
7
Searching Strings by Prefix

7.1 Array of string pointers . 7-1
Contiguous allocation of strings • Front Coding

7.2 Interpolation search . 7-6
7.3 Locality-preserving front coding . 7-8
7.4 Compacted Trie . 7-10
7.5 Patricia Trie . 7-12
7.6 Managing Huge Dictionaries∞ . 7-15

String B-Tree • Packing Trees on Disk

This problem is experiencing renewed interest in the algorithmic community because of new appli-

cations spurring from Web search-engines. Think to the auto-completion feature currently offered

by mayor search engines Google, Bing and Yahoo, in their search bars: It is a prefix search executed

on-the-fly over millions of strings, using the query pattern typed by the user as the string to search.

The dictionary typically consists of the most recent and the most frequent queries issued by other

users. This problem is made challenging by the size of the dictionary and by the time constraints

imposed by the patience of the users. In this chapter we will describe many different solutions to

this problem of increasing sophistication and efficiency both in time, space and I/O complexities.

The prefix-search problem. Given a dictionary D consisting of n strings of total length

N, drawn from an alphabet of size σ, the problem consists of preprocessing D in order to

retrieve (or just count) the strings of D that have P as a prefix.

We mention two other typical string queries which are the exact search and the substring search

within the dictionary strings inD. The former is best addressed via hashing because of its simplicity

and practical speed; Chapter ?? will detail several hashing solutions. The latter problem is more

sophisticated and finds application in computational genomics and asian search engines, just to cite

a few. It consists of finding all positions where the query-pattern P occurs as a substring of the

dictionary strings. Surprisingly enough, it does exist a simple algorithmic reduction from substring

search to prefix search over the set of all suffixes of the dictionary strings. This reduction will

be commented in Chapter 8 where the Suffix Array and the Suffix Tree data structures will be

introduced. As a result, we can conclude that the prefix search is the backbone of other important

search problems on strings, so the data structures introduced in this chapter offer applications which

go far beyond the simple ones discussed below.

7.1 Array of string pointers

We start with a simple, common solution to the prefix-search problem which consists of an array

of pointers to strings stored in arbitrary locations on disk. Let us call A[1, n] the array of pointers,

c© Paolo Ferragina, 2009-2014 7-1

7-2 Paolo Ferragina

which are indirectly sorted according to the strings pointed to by its entries. We assume that each

pointer takes w bytes of memory, typically 4 bytes (32 bits) or 8 bytes (64 bits). Several other

representations of pointers are possible, as e.g. variable-length representations, but this discussion

is deferred to Chapter 9, where we will deal with the efficient encoding of integers.
Figure 7.1 provides a running example in which the dictionary strings are stored in an array S ,

according to an arbitrary order.

FIGURE 7.1: The array S of strings and the array A of (indirectly) sorted pointers to S ’s strings.

There are two crucial properties that the (sorted) array A satisfies:

• all dictionary strings prefixed by P occur contiguously if lexicographically sorted. So

their pointers occupy a subarray, say A[l, r], which may be possibly empty if P does not

prefix any dictionary string.

• the string P is lexicographically located beyween A[l − 1] and A[l].

Since the prefix search returns either the number of dictionary strings prefixed by P, hence the

value r − l + 1, or visualizes these strings, the key problem is to identify the two extremes l and r

efficiently. To this aim, we reduce the prefix search problem to the lexicographic search of a pattern

Q in D: namely, the search of the lexicographic position of Q among D’s strings. The formation of

Q is simple: Q is either the pattern P or the pattern P#, where # is larger than any other alphabet

character. It is not difficult to convince yourself that Q = P will precede the string A[l] (see above),

whereas Q = P# will follow the string A[r]. This means actually that two lexicographic searches

for patterns of length no more than p + 1 are enough to solve the prefix-search problem.
The lexicographic search can be implemented by means of an (indirect) binary search over the

array A. It consists of O(log n) steps, each one requiring a string comparison between Q and the

string pointed by the entry tested in A. The comparison is lexicographic and thus takes O(p) time

and O(p/B) I/Os, because it may require in the worst case the scan of all Θ(p) characters of Q.

The poor time and I/O-complexities derive from the indirection, which forces no locality in the

memory/string accesses of the binary search. The inefficiency is even more evident if we wish to

retrieve all nocc strings prefixed by P, and not just count them. After that the range A[l, r] has been

identified, each string visualization elicits at least one I/O because contiguity in A does not imply

contiguity of the pointed strings in S .

THEOREM 7.1 The complexity of a prefix search over the array of string pointers is O(p log n)

time and O(
p

B
log n) I/Os, the total space is N + (1 + w)n bytes. Retrieving the nocc strings prefixed

by P needs Ω(nocc) I/Os.

Proof Time and I/O complexities derive from the previous observations. For the space occu-

Searching Strings by Prefix 7-3

pancy, A needs n pointers, each taking a memory word w, and all dictionary strings occupy N bytes

plus one-byte delimiter for each of them (commonly \0 in C).

The bound Ω(nocc) may be a major bottleneck if the number of returned strings is large, as it

typically occurs in queries that use the prefix search as a preliminary step to select a candidate set of

answers that have then to be refined via a proper post-filtering process. An example is the solution to

the problem of searching with wild-cards which involves the presence in P of many special symbols

*. The wild-card * matches any substring. In this case if P = α∗β∗· · · , where α, β, . . . are un-empty

strings, then we can implement the wild-card search by first performing a prefix-search for α in D
and then checking brute-forcedly whether P matches the returned strings given the presence of the

wild-cards. Of course this approach may be very expensive, especially when α is not a selective

prefix and thus many dictionary strings are returned as candidate matches. Nevertheless this puts

in evidence how much slow may be in a disk environment a wild-card query if solved with a trivial

approach.

