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The methods based on a dictionary take a totally different approach to compression than the statis-

tical ones: here we are not interested in deriving the characteristics (i.e. probabilities) of the source

which generated the input sequence S . Rather, we assume to have a dictionary of strings, and we

look for those strings in S , replacing them with a token which identifies them in the dictionary. The

choice of the dictionary is of course crucial in determining how well the file is compressed. An

English dictionary will have a hard time to compress an Italian text, for instance; and it would be

totally unappropriate to compress an executable file. Thus, while a static dictionary can be used

to compress very well certain specific kinds of files, it cannot be used for a good general-purpose

compressor. Moreover, we don’t want to transmit the full dictionary along with each compressed

file – and it’s often unreasonable to assume the receiver already has a copy of our dictionary.

So, starting from 1977, Ziv and Lempel introduced a family of compressors which addressed

successfully these problems by designing two algorithms, named LZ77 and LZ78 from the initials

of the inventors and the years of the proposal, which use the input sequence they are compressing as

the dictionary, and substitute each occurrence of an already seen string with a pointer to its previous

position. The dictionary is dynamically built in the sense that it starts empty and then it grows as the

input sequence is processed; at the beginning low compression is achieved, but after some kbs good

compression is obtained. for typical textual files, those methods achieve about 33% compression

ratio. The Lempel-Ziv’s compressors are very popular because of their gzip instantiation, and

constitute the base of more sophisticated compressors in use today, such as 7zip and LZMA. In the

following paragraphs, we will show them in detail, along with some interesting variants.

11.1 LZ77

Ziv and Lempel, in their seminal paper of 1977 [12], described their contribution as follows “[. . . ]

universal coding scheme which can be applied to any discrete source and whose performance is

comparable to certain optimal fixed code book scheme designed for completely specified sources

[. . . ]”. They key expression is “comparable to [...] fixed code book scheme designed for completely

specified sources”, because the authors compare to previously designed statistical compressors, such

as Huffman and Arithmetic, for which a statistical characterization of the source was necessary.

Conversely, dictionary-based compressors waive this characterization which is derived implicitly by

observing substring repetitiveness via a fully syntactic approach.
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We will not dig into the observations which provide a mathematical ground to these comments

[12, 3], rather we will concentrate only on the algorithmic issues. LZ77’s compressor is based on a

sliding window W[1,w] which contains a portion of the input sequence that has been processed so

far, typically consisting of the last w characters, and a look-ahead buffer B which contains the suffix

of the text still to be processed. In the following picture the window W = aabbababb is of size 9,

and the rest of the input sequence is B = baababaabbaa$.

←− · · · aabbababb baababaabbaa$ −→

The algorithm works inductively by assuming that everything occurring before B has been pro-

cessed and compressed by LZ77; where W is initially set to the empty string. The compressor

operates in two main stages: parsing and encoding. Parsing consists of transforming the input se-

quence S into a sequence of triples of integers (called phrases). Encoding turns these triples into a

(compressed) bit stream by applying either a statistical compressor (i.e. Huffman or Arithmetic) to

each triplet-component individually, or any integer encoding scheme.

So the interesting algorithmic stage is the parsing stage, which works as follows. LZ77 searches

for the longest prefix α of B which occurs as a substring of WB. We write the concatenation WB

rather than the single string B because the previous occurrence we are searching for may start in W

and it might extend up to within B. Say α occurs at distance d from the current position (namely the

beginning of B), and it is followed by character c in B, then the triple generated by LZ77 is 〈d, |α|, c〉
where |α| is the length of the copied string. If a match is not found the output triple becomes

〈0, 0, B[1]〉. We notice that any occurrence of α in W must be followed by a character different of c,

otherwise α would be not the longest prefix of B which repeats in W.

After that this triple is emitted, LZ77 advances in B by |α| + 1 positions, and slides W corre-

spondingly. We talk about LZ77 as a dictionary-based compressor because “the dictionary” is not

explicitly stored, rather it is implicitly formed by all substrings of S which start in W and extend

rightward, possibly ending in B. Each of those substrings is represented by the triple indicated

above. The dictionary is dynamic because at every shift it has to be updated by removing the sub-

strings starting in W[1, |α| + 1], and adding the substrings starting in B[1, |α| + 1].

