234 Graph Algorithms

e

7.10 Matching

Given an undirected graph G =(V, E), a matching is a set of edges no two of which have
a vertex in common. The reason for the name is that an edge can be thought of as a
match of its two vertices. We insist that no vertex belongs to more than one edge from
the matching so that it is a monogamous matching. A vertex that is not incident to any
edge in the matching is called unmatched. We also say that the vertex does not belong
to the matching. A perfect matching is one in which all vertices are matched. A
maximum matching is one with the maximum number of edges. A maximal matching,
on the other hand, is a matching that cannot be extended by the addition of an edge.
Problems involving matching occur in many situations (besides social). Workers may be
matched to jobs, machines to parts, and so on. Furthermore, many problems that seem
unrelated to matching have equivalent formulations in terms of matching problems.

Matching in general graphs is a difficult problem. In this section, we limit our
discussion to two specific matching problems. The first problem is not so important; it
involves finding perfect matchings in special very dense graphs. The solution to this
problem, however, illustrates an interesting approach, which we then generalize to solve
an important problem concerning matching in bipartite graphs.

7.10.1 Perfect Matching in Very Dense Graphs

In this example, we consider a very restricted case of the perfect matching problem. Let
G =(V, E) be an undirected graph such that |V | =2n and the degree of each vertex is at
least n. We present an algorithm to find a perfect matching in such graphs. As a
corollary, we show that, under these conditions, a perfect matching always exists.

We use induction on the size m of the matching. The base case, m =1, is handled
by taking any arbitrary edge as a matching of size one. We will show that we can extend
any matching that is not perfect either by adding another edge or by replacing an existing
edge with two new edges. In either case, the size of the matching is increased, and the
result follows.

Consider a matching M in G with m edges such that m <n. We first check all the
edges not in M to see whether any of them can be added to M. If we find such an edge,
then we are done. Otherwise, M is a maximal matching. Since M is not perfect, there are
at least two nonadjacent vertices, v, and v,, that do not belong to M. These two vertices
have at least 2n distinct edges coming out of them. All of these edges lead to vertices
that are covered by M, since otherwise such an edge could be added to M. Since the
number of edges in M is <n and there are 2n edges from v, and v, adjacent to them, at
least one edge from M — say (u,u,) — is adjacent to three edges from v, and v,.
Assume, without loss of generality, that those three edges are (u,v,), (4}, v2), and
(u-,v,) (see Fig. 7.36(a)). It is easy to see that, by removing the edge (u,, u,) from M

. It15 interesting 0 note thap#i€ problemof -
nécted graph-contains an n-leng/tb/emie:sﬁll/

o e e R B T i e, St e e i

e i e e o S 3

S
e R Ll e s i 1 5

[

7.10 Matching 235

Y

i U i iH

(a) (h)

Figure 7.36 Extending a matching.

and adding the two edges (u,.v,), and (15, v), we get a larger matching (Fig. 7.36(b)).

We leave the implementation of this algorithm as an exercise (7.21). This
algorithm is another example of a greedy approach. At most three edges were involved
in each step in the extension of one matching to a larger one. This was sufficient in this
case, but. in general, finding a good matching is more difficult. A choice of one edge
may affect choices of other edges far away in the graph. Next. we show how to
generalize this approach to other matching problems.

7.10.2 Bipartite Matching

Let G =(V, E, U) be a bipartite graph, such that V and U are two disjoint sets of vertices,
and E is a set of edges connecting vertices from V to vertices in U.

The Problem Find a maximum-cardinality matching in a bipartite
graph G.

We can formulate this problem in terms of real matching: V is a set of girls. U 1s a set of
boys, and E is a set of ‘‘possible’’ pairings; we want to match boys to girls so as to
maximize the number of matched boys and girls.

A straightforward approach is to try to match according to some strategy until no
more matches are possible, in the hope that the strategy will guarantee optimality, or at
least come close. We can try different strategies. For example, we can try a greedy
approach by first matching the vertices with small degrees, hoping that the other vertices
will be more likely to have unmatched partners later on. (In other words, first match the
boys that are the most difficult to match, and worry about the rest later.) Instead of trying
to analyze such strategies (which is hard), we try the approach used in the previous
problem. Suppose that we start with a maximal matching, which is not necessarily a
maximum matching. Can we somehow. improve it? Consider Fig. 7.37(a), in which the

236 Graph Algorithms

matching is depicted by bold lines. It is clear that we can improve the matching by
replacing the edge 2A with the edges /A and 2B. This is similar to the transformation we
applied in the previous problem. But we are not restricted to replacing one edge with two
edges. If we find a similar situation where k edges can be replaced by k +1 edges. then
we have an improvement. For example, we can improve the matching further by
replacing the edges 3D and 4E with the edges 3C, 4D, and 5SE (Fig. 7.37(b)).

Let's study these transformations. Our goal is to add more matched vertices. We
start with an unmatched vertex v and try to find a match for it. If we already have a
maximal matching, then all of v’s neighbors are already matched, so we must try to break
up a match. We choose another vertex u, adjacent to v, which was previously matched
to, say, w. We match v to u and break up the match between u and w. We now have to
find a match for w. If w is connected to an unmatched vertex, then we are done (this was
the first case above); if not, we can continue this way by breaking matches and trying
rematches. To translate this attempt into an algorithm, we have to do two things. First,
we have to make sure that this procedure terminates, and second, we have to show that, if
there is an improvement, then this procedure will find it. First, we formalize this idea.