7.1.1 Contiguous allocation of strings

A simple trick to circumvent some of the previous limitations is to store the dictionary strings sorted

lexicographically and contiguously on disk. This way (pointers) contiguity in A reflects into (string)

contiguity in S . This has two main advantages:

• when the binary search is confined to few strings, they will be closely stored both in A

and S , so probably they have been buffered by the system in internal memory (speed);

• some compression can be applied to contiguous strings in S , because they typically share

some prefix (space).

Given that S is stored on disk, we can deploy the first observation by blocking strings into groups

of B characters each and then store a pointer to the first string of each group in A. The sampled

strings are denoted by DB ⊆ D, and their number nB is upper bounded by N
B

because we pick at

most one string per block. Since A has been squeezed to index at most nB ≤ n strings, the search

over A must be changed in order to reflect the two-level structure given by the array A and the blocks

of strings in S . So the idea is to decompose the lexicographic search for Q in a two-stages process:

in the first stage, we search for the lexicographic position of Q within the sampled strings of DB; in

the second stage, this position is deployed to identify the block of strings where the lexicographic

position of Q lies in, and then the strings of this block are scanned and compared with Q for prefix

match. We recall that, in order to implement the prefix search, we have to repeat the above process

for the two strings P and P#, so we have proved the following:

THEOREM 7.2 Prefix search over D takes O(
p

B
log N

B
) I/Os. Retrieving the strings prefixed by

P needs
Nocc

B
I/Os, where Nocc is their length. The total space is N + (1 + w)nB bytes.

Proof Once the block of strings A[i, j] prefixed by P has been identified, we can report all of

them in O(Nocc

B
) I/Os; scanning the contiguous portion of S that contains those strings. The space

occupancy comes from the observation that pointers are stored only for the nB sampled strings.

Typically strings are shorter than B, so N
B
≤ n, hence this solution is faster than the previous one,

in addition it can be effectively combined with the technique called Front-Coding compression to

further lowering the space and I/O-complexities.

7-4 Paolo Ferragina

7.1.2 Front Coding

Given a sequence of sorted strings is probable that adjacent strings share a common prefix. If ` is

the number of shared characters, then we can substitute them with a proper variable-length binary

encoding of ` thus saving some bits with respect to the classic fixed-size encoding based on 4- or

8-bytes. A following chapter will detail some of those encoders, here we introduce a simple one to

satisfy the curiosity of the reader. The encoder pads the binary representation of ` with 0 until an

integer number of bytes is used. The first two bits of the padding (if any, otherwise one more byte is

added), are used to encode the number of bytes used for the encoding.1 This encoding is prefix-free

and thus guarantees unique decoding properties; its byte-alignment also ensures speed in current

processors.

More efficient encoders are available, anyway this simple proposal ensures to replace the initial

Θ(` log2 σ) bits, representing ` characters of the shared prefix, with O(log `) bits of the integer

encoding, so resulting advantageous in space. Obviously its final impact depends on the amount of

shared characters which, in the case of a dictionary of URLs, can be up to 70%.

Front coding is a delta-compression algorithm, which can be easily defined in an incremental

way: given a sequence of strings (s1, . . . , sn), it encodes the string si using the couple (`i, ŝi), where

`i is the length of the longest common prefix between si and its predecessor si−1 (0 if i = 1) and

ŝi = si[`i + 1, |si|] is the “remaining suffix” of the string si. As an example consider the dictionary

D = { alcatraz, alcool, alcyone, anacleto, ananas, aster, astral, astronomy };
its front-coded representation is (0, alcatraz), (3, ool), (3, yone), (1, nacleto), (3, nas), (1, ster),

(3, ral), (4, astronomy).

Decoding a string a pair (`, ŝ) is symmetric, we have to copy ` characters from the previous string

in the sequence and then append the remaining suffix ŝ. This takes O(|s|) optimal time and O(1+ |s|
B

)

I/Os, provided that the preceding string is available. In general, the reconstruction of a string si may

require to scan back the input sequence up to the first string s1, which is available in its entirety. So

we may possibly need to scan (ŝ1, `1), . . . , (ŝi−1, `i−1) and reconstruct s1, . . . , si−1 in order to decode

(`i, ŝi). Therefore, the time cost to decode si might be much higher than the optimal O(|si|) cost.2

To overcome this drawback, it is typical to apply front-coding to block of strings thus resorting

the two-level scheme we introduced in the previous subsection. The idea is to restart the front-

coding at the beginning of every block, so the first string of each block is stored uncompressed.

This has two immediate advantages onto the prefix-search problem: (1) these uncompressed strings

are the ones participating in the binary-search process and thus they do not need to be decompressed

when compared with Q; (2) each block is compressed individually and thus the scan of its strings

for searching Q can be combined with the decompression of these strings without incurring in any

slowdown. We call this storage scheme “Front-coding with bucketing”, and shortly denote it by

FCB. Figure 7.2 provides a running example in which the strings “alcatraz”, “alcyone”, “ananas”,

and “astral” are stored explicitly because they are the first of each block.