The role of the sliding window is easy to explain, it delimits the size of the dictionary which,

otherwise, would be quadratic in the input sequence length, thus enlarging significantly the time

cost for the search of α. As a running example, let us consider the following sequence of LZ77-

parsing steps:

|aabbabab =⇒ 〈0, 0, a〉
a|abbabab =⇒ 〈1, 1, b〉
aab|babab =⇒ 〈1, 1, a〉
aabba|bab =⇒ 〈2, 3, EOF〉
. . . . . . . . . . . .

It is interesting to note that the last phrase 〈2, 3, EOF〉 presents a copy-length which is larger than

the copy-distance; this actually indicates the special situation mentioned above in which α starts in

W and ends in B. Even if this overlapping occurs, the copy-step that must be executed by LZ77 in

decompression is not affected, provided that it is executed sequentially according to the following

piece of code:

for i = 0 to L-1 do { S[s+i] = S[s-d+i]; }

s = s+L;
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where the triple to be decoded in 〈d, L, c〉 and S [1, s−1] is the prefix of the input sequence which

has been already decompressed. Since d ≤ |W | and the window size is up to few Megabytes, the

copy operation does not elicit any cache miss, thus making the decompression process very fast

indeed. The longer is the window W, the longer are possibly the phrases, the fewer is their number

and thus possibly the shorter is the compressed output; but of course, in terms of compression

time, the longer is the time to search the longest copied α. Vice versa, the shorter is W, the worse

is the compression ration but the faster is the compression time. This trade-off is evident and its

significance depends on the input sequence.

To slightly improve compression we make the following observation which is due to Storer and

Szymanski [8] and dates back to 1982. In the parsing process two situations may occur: a longest

match has been found, or it has not. In the former case it is not reasonable to add the character

following α (third component in the triple), given that we anyway advance in the input sequence.

In the latter case it is not reasonable to emit two 0s (first two components in the triple) and thus

waste one integer encoding. The simple solution to these two inefficiencies is to always output a

pair, rather than a triple, with the form: 〈d, |α|〉 or 〈0, B[1]〉. This variant of LZ77 is named LZss,

and it is often confused with LZ77, so we will use it from this point on.

By referring to the previous running example, LZss would obtain the parsing:

|aabbabab =⇒ 〈0, a〉
a|abbabab =⇒ 〈1, 1〉
aa|bbabab =⇒ 〈0, b〉
aab|babab =⇒ 〈1, 1〉
aabb|abab =⇒ 〈3, 2〉
aabbab|ab =⇒ 〈2, 2〉

Gzip: a smart and fast implementation of LZ77. The key programming problem when imple-

menting LZ77 is the fast search for the longest prefix α of B which repeats in W. A brute-force

algorithm that checks the occurrence of every prefix of B in W, via a linear backward scan, would

be very time-consuming and thus unacceptable for compressing Gbs files.

Fortunately, this process can be accelerated by using a suitable data structure. Gzip, the most

popular implementation of LZ77, uses a hash table to determine α and find its previous occurrence

in W. The idea is to store in the hash table all 3-grams occurring in W, namely all triplets of

contiguous characters, by using as key the 3-gram and as its satellite data the position in B

where that 3-gram occurs. Since a 3-gram may repeat multiple times in W, the hash table saves for

a given 3-gram all of its multiple occurrences, sorted by increasing position in S . This way, when

W shifts to the right because of the emission of the pair 〈d, `〉, the hash table can be updated by

deleting the ` 3-grams starting at W[1, `], and inserting the ` 3-grams starting at B[1, `].

The search for α is implemented as follows:

• first, the 3-gram B[1, 3] is searched in the hash table. If it does not occur, then Gzip

emits the phrase 〈0, B[1]〉, and the parsing advances of one single character. Otherwise,

it determines the list L of occurrences of B[1, 3] in W.

