as a bit string

of length k (eventually padded with zeroes).

In order to clarify how Converter works, we apply the pseudocode at the number 1
3
:

1

3
· 2 =

2

3
< 1 → output = 0

Statistical Coding 10-13

2

3
· 2 =

4

3
≥ 1 → output = 01

In this second iteration x is greater than 1, so we have concatenated the bit 1 to the output and, at

this point, we need to update the value of x executing the line 7 in the pseudocode:

4

3
− 1 =

1

3

We have already encountered this value of x, so we can stop the loop and output the periodic

representation 01 for 1
3
.

Let us consider another example; say x = 3
32

.

3

32
· 2 =

6

32
< 1 → output = 0

6

32
· 2 =

12

32
< 1 → output = 00

12

32
· 2 =

24

32
< 1 → output = 000

24

32
· 2 =

48

32
≥ 1 → output = 0001

(

48

32
− 1

)

· 2 = 1 ≥ 1 → output = 00011

(1 − 1) · 2 = 0 < 1 → output = 000110

0 · 2 = 0 < 1 → output = 0001100

and so on. The binary representation for 3
32

is 000110̄.

10.2.2 Compression algorithm

Compression by Arithmetic coding is iterative: each step takes as input a subinterval of [0, 1), repre-

senting the prefix of the input sequence compressed so far, and the probabilities and the cumulative

probabilities of alphabet symbols,1 and consumes the next input symbol. This subinterval is further

subdivided into smaller subintervals, one for each symbol σ of Σ, whose lengths are proportional to

their probabilities P[σ]. The step produces as output a new subinterval that is the one associated to

the consumed input symbol, and is contained in the previous one. The number of steps is equal to

the number of symbols to be encoded, and thus to the length of the input sequence.

More in detail, the algorithm starts considering the interval [0, 1) and, consumed the entire input,

produces the interval [l, l + s) associated to the last symbol of the input sequence. The tricky issue

here is that the output is not the pair 〈l, s〉 (hence two real numbers) but it is just one real x ∈ [l, l+ s),

chosen to be a dyadic fraction, plus the length of the input sequence.

In the next section we will see how to choose this value in order to minimize the number of output

bits, here we will concentrate on the overall compression stage whose pseudocode is indicated

below: the variables li and si are, respectively, the starting point and the length of the interval

encoding the i-th symbol of the input sequence.

1We recall that the cumulative probability of a symbol σ ∈ Σ is computed as
∑

c<σ P[c] and it is provided by the

statistical model, constructed during the modeling phase of the compression process. In the case of a dynamic model,

the probabilities and the cumulative probabilities change as the input sequence is scanned.

10-14 Paolo Ferragina

Algorithm 10.2 AC-Coding (S)

Require: The input sequence S , of length n, the probabilities P[σ] and the cumulative fσ.

Ensure: A subinterval [l, l + s) of [0, 1).

1: s0 = 1

2: l0 = 0

3: i = 1

4: while i ≤ n do

5: si = si−1 ∗ P[S [i]]

6: li = li−1 + si−1 ∗ fS [i]

7: i = i + 1

8: end while

9: output = 〈x ∈ [ln, ln + sn), n〉

As an example, consider the input sequence S = abac with probabilities P[a] = 1
2
, P[b] = P[c] =

1
4

and cumulative probabilities fa = 0, fb = P[a] = 1
2
, and fc = P[a] + P[b] = 3

4
. Following the

pseudocode of AC-Coding (S) we have n = 4 and thus we repeat the internal loop four times.

In the first iteration we consider the first symbol of the sequence, S [1] = a, and compute the new

interval [l1, l1 + s1) given P[a] and fa from the static model:

s1 = s0 P[S [1]] = 1 × P[a] =
1

2

l1 = l0 + s0 fS [1] = 0 + 1 × fa = 0

In the second iteration we consider the second symbol, S [2] = b, the (cumulative) probabilities P[b]

and fb, and determine the second interval [l2, l2 + s2):

s2 = s1 P[S [2]] =
1

2
× P[b] =

1

8

l2 = l1 + s1 fS [2] = 0 +
1

2
× fb =

1

4

We continue this way for the third and the fourth symbols, namely S [3] = a and S [4] = c, so at the

end the final interval is:

[l4, l4 + s4) =

[

19

64
,

19

64
+

1

64

)

=

[

19

64
,

20

64

)

=

[

19

64
,

5

16

)

In Figure 10.11 we illustrate the execution of the algorithm in a graphical way. Each step zooms

in the subinterval associated to the current symbol. The last step returns a real number inside the

final subinterval, hence this number is inside all the previously generated intervals too. This number

together with the value of n is sufficient to reconstruct the entire sequence of input symbols S , as

we will show in the following subsection. In fact, all input sequences of a fixed length n will be

associated to distinct sub-intervals which do not intersect and cover [0, 1); but sequences of different

length might be nested.

10.2.3 Decompression algorithm

The input consists of the stream of bits resulting from the compression stage, the length of the input

sequence n, the symbol probabilities P[σ], and the output is the original sequence S given that

Arithmetic coding is a lossless compressor. The decompressor works also in the case of a dynamic

model:

Statistical Coding 10-15

FIGURE 10.11: The algorithmic idea behind Arithmetic coding.