As a positive side-effect, this approach reduces the number of sampled strings because it can

potentially increase the number of strings stuffed in one disk page: we start from s1 and we front-

compress the strings of D in order; whenever the compression of a string si overflows the current

block, it starts a new block where it is stored uncompressed. The number of sampled strings lowers

from about N
B

to about FCB(D)
B

strings, where FCB(D) is the space required by FCB to store all the

dictionary strings. This impacts positively onto the number of I/Os needed for a prefix search in a

obvious manner, given that we execute a binary search over the sampled strings. However space

1We are assuming that ` can be binary encoded in 30 bits, namely ` < 230.
2A smarter solution would be to reconstruct only the first ` characters of the previous strings s1, s2, . . . , si−1 because

these are the ones interesting for si’s reconstruction.

Searching Strings by Prefix 7-5

FIGURE 7.2: Two-level indexing of the set of strings D = { alcatraz, alcool, alcyone,
anacleto, ananas, aster, astral, astronomy} are compressed with FCB, where we as-

sumed that each page is able to store two strings.

occupancy increases with respect to FC(D) because FCB(D) forces the first string of each block to

be stored uncompressed; nonetheless, we expect that this increase is negligible because B � 1.

THEOREM 7.3 Prefix search overD takes O(
p

B
log FCB(D)

B
I/Os. Retrieving the strings prefixed

by P needs O(FCB(Docc)
B

) I/Os, where Docc ⊆ D is the set of strings in the answer set.

So, in general, compressing the strings is a good idea because it lowers the space required for stor-

ing the strings, and it lowers the number of I/Os. However we must observe that FC-compression

might increase the time complexity of the scan of a block from O(B) to O(B2) because of the de-

compression of that block. In fact, take the sequence of strings (a, aa, aaa, . . .) which is front coded

as (0, a), (1, a), (2, a), (3, a), In one disk page we can stuff Θ(B) such pairs, which represent

Θ(B) strings whose total length is
∑B

i=0 Θ(i) = Θ(B2) characters. Despite these pathological cases,

in practice the space reduction consists of a constant factor so the time increase incurred by a block

scan is negligible.

Overall this approach introduces a time/space trade-off driven by the block size B. As far as

time is concerned we can observe that the longer is B, the better is the compression ratio but the

slower is a prefix search because of a longer scan-phase; conversely, the shorter is B, the faster is

the scan-phase but the worse is the compression ratio because of a larger number of fully-copied

strings. As far as space is concerned, the longer is B, the smaller is the number of copied strings and

thus the smaller is the storage space in internal memory needed to index their pointers; conversely,

the shorter is B, the larger is the number of pointers thus making probably impossible to fit them in

internal memory.

In order to overcome this trade-off we decouple search and compression issues as follows. We

notice that the proposed data structure consists of two levels: the “upper” level contains references

to the sampled strings DB, the “lower” level contains the strings themselves stored in a block-wise

fashion. The choice of the algorithms and data structures used in the two levels are “orthogonal” to

each other, and thus can be decided independently. It goes without saying that this 2-level scheme

for searching-and-storing a dictionary of strings is suitable to be used in a hierarchy of two memory

levels, such as the cache and the internal memory. This is typical in Web search, where D is the

dictionary of terms to be searched by users and disk-accesses have to be avoided in order to support

each search over D in few millisecs.

In the next three sections we propose three improvements to the 2-level solution above, two of

them regard the first level of the sampled strings, one concerns with the compressed storage of

7-6 Paolo Ferragina

all dictionary strings. Actually, these proposals have an interest in themselves and thus the reader

should not confine their use to the one described in these notes.

7.2 Interpolation search

Until now, we have used binary search over the array A of string pointers. But if DB satisfies some

statistical properties, there are searching schemes which support faster searches, such as the well

known interpolation search. In what follows we describe a variant of classic interpolation search

which offers some interesting additional properties (details in [3]). For simplicity of presentation

we describe the algorithm in terms of a dictionary of integers, knowing that if items are strings, we

can still look at them as integers in base σ. So for the prefix-search problem we can pad logically

all strings at their end, thus getting to the same length, by using a character that we assume to be

smaller than any other alphabet character. Lexicographic order among strings is turned in classic

ordering of integers, so that the search for P and P# can be turned into a search for two proper

integers.

So without loss of generality, assume that DB is an array of integers X[1,m] = x1 . . . xm with

xi < xi+1 and m = nB. We evenly subdivide the range [x1, xm] into m bins B1, . . . , Bm, each of

them representing a contiguous range of integers having length b =
xm−x1+1

m
. Specifically Bi =

[x1 + (i − 1)b, x1 + ib). In order to guarantee the constant-time access to these bins we need to keep

an additional array, say I[1,m], such that I[i] points to the first and last item of Bi in X.

Figure 7.3 reports an example where m = 12, x1 = 1 and x12 = 36 and thus the bin length is

b = 3.

FIGURE 7.3: An example of use of interpolation search over an itemset of size 12. The bins are

separated by bars; some bins, such as B4 and B8, are empty.

The algorithm searches for an integer y in two steps. In the first step it calculates j, the index

of the candidate bin B j where y could occur: j = b y−x1

b
c + 1. In the second step, it determines

via I[j] the sub-array of X which stores B j and it does a binary search over it for y, thus taking

O(log |Bi|) = O(log b) time. The value of b depends on the magnitude of the integers present in the

indexed dictionary. Surprisingly enough, we can get a better bound which takes into account the

distribution of the integers of X in the range [x1, xm].