An alternating path P for a given matching M is a path from a vertex vin V to a
vertex u in U, both of which are unmatched in M, such that the edges of P are
alternatively in E —M and in M. That is, the first edge (v, w) of P does not belong to M
(since v does not belong to M), the second edge (w, x) belongs to M, and so on, until the
last edge of P, (z, u), which does not belong to M. Notice that alternating paths are
exactly what we used already to improve a matching. The number of edges in P must be
odd since P starts in V and ends in U. Furthermore, there is exactly one more edge of P
in E —M than there is in M. Therefore, if we replace all the edges of P that belong to M
by the edges that do not belong to M, we get another matching with one more edge. For
example, the first alternating path we used to improve the matching in Fig. 7.37(a) was
(1A, A2, 2B), which was used to replace the edge A2 with the edges /A and 2B; the
second alternating path was (C3, 3D, D4, 4E, ES), which was used to replace the edges
3D and 4E with the edges C3, D4, and ES.

1 5

2 3 4

|

|

A B C D E
(a) (b)

Figure 7.37 Extending a bipartite matching.

6 1 2 3 4 5 6
| MW
F A B C D E F

7.10 Matching 237

It should be clear now that, if there is an alternating path for a given matching M.
then M is not maximum. [t turns out that the opposite is also true.

O Alternating-Path Theorem
A matching is maximum if and onlv if it has no alternating paths. O

This claim will be proved, in the context of a more general theorem, in the next section.

The alternating path theorem immediately suggests an algorithm, because any
matching that is not maximum has an alternating path and any alternating path can extend
a matching. We start with the greedy algorithm, adding as many edges to the matching
as possible, until we get a maximal matching. We then search for an alternating path,
and modify the matching accordingly until no more alternating paths can be found. The
resulting matching is maximum. Since each alternating path extends a matching by one
edge and there are at most n/2 edges in any matching (where n is the number of vertices),
the number of iterations is at most n/2. The only remaining problem is how to find
alternating paths. We solve this problem as follows. We transform the undirected graph
G to a directed graph G’ by directing the edges in M to point from U to V and directing
the edges not in M to point from V to U. Figure 7.38(a) shows the matching obtained for
the graph in Fig. 7.37(a), and Fig. 7.38(b) shows the directed graph G’. An alternating
path corresponds exactly to a directed path from an unmatched vertex in V to an
unmatched vertex in U. Such a directed path can be found by any graph-search
procedure, for example, DFS. The complexity of a search is O (|V | + |E |); hence, the
complexity of the algorithm is O (|V | (|V |+ |E |)).

An Improvement

Since a search can traverse the whole graph in the same worst-case running time that it
traverses one path, we might as well try to find several alternating paths with one search.
We have to make sure, however, that these paths do not modify one another. One way to
guarantee the independence of such alternating paths is to restrict them to be vertex

Figure 7.38 Finding alternating paths.

238 Graph Algorithms

disjoint. If the paths are vertex disjoint, they modify different vertices, so they can be
applied concurrently. The new improved algorithm for finding alternating paths is the
following. First, we perform BES in G’ from the set of all unmatched vertices in V, level
by level. until a level in which unmatched vertices in U are found. Then, we extract from
the graph induced by the BFS a maximal set of vertex disjoint paths in G” (which are
alternating paths in G). This is done by finding any path, removing its vertices, finding
another path, removing its vertices, and so on. (The result is not a maximum set, but
merely a maximal set.) We choose a maximal set in order to maximize the number of
edges added to the matching with one search (each vertex-disjoint alternating path adds
one edge to the matching). Finally, we modify the matching using this set of alternating
paths. This process is repeated until no more alternating paths can be found (i.e., the new
directed graph G’ disconnects the unmatched vertices in V from the unmatched vertices
in U).

Complexity It turns out that the number of iterations of the improved algorithm is
O(N|V]) in the worst case. We omit the proof, which is due to Hopcroft and Karp
[1973]. The overall worst-case running time is thus O ((|V |+ EDV|VD.

The/problem of nepwork-flows is a basic problem inémph theory and binatorial
timization. It Was been studied extensively for the last 3’\5‘)4 ars, and many algetithms

) ! res have been-developed for it. It-has many %z?ﬁagons and extensions.

/ Furtherrriopé'./ many seerpi‘ﬁygly unrelated - problems can be posed~as network-flow

probler}}s’./ The basic yafiation of the network>flow problem is defined as~follows. Let

G=(.E) be a digeCted graph with t " distingished verticgs, s (the soitrce) with

indegree 0, and t«the sink) with outdegé:) 0. Each edgé e in E'has an associated posjtive

weight ¢ (e), /%{lled the cajjaqjty of ¢. The capacity measuges.the amount of flow that\é"anﬂ
pass throu_gﬁ an edge. We call fuch a graph a netwopl(; For ‘sqnvenience we assign a
capacity of 0 to nonexisting gé‘s‘;'u.‘,,ﬁ{\\ flow is a fupéﬁon f onM of the network

that/szitisﬁes the following #vo conditid’mgi ~

~ -

P ~ f"d \
V' 0<f(e)<c(e): The flow through amgdge cannot exceed the /QﬁpaCit}T”"K
& A -

Vi that edge. . -
/2. For all vc—,V— {s,t}, Zf(u, W= me The total/flow entering a -
u / w \\

. A .. . ;"‘f}
vertex is equal to the total gﬂw exiting this vertex (Wor the source a
sink). P e

r. The problem is to m;n/(imize this flow. (If /,C/apacities are real nyfnbers, then it is a0t
even clear thatmaximum flows exist: we will’show~that they inde€d always exist

way to visualiz:)th}pgblem is to think ofthe network a3 netfvork of water pi

goal is to push as much witer through the pipes as possible.”If too much wa{gr} is pushed
to the wrong area, the pipes will Burst.

D bl s sl