Algorithm 10.3 AC-Decoding (b, n)

Require: The binary representation b of the compressed output, the length n of S , the probabilities

P[σ] and the cumulative fσ.

Ensure: The original sequence S .

1: s0 = 1

2: l0 = 0

3: i = 1

4: while i ≤ n do

5: subdivide the interval [li−1, li−1 + si−1) into subintervals of length proportional to the prob-

abilities of the symbols in Σ (in the predefined order)

6: take the symbol σ corresponding to the subinterval in which 0.b lies

7: S = S :: σ

8: si = si−1 ∗ P[σ]

9: li = li−1 + si−1 ∗ fσ
10: i = i + 1

11: end while

12: output = S

• at the first iteration, the statistical model is set to the uniform distribution over Σ;

• at every other iteration, a symbol is decoded using the current statistical model, which

is then updated by increasing the frequency of that symbol.

Decoding is correct because encoder and decoder are synchronized, in fact they use the same

statistical model to decompose the current interval, and both start from the interval [0, 1). The

difference is that the encoder uses symbols to choose the subintervals, whereas the decoder uses the

number b to choose (the same) subintervals.

As an example, take the result 〈 39
128
, 4〉 and assume that the input distribution is P[a] = 1

2
, P[b] =

P[c] = 1
4

(i.e. the one of the previous section). The decoder executes the decompression algorithm

starting with the initial interval [0, 1), we suggest the reader to parallel the decompression process

with the compression one in Figure 10.11:

• in the first iteration the initial range will be subdivided in three subintervals one for each

symbol of the alphabet. These intervals follow a predefined order; in particular, for this

example, the first interval is associated to the symbol a, the second to b and the last one

10-16 Paolo Ferragina

to c. The size of every subinterval is proportional to the probability of the respective

symbol: [0, 1
2
), [1

2
, 3

4
) and [3

4
, 1). At this point the algorithm will generate the symbol a

because 39
128

∈ [0, 1
2
). After that it will update the subinterval executing the steps 8 and

9, thus synchronizing itself with the encoder.

• in the second iteration the new interval [0, 1
2
) will be subdivided in the subintervals [0, 1

4
),

[1
4
, 3

8
), [3

8
, 1

2
). The second symbol generated will be b because 39

128
∈ [1

4
, 3

8
).

• continuing in this way, the third and the fourth iterations will produce respectively the

symbols a and c, and the initial sequence will be reconstructed correctly. Notice that

we can stop after generating 4 symbols because that was the original sequence length,

communicated to the decoder.

10.2.4 Efficiency

Intuitively this scheme performs well because we associate large subintervals to frequent symbols

(given that the interval size si decreases as P[S [i]] ≤ 1), and a large final interval requires few bits to

specify a number inside it. From step 5 of the pseudocode of AC-Coding (S) is easy to determine

the size sn of the final interval associated to an input sequence S of length n:

sn = sn−1 × P[S [n]] = sn−2 × P[S [n − 1]] × P[S [n − 1]] = . . . =

= s0 × P[S [1]] ∗ · · · ∗ P[S [n]] = 1 ×

n∏

i=1

P[S [i]] (10.1)

The formula 10.1 is interesting because it says that sn depends on the symbols forming S but

not on their ordering within S . So the size of the interval returned by Arithmetic coding for S is

the same whichever is that ordering. Now, since the size of the interval impacts onto the num-

ber of bits returned in the compressed output, we derive that the output size is independent of

the permutation of S ’s characters. This does not contradicts with the previous statement, proved

below, that Arithmetic coding achieves a performance close to the 0th order empirical entropy

H0 = Sum
|Σ|

i=1
P[σi] log2(1/P[σi]) of the sequence S , given that entropy’s formula is independent

of S ’s symbol ordering too.

We are left with the problem of choosing a number inside the interval [ln, ln+ sn) which is a dyadic

fraction v
2k that can be encoded with the fewest bits (i.e. smallest k). The following lemma is crucial

to establish the performance and correctness of Arithmetic coding.

LEMMA 10.3 Take a real number x = 0.b1b2 · · · . If we truncate it to its first d bits, we obtain

a real number truncd(x) ∈ [x − 2−d, x].

Proof The real number x = 0.b1b2 · · · differs from its truncation, possibly, on the bits that follow

the position d. Those bits have been reset to 0 in truncd(x). Therefore we have:

x − truncd(x) =

∞∑

i=1

bd+i2
−(d+i) ≤

∞∑

i=1

1 × 2−(d+i) = 2−d

∞∑

i=1

1

2i
= 2−d

So we have

x − truncd(x) ≤ 2−d ⇐⇒ x − 2−d ≤ truncd(x)

On the other hand, it is of course truncd(x) ≤ x because we have reset possibly few bits to 0.

Statistical Coding 10-17

COROLLARY 10.1 The truncation of the number l + s
2

to its first
⌈

log2
2
s

⌉

bits falls in the

interval [l, l + s).

Proof It is enough to set d =
⌈

log2
2
s

⌉

in Lemma 10.3, and observe that 2−d ≤ s
2
.

At this point we can specialize AC-Coding(S) in order to return the first
⌈

log2
2
sn

⌉

bits of the

binary representation of the value ln +
sn

2
. Nicely enough, algorithm Converter allows to incre-

mentally generate these bits.