THEOREM 7.4 We can search for an integer in a dictionary of size m taking O(log∆) time

in the worst case, where ∆ is the ratio between the maximum and the minimum gap between two

consecutive integers of the input dictionary. The extra space is O(m).

Proof Correctness is immediate. For the time complexity, we observe that the maximum of a

series of integers is at least as large as their mean. Here we take as those integers the gaps xi − xi−1,

and write:

Searching Strings by Prefix 7-7

max
i=2...m

(xi − xi−1) ≥
∑m

i=2 xi − xi−1

m − 1
≥ xm − x1 + 1

m
= b (7.1)

The last inequality comes from the following arithmetic property: a′

a′′ ≥
a′+1
a′′+1

whenever a′ ≥ a′′,
which can be easily proved by solving it.

Another useful observation concerns with the maximum number of integers that can belong to

any bin. Since integers of X are spaced apart by s = mini=2,...,m(xi − xi−1) units, every bin contains

no more than b/s integers.

Recalling the definition of ∆, and the two previous observations, we can thus write:

|Bi| ≤
b

s
≤ maxi=2...m(xi − xi−1)

mini=2,...,m(xi − xi−1)
= ∆

.

So the theorem follows due to the binary search performed within Bi. Space occupancy is optimal

and equal to O(m) because of the arrays X[1,m] and I[1,m].

We note the following interesting properties of the proposed algorithm:

• The algorithm is oblivious to the value of ∆, although its complexity can be written in

terms of this value.

• The worst-case search time is O(log m), when the whole X ends up in a single bin, and

thus the precise bound should be O(log min{∆,m}). So it cannot be worst than the binary

search.

• The space occupancy is O(m) which is optimal asymptotically; however, it has to be

notice that binary search is in-place, whereas interpolation search needs the extra array

I[1,m].

• The algorithm reproduces the O(log log m) time performance of classic interpolation

search on data drawn independently from the uniform distribution, as shown in the fol-

lowing lemma:

LEMMA 7.1 If the m integers are drawn uniformly at random, the proposed algorithm takes

O(lg lg m) time with high probability.

Proof Say integers are uniformly distributed over [0,U]. As in bucket sort, every bucket Bi

contains O(1) integers on average. But we wish to obtain bounds with high probability. So let us

assume to partition the integers in r = m
2 log m

ranges. We have the probability 1/r that an integer

belongs to a given range. The probability that a given range does not contain any integer is (1− 1
r
)m =

(1 − 2 log m

m
)m = O(e−2 log m) = O(1/m2). So the probability that at least one range remains empty

is smaller than O(1/m); or, equivalently, with high probability every range contains at least one

integer.

If this occurs with high probability, the maximum distance between two adjacent integers must

be smaller than twice the range’s length: namely maxi(xi − xi−1) ≤ 2U/r = O(
U log m

m
).

Let us now take r = Θ(m log m) ranges, similarly as above we can prove that every adjacent pair

of ranges contains at most one integer with high probability. Therefore if a range contains an integer,

its two adjacent ranges (on the left and on the right) are empty with high probability. Thus we can

lower bound the minimum gap with the length of one range: mini(xi − xi−1) ≥ U/r = Θ(N
m log m

).

Taking the ratio between the minimum and the maximum gap, we get the desired ∆ = O(log2 m).

7-8 Paolo Ferragina

If this algorithm is applied to our string context, and strings are uniformly distributed, the number

of I/Os required to prefix-search P in the dictionary D is O(
p

B
log log N

B
). This is an exponential

reduction in the search time performance according to the dictionary length.

7.3 Locality-preserving front coding

This is an elegant variant of front coding which provides a controlled trade-off between space oc-

cupancy and time to decode one string [2]. The key idea is simple, and thus easily implementable,

but proving its guaranteed bounds is challenging. We can state the underlying algorithmic idea as

follows: a string is front-coded only if its decoding time is proportional to its length, otherwise it

is written uncompressed. The outcome in time complexity is clear: we compress only if decoding

is optimal. But what appears surprising is that, even if we concentrated on the time-optimality of

decoding, its “constant of proportionality” controls also the space occupancy of the compressed

strings. It seems magic, indeed it is!

FIGURE 7.4: The two cases occurring in LPFC. Red rectangles are copied strings, green rectangles

are front-coded strings.

Formally, suppose that we have front-coded the first i−1 strings (s1, . . . , si−1) into the compressed

sequence F = (0, ŝ1), (`2, ŝ2), . . . , (`i−1, ŝi−1). We want to compress si so we scan backward at most

c|si| characters of F to check whether these characters are enough to reconstruct si. This actually

means that an uncompressed string is included in those characters, because we have available the

first character for si. If so, we front-compress si into (`i, ŝi); otherwise si is copied uncompressed

in F outputting the pair (0, si). The key difficulty here is to show that the strings which are left

uncompressed, and were instead compressed by the classic front-coding scheme, have a length that

can be controlled by means of the parameter c as the following theorem shows:

THEOREM 7.5 Locality-preserving front coding takes at most (1 + ε)FC(D) space, and sup-

ports the decoding of any dictionary string si in O(|si |
εB

) optimal I/Os.

Proof We call any uncompressed string s, a copied string, and denote the c|s| characters explored

during the backward check as the left extent of s. Notice that if s is a copied string, there can be

no copied string preceding s and beginning in its left extent (otherwise it would have been front-

coded). Moreover, the copied string that precedes S may end within s’s left extent. For the sake of

presentation we call FC-characters the ones belonging to the output suffix ŝ of a front-coded string

s.