• second, for each position i in L (which is expressed as absolute position in S ), the

algorithm compares character-by-character S [i, n] against B in order to compute their

longest common prefix. At the end, the position i∗ ∈ L sharing this longest common

prefix is determined, as well as it is found α.
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• finally, let p be the current position of B in S , the algorithm emits the pair 〈p − i∗, |α|〉,
and advances the parsing of |α| positions.

Gzip implements the encoding of the phrases by using Huffman over two alphabets: the one

formed by the lengths of the copies plus the literals, and the one formed by the distances of the

copies. This trick is sufficiently smart to save one extra bit to distinguish between the two types

of pairs. In fact, 〈0, c〉 is represented as c, and 〈d, `〉 is represented reversed. Given that literals

and copy-lengths are encoded via the same code, the decoder fetches the next codeword and de-

compresses it, so being able to distinguishing whether the next item is a character c or a length `.

According to the result, it can either restart the decoding of the next pair (c has been decoded), or it

can decode d (` has been decoded) by using the other Huffman code.
Gzip an additional programming trick that further speed ups the compression process consists of

sorting the list of occurrences of the 3-grams from recent to oldest matches, and possibly stop the

search for α when a sufficient number of candidates has been checked. This trades the length of the

longest match against the speed of the search. As far as the size of the window W is concerned, Gzip

allows to specify −1, . . . ,−9which actually mean that the size may vary from 100Kb to 900Kb, with

a consequent improvement of the compression ratio, at the cost of slowing down the compression

speed. Not surprisingly, the longer is W, the faster is the decompression because the smaller is

the number of encoded phrases, and thus the smaller is the number of cache misses induced by the

Huffman decoding process.
For other implementations of LZ77, the reader can look at Chapter 8 where we discussed the use

of the Suffix Tree and unbounded window; as well as we refer to [4] for details about implementa-

tions which take into account for the size of the compressed output (in bit) which clearly depends on

the number of phrases but also from the values of their integer components, in a way that cannot be

underestimated. Briefly, it is not necessarily the case that a longer α induces a shorter compressed

output, because it might need to copy α from a far distance d, thus taking many bits for the encoding

of d; rather, it might be better to divide α into two substrings which can be copied closer enough

that the total number of bits required for the encoding of these distances is less than d.

11.2 LZ78

The sliding window used by LZ77 from the one hand speeds up the search for the longest phrase

to encode, but from the other hand limits the search space, and thus the ultimate compression ratio.

In order to avoid this problem and still keep a fast compression stage, Ziv and Lempel devised in

1978 another algorithm, which has been consequently called LZ78 [?]. The key idea is to build an

explicit dictionary that contains only a subset of the substrings of the input sequence S , selected

according to a simple rule that is detailed below. The dictionary is built incrementally, as the input

sequence is parsed. Concurrently, S is decomposed into phrases which are taken from the current

dictionary.
Phrase detection and dictionary update are deeply interrelated. Let S ′ be the sequence to be

parsed yet, and let D be the current dictionary in which every phrase f is identified via the integer

id( f ). The parsing of S ′ consists of determining its longest prefix f ′ which is also a phrase of D,

and substituting it with the pair 〈id( f ′), c〉 where c is the character following f ′ in S ′. Next, D is

updated by adding the new phrase f ′c, which is just one character longer than the phrase f ′ ∈ D.

Therefore the dictionary is prefix-complete because it will contain all the prefixes of every phrase in

D, moreover its size is unbounded, in principle, and grows as the input sequence size grows.
It goes without saying that, as it occurred for the LZ77, the stream of pairs generated by the

LZ78-parsing will be encoded via a statistical compressor (such as Huffman or Arithmetic) or via

any variable-length integer encoder. This will produce the compressed bit stream, eventual output

of LZ78.
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Input Output Dictionary

- - 0: empty

a <0, a> 1: a

ab <1, b> 2: ab

b <0, b> 3: b

aba <2, a> 4: aba

bb <3, b> 5: bb

ba <3, a> 6: ba

abab <4, b> 7: abab

aa <1, a> 8: aa

TABLE 11.1 LZ78-parsing of the string S = aabbababbbaababaa.