For the sake of clarity, let us resume the previous example taking the final interval [l4, l4 + s4) =

[19
64
, 20

64
) found in the compression stage. We know that l4 =

19
64

and s4 =
1
64

, hence the value to

output is

l4 +
s4

2
=

19

64
+

1

64
·

1

2
=

39

128

truncated at the first
⌈

log2
2
s4

⌉

= log2 128 = 7 bits. The resulting stream of bits associated to this

value is obtained by executing the algorithm Converter for seven times, in this way:

39

128
· 2 =

78

128
< 1 → output = 0

78

128
· 2 =

156

128
≥ 1 → output = 01

(

156

128
− 1

)

· 2 =
56

128
< 1 → output = 010

56

128
· 2 =

112

128
< 1 → output = 0100

112

128
· 2 =

224

128
≥ 1 → output = 01001

(

224

128
− 1

)

· 2 =
192

128
≥ 1 → output = 010011

(

192

128
− 1

)

· 2 = 1 ≥ 1 → output = 0100111

At the end the encoder sends the pair 〈01001112, 4〉 and the statistical model to the decoder given

by Σ = {a, b, c} and the symbol probabilities P[a] = 1
2
, P[b] = 1

4
, P[c] = 1

4
.

We are ready now to prove the main theorem of this section which relates the compression ratio

achieved by Arithmetic coding with the 0-th order entropy of S .

THEOREM 10.3 The number of bits emitted by Arithmetic Coding for a sequence S of length

n is at most 2 + nH0, where H0 is the 0-th order entropy of the input source.

Proof By Corollary 10.1, we know that the number of output bits is:

⌈

log2

2

sn

⌉

≤ 2 − log2 sn = 2 − log2

n∏

i=1

P[S [i]]

 = 2 −

n∑

i=1

log2 P[S [i]]

10-18 Paolo Ferragina

If we let nσ be the number of times a symbol σ occurs in S , and assume that n is sufficiently large,

then we can estimate P[σ] ' nσ
n

. At this point we can rewrite the summation by grouping the same

symbols:

2 −
∑

σ∈Σ

nσ log2 P[σ] = 2 − n

∑

σ∈Σ

P[σ] log2 P[σ]

 = 2 + nH0

We can draw some considerations from the result just proved:

• there is a waste of only two bits on an entire input sequence S , hence 2
n

bits per symbol.

This is a vanishing lost as the input sequence becomes longer and longer.

• the size of the output is a function of the set of symbols constituting S with their multi-

plicities, but not of their order.

In the previous section we have seen that Huffman coding requires n+nH0 bits for compressing a

sequence of n symbols, so Arithmetic Coding is much better. Another advantage is that it calculates

the representation on the fly thus it can easily accommodate the use of dynamic modeling. On

the other hand, it must be said that (Canonical) Huffman is faster and can decompress any portion

of the compressed file provided that we known its first codeword. This is however impossible

for Arithmetic Coding which allows only the whole decompression of the compressed file. This

property justifies the frequent use of Canonical Huffman coding in the context of compressing Web

collections, where Σ consists of words/tokens. Such a variant is known as Huffword [7].

10.2.5 Arithmetic coding in practice

The implementation of Arithmetic coding presents some problems:

• the number x produced by the coding phase is known only when the entire input is

processed: this is a disadvantage in situations like digital communications, in which for

the sake of speed, we desire to start encoding/decoding before the source/compressed

string is completely scanned; some possible solutions are:

1. the text to be compressed is subdivided into blocks, which are compressed individ-

ually; this way, even the problem of specifying the length of the text is relieved:

only the length of the last block must be sent to permit its decompression, or the

original file can be padded to an integral number of blocks, if the real ’end of file’

is not important.

2. the two extremes of the intervals produced at each compression step are compared

and the binary prefix on which their binary representation coincides is emitted.

This option does not solve the problem completely, in fact it can happen that they

don’t have any common prefix for a long time, nonetheless this is effective because

it happens frequently in practice.

• more significantly, the encoding and decoding algorithms presented above require arith-

metic with infinite precision which is costly to be approximated. There are several pro-

posals about using finite precision arithmetic (see e.g. [3, 8]), which nonetheless penal-

izes the compression ratio up to nH0 +
2

100
n. Even so Arithmetic coding is still better

than Huffman: 2
100

vs. 1 bit loss.

The next subsection describes a practical implementation for Arithmetic coding proposed by

Witten, Neal and Clearly [8]; sometimes called Range Coding [5]. It is mathematically equivalent

to Arithmetic Coding, which works with finite precision arithmetic so that subintervals have integral

extremes.

Statistical Coding 10-19

10.2.6 Range Coding

The key idea is to make some approximations, in order to represent in finite precision real numbers:

• for every symbol σ in the sorted alphabet Σ the probability P[σ] is approximated by an

integer count c[σ] of the number of occurrences of the symbol in the input sequence,

and the cumulative probability fσ with a cumulative count C[σ] which sums the counts

of all symbols preceding σ in Σ, hence C[σ] =
∑

α<σ c[α]. So we have

P[σ] =
c[σ]

C[|Σ| + 1]
fσ =

C[σ]

C[|Σ| + 1]

• the interval [0, 1) is mapped into the integer interval [0,M), where M = 2w depends on

the length w in bits of the memory-word.