Clearly the space occupied by the front-coded strings is upper bounded by FC(D). We wish to

show that the space occupied by the copied strings, which were possibly compressed by the classic

Searching Strings by Prefix 7-9

front-coding but are left uncompressed here, sums up to ε FC(D), where ε is a parameter depending

on c and to be determined below.

We consider two cases for the copied strings depending on the amount of FC-characters that lie

between two consecutive occurrences of them. The first case is called uncrowded and occurs when

that number of FC-characters is at least c|s|
2

; the second case is called crowded, and occurs when

that number of FC-characters is at most c|s|
2

. Figure 7.5 provides an example which clearly shows

that if the copied string s is crowded then |s′| ≥ c|s|/2. In fact, s′ starts before the left extent of

s but ends within the last c|s|/2 characters of that extent. Since the extent is c|s| characters long,

the above observation follows. If s is uncrowded, then it is preceded by at least c|s|/2 characters of

front-coded strings (FC-characters).

FIGURE 7.5: The two cases occurring in LPFC. The green rectangles denote the front-coded strings,

and thus their FC-characters, the red rectangles denote the two consecutive copied strings.

We are now ready to bound the total length of copied strings. We partition them into chains

composed by one uncrowded copied-string followed by the maximal sequence of crowded copied-

strings. In what follows we prove that the total number of characters in each chain is propor-

tional to the length of its first copied-string, namely the uncrowded one. Precisely, consider the

chain w1w2 · · ·wx of consecutive copied strings, where w1 is uncrowded and the following wis are

crowded. Take any crowded wi. By the observation above, we have that |wi−1| ≥ c|wi|/2 or, equiv-

alently, |wi| ≤ 2|wi−1|/c = · · · = (2/c)i−1|w1|. So if c > 2 the crowded copied strings shrink by a

constant factor. We have
∑

i |wi| = |w1|+
∑

i>1 |wi| ≤ |w1|+
∑

i>1(2/c)i−1|w1| = |w1|
∑

i≥0(2/c)i <
c|w1 |
c−2

.

Finally, since w1 is uncrowded, it is preceded by at least c|w1|/2 FC-characters (see above). The

total number of these FC-characters is bounded by FC(D), so we can upper bound the total length

of the uncrowded strings by (2/c)FC(D). By plugging this into the previous bound on the total

length of the chains, we get c
c−2

× 2FC(D)
c
= 2

c−2
FC(D). The theorem follows by setting ε = 2

c−2
.

So locality-preserving front coding (shortly LPFC) is a compressed storage scheme for strings

that can substitute their plain storage without introducing any asymptotic slowdown in the accesses

to the compressed strings. In this sense it can be considered as a sort of space booster for any string

indexing technique.

The two-level indexing data-structure described in the previous sections can benefit of LPFC as

follows. We can use A to point to the copied strings of LPFC (which are uncompressed). This way

the buckets delimited by these strings have variable length, but any string can be decompressed in

optimal time and I/Os (cfr. previous observation about the Θ(B2) size of a bucket in classic FCB).

So the bounds are the ones stated in Theorem 7.3 but without the pathological cases commented

next to its proof. This way the scanning of a bucket, identified by the binary-search step takes O(1)

I/O and time proportional to the returned strings, and hence it is optimal.

The remaining question is therefore how to speed-up the search over the array A. We foresee

two main limitations: (i) the binary-search step has time complexity depending on N or n, (ii) if

7-10 Paolo Ferragina

the pointed strings do not fit within the internal-memory space allocated by the programmer, or

available in cache, then the binary-search step incurs many I/Os, and this might be expensive. In the

next sections we propose a trie-based approach that takes full-advantage of LPFC by overcoming

these limitations, resulting efficient in time, I/Os and space.

7.4 Compacted Trie

We already talked about tries in Chapter 6, here we dig further into their properties as efficient

data structures for string searching. In our context, the trie is used for the indexing of the sampled

strings DB in internal memory. This induces a speed up in the first stage of the prefix search from

O(log(N/B)) to O(p) time, thus resulting surprisingly independent of the dictionary size. The reason

is the power of the RAM model which allows to manage and address memory-cells of O(log N) bits

in constant time.

FIGURE 7.6: An example of uncompacted trie (a) and compacted trie (b) for n = 7 strings. The

integer showed in each internal node u denotes the length of the string spelled out by u. IN the

case of uncompacted tries they are useless because they correspond to u’s depth. Edge labels in

compacted tries are substrings of variable length but they can be represented in O(1) space with

triples of integers: e.g. on could be encoded as 〈6, 2, 3〉, since the 6-th string tons includes on from

position 2 to position 3.

A trie is a multi-way tree whose edges are labeled by characters of the indexed strings. An internal

node u is associated with a string s[u] which is indeed a prefix of a dictionary string. String s[u] is

obtained by concatenating the characters found on the downward path that connects the trie’s root

with the node u. A leaf is associated with a dictionary string. All leaves which descend from a node

Searching Strings by Prefix 7-11

u are prefixed by s[u]. The trie has n leaves and at most N nodes, one per string character.3 Figure

7.6 provides an illustrative example of a trie built over 6 strings. This form of trie is commonly

called uncompacted because it can have unary paths, such as the one leading to string inn.4

If we want to check if a string P prefixes some dictionary string, we have just to check if there is

a downward path spelling out P. All leaves descending from the reached node provide the correct

answer to our prefix search. So tries do not need the reduction to the lexicographic search operation,

introduced for the binary-search approach.