FIGURE 11.1: The trie for the dictionary in table 11.1

As an illustrative example, let us consider the sequence S = abcde f g . . . and the dictionary D
containing the phrase abcd with id = 43, but not containing the phrase abcde. Given this scenario,

LZ78 outputs the pair 〈43, e〉 and adds the new phrase abcde to the current dictionary. The parsing

will then continue over the suffix S = f g . . .. Table 11.1 reports a full running example.

The decompressor works in a very similar way: it reads a pair 〈id, x〉, it determines the phrase f

corresponding to the integer id, emits the substring f c and updates the current dictionary by adding

that substring as a new phrase.

The LZ78 algorithm needs an efficient data structure to manage the dictionary, which can be

easily found in the trie (see Chapter 7), given that it supports fast insertion and search of strings.

The prefix-complete property satisfied by D ensures that the trie is uncompacted, namely every

edge is labeled with a single character. The encoding algorithm fits nicely on this structure (see

Figure 11.1). Searching for the longest prefix of S ′ which is a dictionary phrase, can be implemented

by traversing the trie according to S ′’s characters until a trie leaf is reached. That is the detected

phrase f ′. In addition, the new phrase f ′c is inserted in the trie by just appending a new node to the

leaf for f ′ and labeling it with the single character c. That new node will be actually a leaf of the

trie.

The final question is how do we manage large files and, thus, large dictionares which host longer

and longer phrases, which is good, but also need more and more bits to encode them and larger and

larger time to search for them, which is bad. There are a few possibilities to cope with this problem:

1. Freeze the dictionary, disallowing the entry of new strings. This is the simplest option.

2. Discard the dictionary, starting with a new empty one. This can also be an advantage

if the file can be seen as structured in blocks, each one with a different set of recurring
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Input Output Dictionary

a - 0-255:’\0’-’\255’

a 97 (a) 256: aa

b 97 (a) 257: ab

b 98 (b) 258: bb

ab 98 (b) 259: ba

aba 257 (ab) 260: aba

eof 97 (aba) 261: aba EOF
TABLE 11.2 LZW-encoding of S = aabbababa; 97 and 98 are the ASCII codes for a and b.

strings.

3. Before inserting a new string, delete the least recently used one. This solution assumes

a sort of LRU model in the dictionary access and management.

11.3 LZW

LZW is a very popular variant of LZ78, developed by Welch in 1984 [10]. Its main objective is to

avoid the need for the second component of the pair 〈id( f ′), c〉, and thus for the byte representing a

character. To accomplish this goal, before the start of the algorithm, all the one-character strings are

written into the dictionary. This means that the phrase-ids from 0 to 255 have been allocated to these

characters. Next, the parsing of S starts searching for the longest prefix f ′ which matches a phrase

in D. If the next prefix f ′c of S ′ does not occur in D, then f ′c is added to the dictionary, taking

the next available id, and the next phrase starts from c rather than from the following character. So

parsing and dictionary updating are misaligned.

Decoding is a bit tricky because of this misalignment. Assume that decoding has to manage two

ids i′ and i′′, and call their corresponding dictionary phrases f ′ and f ′′. The decoder, in order to

re-align the dictionary, has to create the phrase n′ after the reading of i′, setting n′ = f ′ f ′′[1], where

f ′′[1] is the first character of the phrase f ′′. This seems easy, but indeed it is not! Of course, if f ′

and f ′′ are already available in D, the construction of n′ is a trivial task. But it might be the case

that f ′′ is not available! To understand why let us assume that the compressor, after the emission of

i′ and the insertion of n′ inD, used immediately that phrase to parse the rest of S , namely f ′′ = n′.
On the other hand, the decomressor sees only i′ and i′′. So it decodes i′ and obtains f ′, but then it

needs to construct n′ and insert it inD. This seems not possible because it needs f ′′[1] and we have

that f ′′ = n′. Thus we ended up in a sort of circular definition.