• during the i-th iteration of the compression or decompression stages the current subin-

terval (formerly [li, li + si)) will be chosen to have integer endpoints [Li,Hi) such that

Li = Li−1 +
⌊

fS [i] (Hi−1 − Li−1)
⌋

Hi = Li + bP[S [i]] (Hi−1 − Li−1)c

These approximations induce a compression loss empirically estimated (by the original authors)

as 10−4 bits per input symbol. In order to clarify how it works, we will first explain the compression

and decompression stages, and then we will illustrate an example.

Compression stage. In order to guarantee that every interval [Li,Hi) has non-empty subintervals,

at each step we must have

Hi − Li ≥
M

4
+ 2 (10.2)

In fact, if we compute the integer starting point of the subinterval Li+1 by

Li+1 = Li +
⌊

fS [i+1] · (Hi − Li)
⌋

= Li +

⌊

C[S [i + 1]]

C[|Σ| + 1]
· (Hi − Li)

⌋

since C[i]s are strictly increasing, in order to guarantee that we do not have empty subintervals, it is

sufficient to have Hi−Li

C[|Σ|+1]
≥ 1 that can be obtained, from Equ. 10.2, by keeping

C[|Σ| + 1] ≤
M

4
+ 2 ≤ Hi − Li (10.3)

This means that an adaptive Arithmetic Coding, that computes the cumulative counts during com-

pression, must reset these counts every M
4
+2 input symbols, or rescale these counts every e.g. M

8
+1

input symbols by dividing them by 2.

Rescaling. We proved that, if in each iteration the interval [Li,Hi) has size ≥ M
4
+2, we can subdivide

it in non-empty subintervals with integer endpoints and sizes proportional to the probabilities of the

symbols. In order to guarantee this condition, one can adopt the following expansion rules, which

are repeatedly checked before each step of the compression process:

1. [Li,Hi) ⊆
[

0, M
2

)

→ output ’0’, and the new interval is:

[Li+1,Hi+1) = [2 · Li, 2 · (Hi − 1) + 2)

2. [Li,Hi) ⊆
[

M
2
,M

)

→ output ’1’, and the new interval is

[Li+1,Hi+1) =

[

2 ·

(

Li −
M

2

)

, 2 ·

(

Hi − 1 −
M

2

)

+ 2

)

10-20 Paolo Ferragina

3. if M
4
≤ Li <

M
2
< Hi ≤

3M
4

then we cannot output any bit, even if the size of the interval

is less than M
4

, so we have a so called underflow condition (that is managed as indicated

below).

4. otherwise, it is Hi − Li ≥
M
4
+ 2 and we can continue the compression as is.

In the case of underflow, we cannot emit any bit until the interval falls in one of the two halves

of [0,M) (i.e. cases 1 or 2 above). If we suppose to continue and operate on the interval [M
4
, 3M

4
) as

we did with [0,M), by properly rewriting conditions 1 and 2, the interval size can fall below M
8

and

thus the same problem arises again. The solution is to use a parameter m that records the number of

times that the underflow condition occurred, so that the current interval is within [M
2
− M

2m+1 ,
M
2
+ M

2m+1);

and observe that, when eventually the interval will not include M
2

, we will output 01m if it is in the

first half, or 10m if it is in the second half. After that, we can expand the interval around its halfway

point and count the number of expansions:

• mathematically, if M
4
≤ Li <

M
2
< Hi ≤

3M
4

then we increment the number m of

underflows and consider the new interval

[Li+1,Hi+1) =

[

2 ·

(

Li −
M

4

)

, 2 ·

(

Hi − 1 −
M

4

)

+ 2

)

• when expansion 1 or 2 are operated, after the output of the bit, we output also m copies

of the complement of that bit, and reset m to 0.

End of the input sequence. At the end of the input sequence, because of the expansions, the current

interval satisfies at least one of the inequalities:

Ln <
M

4
<

M

2
< Hn or Ln <

M

2
<

3M

4
< Hn (10.4)

It may be the case that m > 0 so that we have to complete the the output bit stream as follows:

• if the first inequality holds, we can emit 01m1 = 01m+1 (if m = 0 this means to codify
M
4

)

• if the second inequality holds, we can emit 10m0 = 10m+1 (if m = 0 this means to codify
3M
4

)

Decompression stage. The decoder must mimic the computations operated during the compression

stage. It maintains a shift register v of dlog2 Me bits, which plays the role of x (in the classic Arith-

metic coding) and thus it is used to find the next subinterval from the partition of the current interval.

When the interval is expanded, v is modified accordingly, and a new bit from the compressed stream

is loaded through the function next bit:

1. [Li,Hi) ⊆
[

0, M
2

)

→ consider the new interval

[Li+1,Hi+1) = [2 · Li, 2 · (Hi − 1) + 2), v = 2v + next bit

2. [Li,Hi) ⊆
[

M
2
,M

)

→ consider the new interval

[Li+1,Hi+1) =

[

2 ·

(

Li −
M

2

)

, 2 ·

(

Hi − 1 −
M

2

)

+ 2

)

,

v = 2 ·

(

v −
M

2

)

+ next bit

Statistical Coding 10-21

3. if M
4
≤ Li <

M
2
< Hi ≤

3M
4

consider the new interval

[Li+1,Hi+1) =

[

2 ·

(

Li −
M

4

)

, 2 ·

(

Hi − 1 −
M

4

)

+ 2

)

,

v = 2 ·

(

v −
M

4

)

+ next bit

4. otherwise it is Hi − Li ≥
M
4
+ 2 and thus we can continue the decompression as is.