A big issue is how to efficiently find the “edge to follow” during the downward traversal of the

trie, because this impacts onto the overall efficiency of the pattern search. The efficiency of this step

hinges on a proper storage of the edges (and their labeling characters) outgoing from a node. The

simplest data structure that does the job is the linked list. Its space requirement is optimal, namely

proportional to the number of outgoing edges, but it incurs in a O(σ) cost per traversed node. The

result would be a prefix search taking O(p σ) time in the worst case, which is too much for large

alphabets. If we store the branching characters (and their edges) into a sorted array, then we could

binary search it taking O(logσ) time per node. A faster approach consists of using a full-sized array

of σ entries, the un-empty entries (namely the ones for which the pointer in not null) are the entries

corresponding to the existing branching characters. In this case the time to branch out of a node

is O(1) and thus O(p) time is the cost for searching the pattern Q. But the space occupancy of the

trie grows up to O(Nσ), which may be unacceptably high for large alphabets. The best approach

consists of resorting a perfect hash table, which stores just the existing branching characters and

their associated pointers. This guarantees O(1) branching time in the worst-case and optimal space

occupancy, thus combining the best of the two previous solutions. For details about perfect hashes

we refer the reader to Chapter ??.

THEOREM 7.6 The uncompacted trie solves the prefix-search problem in O(p + Nocc) time

and O(p + Nocc/B) I/Os. The trie consists of at most N nodes, exactly n leaves, and thus takes O(N)

space.

Proof Let u be the node such that s[u] = P. All strings descending from u are prefixed by P,

and they can be visualized by visiting the subtree rooted in u. The I/O-complexity of the traversal

is still O(p) because of the jumps among trie nodes. The retrieval of the leaves descending from

the node spelling Q takes optimal O(Nocc/B) I/Os because we can assume that trie leaves are stored

contiguously from left-to-right on disk. Notice that we have identified the strings (leaves) prefixed

by Q but, in order to display them, we still need to retrieve them.

A Trie can be wasteful in space if there are long strings with a short common prefix: this would

induce a significant number of unary nodes. We can save space by contracting the unary paths into

one single edge. This way edge labels become (possibly long) sub-strings rather than characters, and

the resulting trie is named compacted. Figure 7.7 (left) shows an example of compacted trie. It is

evident that each edge-label is a substring of a dictionary string, say s[i, j], so it can be represented

via a triple 〈s, i, j〉 (see also Figure 7.6). Given that each node is at least binary, the number of

internal nodes and edges is O(n). So the total space required by a compacted trie is O(n) too.

3We say ”at most” because some paths (prefixes) can be shared among several strings.
4The trie cannot index strings which are one the prefix of the other. In fact the former string would end up into an

internal node. To avoid this case, each string is extended with a special character which is not present in the alphabet and

is typically denoted by $.

7-12 Paolo Ferragina

Prefix searching is implemented similarly as done for uncompacted tries. The difference is that it

alternates character-branches out of internal nodes, and sub-string matches with edge labels. If the

edges spurring from the internal nodes are again implemented with perfect hast tables, we get:

THEOREM 7.7 The compacted trie solves the prefix-search problem in O(p) time and I/Os.

The retrieval of the prefixed strings takes O(Nocc/B) I/Os. The compacted trie consists of O(n) nodes,

and thus its storage takes O(n) space. It goes without saying that the trie needs also the storage of

the dictionary strings to resolve its edge labels, hence additional N space.

At this point an attentive reader can realize that the compacted trie can be used also to search

for the lexicographic position of a string Q among the indexed strings. It is enough to percolate

a downward path spelling Q as much as possible until a mismatch character is encountered. This

character can then be deployed to determine the lexicographic position of Q, depending on whether

the percolation stopped in the middle of an edge or in a trie node. So the compacted trie is an

interesting substitute for the array A in our two-level indexing structure and could be used to support

the search for the candidate bucket where the string Q occurs in, taking O(p) time in the worst case.

Since each traversed edge can induce one I/O, to fetch its labeling substring to be compared with the

corresponding one in Q, we point out that this approach is efficient if the trie and its indexed strings

can be fit in internal memory. Otherwise it presents two main drawbacks: the linear dependance of

the I/Os on the pattern length p, and the space dependance on the block-size B (influencing the the

sampling) and the length of the sampled strings.

The Patricia Trie solves the former problem, whereas its combination with the LPFC solves both

of them.

7.5 Patricia Trie

A Patricia Trie built on a string dictionary is a compacted Trie in which the edge labels consist

just of their initial single characters, and the internal nodes are labeled with integers denoting the

lengths of the associated strings. Figure 7.7 illustrates how to convert a Compacted Trie (left) into a

Patricia Trie (right).

Even if the Patricia Trie strips out some information from the Compacted Trie, it is still able

to support the search for the lexicographic position of a pattern P among a (sorted) sequence of

strings, with the significant advantage (discussed below) that this search needs to access only one

single string, and hence execute typically one I/O instead of the p I/Os potentially incurred by the

edge-resolution step in compacted tries. This algorithm is called blind search in the literature [4].