To circumvent this circularity it is enough to observe that f ′ consists of at least one character

(recall that we initializedDwith all single characters) and it is f ′′[1] = n′[1] = ( f ′ f ′′[1])[1] = f ′[1]

which is indeed available. So the reconstruction of n′ is possible even in this special case, by setting

n′ = f ′ f ′[1]. Hence the decompressor can correctly construct n′, insert it in D, and thus re-align

the dictionaries available at LZW’s compressor and decompressor after the reading of i′.
Table 11.3 shows the actions taken by the LZW-decoder over the stream of ids obtained from

Table 11.2. The dictionary starts with all the possible characters in the ASCII code, each one

with its value, so the new phrases take ids from 256. Notice that the special case occurs when

260 is read from the compressed sequence but the phrase 260 is not in the dictionary because it

has yet to be constructed. Nevertheless, by using the observations above, we can conclude that

n′ = f ′ f ′[1] = aba.

As the LZ77 algorithm, LZW has many common-use implementations among which we point out

the popular GIF image format [9]. It assumes that the original (uncompressed) image is rectangular

and uses 8 bits per pixel, so the alphabet has size 256 and the input sequence S comes as a normal
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Input Dictionary Output

- 0-255:’\0’-’\255’

97 256: a? a

97 256: aa a

257: a?

98 257: ab b

258: b?

98 258: bb b

259: b?

257 259: ba ab

260: ab?

260 261: aba aba

TABLE 11.3 LZW-decoding of the id-stream: 97,97,98,98,257,257,258,256,259,259,97.

stream of bytes, obtained by reading the pixels line-by-line1. Since 8 bits are very few to represent

all possible colors of an image, each value actually is an index in a palette, whose entries are 24-bits

descriptions of the actual color (the typical RGB format). This restricts the maximum number of

different colors present in an image to 256.

Some researchers [5] explored the possibility to introduce a lossy variant of GIF compression

without changing the way the output is represented: this would give the possibility to have a shorter

format, using however the standard decoders. The basic idea is in fact quite simple: instead of

looking for the longest exact match in the dictionary while parsing, we perform some kind of ap-

proximate matching. In this way we can find longer matches, thus reducing the output size, but at

the cost of representing a slightly different image. Approximate matching of two strings of colors

is done with a measure of difference based on their actual RGB values, which must be guaranteed

to not exceed a threshold value.

11.4 On the optimality of compressors∞

The literature shows many results regarding the optimality of LZ-inspired algorithms. Ziv and

Lempel themselves demonstrated that LZ77 is optimal for a certain family of sources (see [12]),

and LZ78 asymptotically reaches the best compression ratio among finite-state compressors (see

[?]). Optimality here means that, assuming the string to compress is infinite and is produced by

a stationary ergodic source with a finite alphabet, then the compression ratio asymptotically tends

to the entropy of the underlying source. More recent results made it possible to have a quantitative

estimate of algorithms’ redundancy, which is a measure of the distance between the source’s entropy

and the compression ratio, and can thereby be seen as a measure of “how fast” the algorithm reaches

the source’s entropy.

All these measures are very interesting but unrealistic because it is actually quite unusual, if not

impossible, to know the entropy of the source which generated the string we’re going to compress.

In order to circumvent this problem a different approach has been taken by introducing the notion

of k-th order empirical entropy of a string S , denoted by Hk(S ). In Chapter 10 we talked about

the case k = 0, which depended on the frequencies of the individual symbols occurring in S . With

Hk(S ) we wish to empower the entropy definition by considering the frequencies of k-grams in S ,

1Actually the GIF format can also present the lines in an interleaved format, the details of which are out of the scope of

this brief discussion; the compression algorithm is however the same.
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thus taking into account sequences of symbols, hence the compositional structure of S .
More precisely, let S be a string over an alphabet Σ = {σ1, . . . , σh}, and let us denote by nω the

number of occurrences of the substring ω in S . We use the notation ω ∈ Σk to specify that the length

of ω is k. Given this notation, we can define

Hk(S ) =
1

|S |
∑

ω∈Σk

















h
∑

i=1

nωσi
log

(

nω

nωσi

)

















(11.1)

A compression algorithm is then defined to be coarsely optimal iff, for all k there exists a function

fk(n) tending to 0 as n→ ∞ and such that, for all sequences S of increasing length, it holds that the

compression ratio of the evaluated algorithm is at mostHk(S ) + fk(|S |).
Plotnik et al. [6] proved the coarse optimality of LZ78; Kosaraju and Manzini [3] noticed that

the notion of coarse optimality does not necessarily imply a good algorithm because, if the entropy

of the string S approaches zero, the algorithm can compress badly. This observation makes the par

with the one we made for Huffman, related to the extra-bit needed for each encoded symbol. That

extra-bit was ok for large entropies, but it was considered bad for entropies approaching 0.