In order to understand this decoding process, let us resume the example of the previous sections

with the same input sequence S = abac of length n = 4, ordered alphabet Σ = {a, b, c}, probabilities

P[a] = 1
2
, P[b] = P[c] = 1

4
and cumulative probabilities fa = 0, fb = P[a] = 1

2
, and fc =

P[a] + P[b] = 3
4
. We rewrite these probabilities by using the approximations that we have seen

above, hence C[|Σ| + 1] = 4, and we set the initial interval as [L0,H0) = [0,M), where M is chosen

to satisfy the inequality 10.3:

C[|Σ| + 1] ≤
M

4
+ 2 ⇐⇒ 4 ≤

M

4
+ 2

so we can take M = 16 and have M
4
= 4, M

2
= 8 and 3M

4
= 12 (of course, this value of M is not

based on the real machine word length but it is useful for our example). At this point, we have the

initial interval

[L0,H0) = [0, 16)

and we are ready to compress the first symbol S [1] = a using the expressions for the endpoints seen

above:

L1 = L0 + b fa · (H0 − L0)c = 0 + b0 · 16c = 0

H1 = L1 + bP[a] · (H0 − L0)c = 0 +

⌊

2

4
· 16

⌋

= 8

The new interval [L1,H1) = [0, 8) satisfies the first expansion rule [L1,H1) ⊆
[

0, M
2

)

, hence we

output ’0’ and we consider the new interval (for the expansion rules we do not change index):

[L1,H1) = [2 · L1, 2 · (H1 − 1) + 2) = [0, 16)

In the second iteration we consider the second symbol S [2] = b, and the endpoints of the new

interval are:

L2 = L1 + b fb · (H1 − L1)c = 8

H2 = L2 + bP[b] · (H1 − L1)c = 12

This interval satisfies the second expansion rule [L2,H2) ⊆
[

M
2
,M

)

, hence we concatenate at the

output the bit ’1’ (obtaining 01) and we consider the interval

[L2,H2) =

[

2 ·

(

L2 −
M

2

)

, 2 ·

(

H2 − 1 −
M

2

)

+ 2

)

= [0, 8)

that satisfies again one of the expansion rules, hence we apply the first rule and we obtain the result

output = 010 and:

[L2,H2) = [2 · L1, 2 · (H2 − 1) + 2) = [0, 16)

For the third symbol S [3] = a, we obtain

L3 = L2 + b fa · (H2 − L2)c = 0

10-22 Paolo Ferragina

H3 = L3 + bP[a] · (H2 − L2)c = 8

and this interval satisfies the first rule, hence output = 0100 and

[L3,H3) = [2 · L3, 2 · (H3 − 1) + 2) = [0, 16)

We continue this way for the last symbol S [4] = c:

[L4,H4) = [L3 + b fc · (H3 − L3)c , L4 + bP[c] · (H3 − L3)c) = [12, 16)

so get the output sequence output = 01001 and

[L4,H4) =

[

2 ·

(

L4 −
M

2

)

, 2 ·

(

H4 − 1 −
M

2

)

+ 2

)

= [8, 16)

so we expand again and get the output sequence output = 010011 and

[L4,H4) =

[

2 ·

(

L4 −
M

2

)

, 2 ·

(

H4 − 1 −
M

2

)

+ 2

)

= [0, 16)

At the end of the input sequence the last interval should satisfy the Equ. 10.4. This is true for our

interval, hence, as we know, at this point the encoder sends the pair 〈0100112, 4〉 and the statistical

model P[a] = 1
2
, P[b] = P[c] = 1

4
to the decoder (we are assuming a static model).

As far as the decoding stage is concerned, the first step initializes the shift register v (of length

dlog2 Me = dlog2 16e = 4) with the first dlog2 16e = 4 bits of the compressed sequence, hence

v = 01002 = 410. At this point the initial interval [L0,H0) = [0, 16) is subdivided in three different

subintervals, one for every symbol in the alphabet, according to the probabilities: [0, 8), [8, 12) and

[12, 16). The symbol generated at the first iteration will be a because v = 4 ∈ [0, 8). At this point

we apply the first expansion rule of the decompression process because [L1,H1) = [0, 8) ⊆ [0, M
2

),

obtaining:

[L1,H1) = [2 · L1, 2 · (H1 − 1) + 2) = [0, 16)

v = 2 · v + next bit = shiftsx(01002) + 12 = 10002 + 12 = 10012 = 910

In the second iteration the interval [0, 16) is subdivided another time in the same ranges of integers

and the generated symbol will be b because v = 9 ∈ [8, 12). This last interval satisfies the second

rule, hence:

[L2,H2) =

[

2 ·

(

L2 −
M

2

)

, 2 ·

(

H2 − 1 −
M

2

)

+ 2

)

= [0, 8)

v = 2 ·

(

v −
M

2

)

+ next bit = shiftsx(10012 − 10002) + 12 = 00102 + 12 = 00112 = 310

We apply now the first rule (the function next bit returns ’0’ if there are not more bits in the

compressed sequence):

[L2,H2) = [2 · L2, 2 · (H2 − 1) + 2) = [0, 16)

v = 2 · v + next bit = shiftsx(00112) + 02 = 01102 = 610

This interval is subdivided again, in the third iteration, obtaining the subintervals [0, 8), [8, 12) and

[12, 16). Like in the previous steps, we find a as generated symbol because v = 6 ∈ [0, 8), and we

modify the interval [L3,H3) = [0, 8) and the shift register v as the first rule specifies:

[L3,H3) = [2 · L3, 2 · (H3 − 1) + 2) = [0, 16)

v = 2 · v + next bit = shiftsx(01102) + 02 = 11002 = 1210

The last generated symbol will be c because v = 12 ∈ [12, 16), and the entire input sequence

is exactly reconstructed. The algorithm can stop because it has generated 4 symbols, which was

provided as input to the decoder as length of S .