It is a little bit more complicated than the prefix-search in classic tries, because of the presence of

only one character per edge label, and in fact it consists of three stages:

• Trace a downward path in the Patricia Trie to locate a leaf l which points to an inter-

esting string of the indexed dictionary. This string does not necessarily identify P’s

lexicographic position in the dictionary (which is our goal), but it provides enough in-

formation to find that position in the second stage. The retrieval of the interesting leaf l

is done by traversing the Patricia Trie from the root and comparing the characters of P

with the single characters which label the traversed edges until either a leaf is reached

or no further branching is possible. In this last case, we choose l to be any descendant

leaf from the last traversed node.

• Compare P against the string pointed by leaf l, in order to determine their longest com-

mon prefix. Let ` be the length of this shared prefix, then it is possible to prove that (see

[4]) the leaf l stores one of the strings indexed by the Patricia Trie that shares the longest

Searching Strings by Prefix 7-13

FIGURE 7.7: An example of Compacted Trie and the corresponding Patricia Trie.

common prefix with P. Call s this pointed string. The length ` and the two mismatch

characters P[` + 1] and s[` + 1] are then used to find the lexicographic position of P

among the strings stored in the Patricia Trie.

• First the Patricia trie is traversed upward from l to determine the edge e = (u, v) where

the mismatch character s[` + 1] lies; this is easy because each node on the upward path

stores an integer that denotes the length of the corresponding prefix of s, so that we have

|s[u]| < ` ≤ |s[v]|. If s[` + 1] is a branching character (i.e. ` = |s[u]|), then we determine

the lexicographic position of P[` + 1] among the branching characters of node u. Say

this is the i-th child of u, the lexicographic position of P is therefore to the immediate

left of the subtree descending from this child. Otherwise (i.e. ` > |s[u]|), the character

s[` + 1] lies within e, so the lexicographic position of P is to the immediate right of the

subtree descending from e, if P[` + 1] > s[` + 1], otherwise it is to the immediate left of

that subtree.

A running example is illustrated in Figure 7.8.

In order to understand why the algorithm is correct, let us take the path spelling out the string

P[1, `]. We have two cases, either we reached an internal node u such that |s[u]| = ` or we are in

the middle of an edge (u, v), where |s[u]| < ` < |s[v]|. In the former case, all strings descending

from u are the ones in the dictionary which share ` characters with the pattern, and this is the lcp.

The correct lexicographic position therefore falls among them or is adjacent to them, and thus it

can be found by looking at the branching characters of the edges outgoing from the node u. This is

correctly done also by the blind search that surely stops at u, computes ` and finally determines the

correct position of P by comparing u’s branching characters against P[` + 1].

In the latter case the blind search reaches v by skipping the mismatch character on (u, v), and

possibly goes further down in the trie because of the possible match between branching characters

and further characters of P. Eventually a leaf descending from v is taken, and thus ` is computed

correctly given that all leaves descending from v share ` characters with P. So the backward traversal

7-14 Paolo Ferragina

FIGURE 7.8: An example of the first (left) and second (right) stages of the blind search for P in a

dictionary of 7 strings.

executed in the second stage of the Blind search reaches correctly the edge (u, v), which is above

the selected leaf. There we deploy the mismatch character which allows to choose the correct

lexicographic position of P which is either to the left of the leaves descending from v or to their

right. Indeed all those leaves share |s[v]| > ` characters, and thus P falls adjacent to them, either

to their left or to their right. The choice depends on the comparison between the two characters

P[` + 1] and s[v][` + 1].

The blind search has excellent performance:

THEOREM 7.8 A Patricia trie takes O(n) space, hence O(1) space per indexed string (in-

dependent, therefore, of its length). The blind search for a pattern P[1, p] requires O(p) time to

traverse the trie’s structure (downward and upward), and O(p/B) I/Os to compare the single string

(possibly residing on disk) identified by the blind search.

This theorem states that if n < M then we can index in internal memory the whole dictionary,

and thus build the Patricia trie over all dictionary strings and stuff it in the internal memory of our

computer. The dictionary strings are stored on disk. The prefix search for a pattern P takes in O(p)

time and O(p/B) I/Os. The total required space is the one needed to store the strings, and thus it is

O(N).

If we wish to compress the dictionary strings, then we need to resort front-coding. More precisely,

we combine the Patricia Trie and LPFC as follows. We fit in the internal memory the Patricia trie of

the dictionaryD, and store on disk the locality-preserving front coding of the dictionary strings. The

two traversals of the Patricia trie take O(p) time and no I/Os (Theorem 7.8), because use information

stored in the Patricia trie and thus available in internal memory. Conversely the computation of the

lcp takes O(|s|/B + p/B) I/Os, because it needs to decode from its LPFC-representation (Theorem

7.5) the string s selected by the blind search and it also needs to compare s against P to compute

Searching Strings by Prefix 7-15

their lcp. These information allow to identify the lexicographic position of P among the leaves of

the Patricia trie.

THEOREM 7.9 The data structure composed of the Patricia Trie as the index in internal

memory (“upper level”) and the LPFC for storing the strings on disk (“lower level”) requires O(n)

space in memory and O((1 + ε)FC(D)) space on disk. Furthermore, a prefix search for P requires

O(
p

B
+

|s|
Bε

) I/Os, where s is the “interesting string” determined in the first stage of the Blind search.

The retrieval of the prefixed strings takes O((1+ε)FC(Docc)
B

) I/Os, where Docc ⊆ D is the set of returned

strings.