LEMMA 11.1 There exist strings for which the compression ratio achieved by LZ78 is at least

g(|S |)H0(S ), with g(n) such that limn→∞ g(n) = ∞.

Proof Consider the string S = 01n−1, which has entropy H0(S ) ∈ Θ(
log n

n
). It is easy to see that

LZ78 parses S with Θ(
√

n) phrases. Thus we get g(n) =
√

n

log n
.

To circumvent these inefficiencies, Kosaraju and Manzini introduced a stricter version of opti-

mality, called λ-optimality: it applies to an algorithm whose compression ratio can be bounded by

λHk(S ) + o(Hk(S )). As the previous lemma clearly demonstrates, LZ78 is not λ-optimal, how-

ever there exists a modified version of LZ78 combined with run-length compression (RLE) that is

3-optimal with respect toH0, but cannot be λ-optimal for any k ≥ 1.
Let us now turn our attention to LZ77, which seems more powerful than LZ78, given that its

dictionary is larger. However, the practical variant that uses a fixed-size compression window is not

much good, and actually worse than LZ78:

LEMMA 11.2 The LZ77 algorithm, with a bounded sliding window, is not coarsely optimal.

Proof We will show that, for each size L of the sliding window, we can find a string S for which

the compression ratio exceeds the k-th order entropy. Consider in fact the string (0k1k)n1 of length

2kn + 1, where we choose k = L − 1. Due to the sliding window, LZ77 parses S in the following

way:

0 0k−11 1k−10 0k−11 . . . 1k−10 0k−11 1k

Every phrase has then length up to k, splitting the input in Θ(n) phrases. In order to computeHk(S )

we need to work on all different k-length substrings of S , which are 2k: {0i1k−i}i=1...k ∪ {1i0k−i}i=1...k.

Now, all strings in the form 0i1k−i are always followed by a 1. Similarly, for i < k all strings 1i0k−i

are always followed by a 0. Only the string 1k is followed n − 1 times by a 0, and once by a 1. So

we can split the sum over the k-grams ω within the definition ofHk(S ) into 4 parts:

ω ∈ {0i1k−i}i=1...k → nω0 = 0 nω1 = n

ω ∈ {1i0k−i}i=1...k−1 → nω0 = n nω1 = 0

ω = 1k → nω0 = n − 1 nω1 = 1

else → nω0 = 0 nω1 = 0
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It is now easy to calculate that

|S | Hk(S ) = log n + (n − 1) log
n

n − 1
∈ Θ(log n)

and the lemma follows.

Nevertheless it does exist a modified LZ77, with no sliding window, which is coarsely optimal

and also 8-optimal with respect toH0. However it is not λ-optimal for any k ≥ 1:

LEMMA 11.3 There exist strings for which the compression ratio of LZ77, with no sliding

window, which is at least g(|S |)H1(S ), with g(n) such that limn→∞ g(n) = ∞.

Proof Consider the string 10k 22k

1 101 1021 1031 . . . 10k1 of length 2k
+O(k2), and compression

lower bound |S | Hk(S ) = k log k + O(k). The string is parsed with k + 4 words:

1 0 0k−12 22k−11 101 1021 . . . 10k1

The problem is that the last k phrases refer back to the beginning of S , which is 2k characters away.

This generates Ω(k) long phrases, thus an overall output size of Ω(k2).

So this variant of LZ77 is better than LZ78, as expected, but not yet good as we would like to

for k ≥ 1. The next chapter will introduce the Burrows-Wheeler Transform, proposed in 1994,

which allows to surpass the inefficiencies of LZ-based methods by devising a novel approach to

data compression which achieves λ-optimality, for very small λ and simultaneously for all k ≥
0. It is therefore not surprising that the BWT-based compressor bzip2, available in most Linux

distributions, produces a more succinct output than gzip.
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