Statistical Coding 10-23

10.3 Prediction by Partial Matching∞

In order to improve compression we need better models for the symbol probabilities. A typical

approach consists of estimating them by considering not just individual symbols, and thus assume

that they occur independently of each other, but evaluating the conditional probability of their oc-

currence in S , given few previous symbols, the so called context. In this section we will look at a

particular adaptive technique to build a context–model that can be combined very well with Arith-

metic Coding because it generates skewed probabilities and thus high compression. This method

is called Prediction by Partial Matching (shortly, PPM), it allows to move from 0-th order entropy

coders to k-th order entropy coders. The implementation of PPM suffers two problems: (i) they

need proper data structures to maintain updated in an efficient manner all conditional probabilities,

as S is scanned; (ii) at the beginning the estimates of the context-based probabilities are poor thus

producing an inefficient coding; so proper adjustments have to be imposed in order to quicker es-

tablish good statistics. In the rest of the section we will concentrate on the second issue, and refer

the reader to the literature for the first one, namely [4, 7].

10.3.1 The algorithm

Let us dig into the algorithmic structure of PPM. It uses a suite of finite contexts in order to predict

the next symbol. Frequency counts of these contexts are updated at each input symbol, namely

PPM keeps counts for each symbol σ and for each context α of length `, of how many times the

string ασ occurs in the prefix of S processed so far. This way, at step i, PPM updates the counts

for σ = S [i] and its previous contexts α = S [i − `, i − 1], for any ` = 0, 1, . . . ,K where K is the

maximum context-model admitted.

In order to encode the symbol S [i], PPM starts from the longest possible context of length K,

namely S [i − K, i − 1], and then switches to shorter and shorter contexts until it finds the one, say

S [i−`, i−1], which is able to predict the current symbol. This means that PPM has a counting for S [i]

in S [i− `, i− 1] which is strictly larger than 0, and thus the estimated probability for this occurrence

is not zero. Eventually it reaches the context of order −1 which corresponds to a model in which all

symbols have the same probabilities. The key compression issue is how to encode the length ` of the

model adopted to compress S [i], so that also the decoder can use that context in the decompression

phase. We could use an integer encoder, of course, but this would take an integral number of bits

per symbol, thus vanishing all efforts of a good modeling; we need something smarter.

The algorithmic idea is to turn this problem into a symbol-encoding problem, by introducing an

escape symbol (esc) which is emitted every time a context-switch has to be performed. So esc

signals to the decoder to switch to the next shorter model. This escaping-process continues till a

model where the symbol is not novel is reached. If the current symbol has never occurred before,

K + 1 escape symbols are transmitted to make the decoder to switch to the (−1)–order model that

predicts all possible symbols according to the uniform distribution. Note that the 0–order context

corresponds to a distribution of probabilities estimated by the frequency counts, just as in the classic

Arithmetic coding. Using such strategy, the probability associated to a symbol is always the one that

has been calculated in the longest context where the symbol has previously occurred; so it should

be more precise than just the probabilities based on individual counts for the symbols in Σ.

We notice that at the beginning, some contexts may be missing; in particular, when i ≤ K, the

encoder and the decoder do not use the context with maximum order K, but the context of length

(i − 1), hence the one read so far. When the second symbol is used, the 0–order context is used and,

if the second symbol is novel, an esc is emitted. The longest context K is used when i > K: in this

case K symbols have been read already, and the K–order context is available. To better understand

how PPM works, we consider the following example.

10-24 Paolo Ferragina

Let the input sequence S be the string abracadabra and let K = 2 be the longest context used

in the calculation of K–order models and its conditional probabilities. As previously said, the only

model available when the algorithm starts is the (−1)–order model. So when the first symbol a is

read, the (−1)–order assigns to it the uniform probability 1
|Σ|
= 1

5
. At the same time, PPM updates

frequency counts in the 0–order model assigning a probability P[a] = 1
2

and P[esc] = 1
2
. In this

running example we assume that the escape symbol is given a count equal to the total number of

different characters in the model. Other strategies to assign a probability to the escape symbol will

be discussed in detail in section 10.3.3.

PPM then reads b and uses the 0–order model, which is currently the longest one, as explained

above. An escape symbol is transmitted since b has never been read before. The (−1)–order model

is so used to compress b and then both the 1–order and the 0–order models are updated. In the

0–order model we have P[a] = 1
4
, P[b] = 1

4
, P[esc] = 2

4
= 1

2
(two distinct symbols have been read).

In the 1–order model the probabilities are P[b|a] = 1
2

and P[esc|a] = 1
2

(only one distinct symbol

is read). Now let us suppose that the current symbol is S [6] = d. Since it is the first occurrence of

d in S , three escape symbols will be transmitted for switching from the 2–order to the (−1)–order

model. Table 10.1 shows the predictions of the four models after that PPM, in its version C (see

Sec. 10.3.3), has completed the processing of the input sequence.

We remark that PPM offers probability estimates which can then be used by an Arithmetic coder

to compress a sequence of symbols. The idea is to use every model (either the one which offers a

successful prediction or the one which leads to emit an esc) to partition the current interval of the

Arithmetic coding stage and the current symbol to select the next sub-interval. This is the reason

why PPM is better looked as a context-modeling technique rather than a compressor, the coding

stage could be implemented via Arithmetic coding or any other statistical encoder.

Order k = 2 Order k = 1 Order k = 0 Order k = −1

Predictions c p Predictions c p Predictions c p Predictions c p

ab → r 2 2
3

a → b 2 2
7

→ a 5 5
16

→ ∀σ[i] 1 1
|Σ|
= 1

5

→ esc 1 1
3

→ c 1 1
7

→ b 2 2
16

→ d 1 1
7

→ c 1 1
16

ac → a 1 1
2

→ esc 3 2
7

→ d 1 1
16

→ esc 1 1
2

→ r 2 2
16

b → r 2 2
3

→ esc 5 5
16

ad → a 1 1
2

→ esc 1 1
3

→ esc 1 1
2

c → a 1 1
2

br → a 2 2
3

→ esc 1 1
2

→ esc 1 1
3

d → a 1 1
2

ca → d 1 1
2

→ esc 1 1
2

→ esc 1 1
2

r → a 2 2
3

da → b 1 1
2

→ esc 1 1
3

→ esc 1 1
2

ra → c 1 1
2

→ esc 1 1
2

TABLE 10.1 Version C of PPM models after processing the whole S = abracadabra.

Statistical Coding 10-25

10.3.2 The principle of exclusion

It is possible to use the knowledge about symbol frequencies in k-order models to improve the

compression rate when switching through escape symbols to low-order ones. Suppose that the

whole input sequence S of the example above has been processed and that the following symbol

to be encoded is c. The prediction ra → c is used (since ra is the current 2–order context, with

K = 2) and thus c is encoded with a probability of 1
2

using 1 bit. Suppose now that, instead of c, the

character d follows abracadabra. In the context ra an escape symbol is transmitted (encoded with

a 1
2

probability) and PPM switches to the 1–order model. In this model, the prediction a → d can

be used and d can be encoded with probability 1
7
. This prediction takes into account the fact that,

earlier in the processing, the symbol d has followed a. However the fact that ra was seen before

followed by c implies that the current symbol cannot be c. In fact, if it were followed by c, PPM

would not have switched to the 1–order model and would have used the longest context ra. The

decoder can so exclude the case of an a followed by a c. This reduces the frequency count of the

group a → by one and the character d could thus be encoded with probability 1
6
.

Suppose now that after abracadabra the novel symbol e occurs. In this case a sequence of escape

symbols is transmitted to make the decoder switch to the −1–order model. Without exclusion the

novel symbol would be encoded with a probability of 1
|Σ|

. However, if PPM is now using the (−1)–

order model, it means that none of the previously seen symbols is the current one. The symbols

already read can thus be excluded in the computation of the prediction since it is impossible that

they are occurring at this point of the input scan. The probability assigned to the novel symbol by

the (−1)–order model using the exclusion principle is 1
|Σ|−q

where q is the total number of distinct

symbols read in S . Performing this technique takes a little extra time but gives a reasonable payback

in terms of extra compression, because all nonexcluded symbols have their probability increased.

10.3.3 Zero Frequency Problem

It may seem that the performance of PPM should improve when the length of the maximum context

is increased. Fig 10.12 shows an experimental evidence of this intuition.

We notice that with contexts longer than 4–5 characters there is no improvement. The reason is

that with longer contexts, there is a greater probability to use the escape mechanism, transmitting as

many escape symbols as it is needed to reach the context length for which non-null predictions are

available.

Anyway, whichever is the context length used, the choice of the encoding method for the escape

symbol is very important. There is no sound theoretical basis for any particular choice to assign

probabilities to the escape symbol if no a priori knowledge is available. A method is chosen accord-

ing to the programmer experience only. The various implementations of PPM described below are

identified by the escape method they use. For example, PPMA stands for PPM with escape method

A. Likewise, PPMC or PPMD use escape methods C and D. The maximum order of the method

can be included too. For example, PPMC5 stands for PPM with escape method C and maximum

order-model K = 5. In the following, Cn will denote a context, σ a symbol in the input alphabet,

c(σ) the number of times that the symbol σ has occurred in context Cn, n the number of times the

current context Cn has occurred, q the total number of distinct symbols read.

Method A [1, 6]. This technique allocates one count to the possibility that a symbol will occur in

a context in which it has not been read before. The probability P[σ] that σ will occur again in the

same context is estimated by P[σ] =
c(σ)

1+n
. The probability that a novel symbol will occur in Cn, i.e.

10-26 Paolo Ferragina

FIGURE 10.12: PPM compression ratio on increasing context length. Computed on Thomas

Hardy’s text Far from the Madding Crowd.

the escape probability P[esc], is then:

P[esc] = 1 −
∑

σ∈Σ,c(σ)>0

P[σ] = 1 −
∑

σ∈Σ,c(σ)>0

c(σ)

1 + n

= 1 −
1

1 + n

∑

σ∈Σ,c(σ)>0

c(σ) = 1 −
n

1 + n
=

1

1 + n

Method B [1, 6]. The second technique classifies a symbol as novel unless it has already oc-

curred twice. The motivation is that a symbol that has occurred only once can be an anomaly. The

probability of a symbol is thus estimated by P[σ] =
c(σ)−1

n
, and q is set as the number of distinct

symbols seen so far in the input sequence. The escape probability now is:

P[esc] = 1 −
∑

σ∈Σ,c(σ)>0

P[σ]

= 1 −
∑

σ∈Σ,c(σ)>0

c(σ) − 1

n

= 1 −
1

n

∑

σ∈Σ,c(σ)>0

(c(σ) − 1)

= 1 −
1

n

∑

σ∈Σ,c(σ)>0

c(σ) −
∑

σ∈Σ,c(σ)>0

1

= 1 −
1

n
(n − q) =

q

n

Statistical Coding 10-27

Method C [4]. It is an hybrid between the previous two methods. When a novel symbol occurs,

a count of 1 is added both to the escape count and to the new symbol count. In this way the total

count increases by 2. Thus it estimates the probability of a symbol σ as P[σ] =
c(σ)

n+q
and the escape

probability P[esc] as:

P[esc] = 1 −
∑

σ∈Σ,c(σ)>0

c(σ)

n + q
=

q

n + q

Method D. It is a minor modification of method C. It treats in a more uniform way the occurrence

of a novel symbol: instead of adding 1, it adds 1
2

both to the escape and to the new symbol. The

probability of a symbol is then:

P[σ] =
c(σ) − 1

2

n
=

(

2 · c(σ) − 1

2 · n

)

The probability of the escape symbol is:

P[esc] = 1 −
∑

σ∈Σ,c(σ)>0

P[σ]

= 1 −
∑

σ∈Σ,c(σ)>0

(
c(σ) − 1

2

n

)

= 1 −
1

n

∑

σ∈Σ,c(σ)>0

c(σ) −
∑

σ∈Σ,c(σ)>0

1

2

= 1 −
n

n
+

1

n

q

2
︷ ︸︸ ︷

∑

σ∈Σ,c(σ)>0

1

2

=
q

2n

Method P [6]. The method is based on the assumption that symbols appear according to a Poisson

process. Under such hypothesis, it is possible to extrapolate probabilities from an N symbol sample

to a larger sample of size N′ = (1 + θ)N, where θ > 0. Denoting with ti the number of distinct

symbols occurred exactly i times in the sample of size N, the number of novel symbols can be

approximated by t1θ − t2θ
2 + t3θ

3 − · · · . The probability that the next symbol will be novel equals

the number of expected new symbols when N′ = N + 1. In this case:

P[esc] = t1
1

n
− t2

1

n2
+ t3

1

n3
− · · ·

Method X [6]. This method approximates method P computing only the first term of the series

since in most cases n is very large and ti decreases rapidly as i increases: P[esc] = t1
n

. The previous

formula may also be interpreted as approximating the escape probability by counting the symbols

that have occurred only once.

Method XC [6]. Both methods P and X break down when either t1 = 0 or t1 = n. In those cases the

probability assigned to the novel symbol is, respectively, 0 or 1. To overcome this problem, method

XC uses method C when method X breaks down:

P[esc] =

{ t1
n

0 < t1 < n
q

n+q
otherwise

10-28 Paolo Ferragina

Method X1. The last method described here is a simple variant of method X that avoids breaking

down to a probability of 0 or 1. Instead of using two different methods, it adds 1 to the total count.

The probability of a generic symbol σ is P[σ] =
c(σ)

n+t1+1
, and the probability of the escape symbol is

P[esc] = t1+1
n+t1+1

.

References

[1] John G. Clearly and Ian H. Witten. Data Compression Using Adaptive Coding and

Partial String Matching. IEEE Transactions on Communications, 32:396–402, 1984.

[2] Peter M. Fenwick. A new data structure for cumulative frequency tables. Software

Practice and Experience, 327–336, 1994.

[3] Paul Howard and Jeffrey S. Vitter. Arithmetic Coding for Data Compression. Proceed-

ings of the IEEE, 857–865, 1994.

[4] Alistair Moffat. Implementing the PPM Data Compression Scheme. IEEE Transactions

on Communications, 38:1917–1921, 1990.

[5] G. Nigel and N. Martin. Range Encoding: an algorithm for removing redundancy from a

digitised message. Presented in March 1979 to the Video & Data Recording Conference,

1979.

[6] Ian H. Witten and Timoty C. Bell. The Zero-Frequency Problem: Estimating the

Probabilities of Novel Events in Adaptive Text Compression. IEEE Transactions on

Information Theory, 37:1085–1094, 1991.

[7] Ian H. Witten, Alistair Moffat, Timoty C. Bell. Managing Gigabytes. Morgan Kauffman,

second edition, 1999.

[8] Ian H. Witten, Radford M. Neal and John G. Clearly. Arithmetic Coding for data

compression. Communications of the ACM, 520-540, 1987.