In the case that n = Ω(M), we cannot index in the internal-memory Patricia trie the whole dic-

tionary, so we have to resort the bucketing strategy over the strings stored on disk and index in the

Patricia trie only a sample of them. If N/B = O(M) we can index in internal memory the first string

of every bucket and thus be able to prefix-search P within the bounds stated in Theorem 7.9, by

adding just one I/O due to the scanning of the bucket (i.e. disk page) containing the lexicographic

position of P. The previous condition can be rewritten as N = O(MB) which is pretty reasonable in

practice, given the current values of M ≈ 4Gb and B ≈ 32Kb, which make MB ≈ 128Tb.

7.6 Managing Huge Dictionaries∞

The final question we address in this lecture is: What if N = Ω(MB)? In this case the Patricia trie

is too big to be fit in the internal memory of our computer. We can think to store the trie on disk

without taking much care on the layout of its nodes among the disk pages. Unfortunately a pattern

search could take Ω(p) I/Os in the two traversals performed by the Blind search. Alternatively, we

could incrementally grow a root page and repeatedly add some node not already packed into that

page, where the choice of that node might be driven by various criteria that either depend on some

access probability or on the node’s depth. When the root page contains B nodes, it is written onto

disk and the algorithm recursively lays out the rest of the tree. Surprisingly enough, the obtained

packing is far from optimality of a factor Ω(
log B

log log B
), but it is surely within a factor O(log B) from

the optimal [1].

In what follows we describe two distinct optimal approaches to solve the prefix-search over dic-

tionaries of huge size: the first solution is based on a data structure, called the String B-Tree [4],

which boils down to a B-tree in which the routing table of each node is a Patricia tree; the second

solution consists of applying proper disk layouts of trees onto the Patricia trie built over the entire

dictionary.

7.6.1 String B-Tree

The key idea consists of dividing the big Patricia trie into a set of smaller Patricia tries, each fitting

into one disk page. And then linking together all of them in a B-Tree structure. Below we outline a

constructive definition of the String B-Tree, for details on this structure and the supported operations

we refer the interested reader to the cited literature.

The dictionary strings are stored on disk contiguously and ordered. The pointers to these strings

are partitioned into a set of smaller, equally sized chunks D1, . . . ,Dm, each including Θ(B) strings

independently of their length. This way, we can index each chunk Di with a Patricia Trie that fits

into one disk page and embed it into a leaf of the B-Tree. In order to search for P among those set

of nodes, we take from each partition Di its first and last (lexicographically speaking) strings si f

and sil, defining the set D1 =
{

s1 f , s1l, . . . , sm f , sml

}

.

7-16 Paolo Ferragina

Recall that the prefix search for P boils down to the lexicographic search of a pattern Q, properly

defined from P. If we search Q within D1, we can discover one of the following three cases:

1. Q falls before the first or after the last string of D, if Q < s1 f or Q > sml.

2. Q falls among the strings of some Di, and indeed it is si f < Q < sil. So the search is

continued in the Patricia trie that indexes Di;

3. Q falls between two chunks, say Di and Di+1, and indeed it is sil < Q < s(i+1) f . So

we found Q’s lexicographic position in the whole D, namely it is between these two

adjacent chunks.

In order to establish which of the three cases occurs, we need to search efficiently in D1 for the

lexicographic position of Q. Now, if D1 is small and can be fit in memory, we can build on it a

Patricia trie ad we are done. Otherwise we repeat the partition process on D1 to build a smaller

set D2, in which we sample, as before, two strings every B, so that |D2| = 2|D1 |
B

. We continue this

partitioning process for k steps, until it is |Dk | = O(B) and thus we can fit the Patricia trie built on

Dk within one disk page5.

We notice that each disk page gets an even number of strings when partitioning D1, . . . ,Dk, and

to each pair
(

si f , sil

)

we associate a pointer to the block of strings which they delimit in the lower

level of this partitioning process. The final result of the process is then a B-Tree over string pointers.

The arity of the tree is Θ(B), because we index Θ(B) strings in each single node. The nodes of the

String B-Tree are then stored on disk. The following Figure 7.9 provides an illustrative example for

a String B-tree built over 7 strings.

A (prefix) search for the string P in a String B-Tree is simply the traversal of the B-Tree, which

executes at each node a lexicographic search of the proper pattern Q in the Patricia trie of that node.

This search discovers one of the three cases mentioned above, in particular:

• case 1 can only happen on the root node;

• case 2 implies that we have to follow the node pointer associated to the identified parti-

tion.

• case 3 has found the lexicographic position of Q in the dictionary D, so the search in the

B-tree stops.

The I/O complexity of the data structure just defined is pretty good: since the arity of the B-Tree

is Θ(B), we have Θ(logB n) levels, so a search traverses Θ(logB n) nodes. Since on each node we

need to load the node’s page into memory and perform a Blind search over its Patricia trie, we pay

O(1 +
p

B
) I/Os, and thus O(

p

B
logB n) I/Os for the overall prefix search of P in the dictionary D.

THEOREM 7.10 A prefix search in the String B-Tree built over the dictionaryD takes O(
p

B
logB n+

Nocc

B
) I/Os, where Nocc is the total length of the dictionary strings which are prefixed by P. The data

structure occupies O(N
B

) disk pages and, indeed, strings are stored uncompressed on disk.

This result is good but not yet optimal. The issue that we have to resolve to reach optimality is

pattern rescanning: each time we do a Blind search, we compare Q and one of the strings stored

in the currently visited B-Tree node starting from their first character. However, as we go down

in the string B-tree we can capitalize on the characters of Q that we have already compared in the

upper levels of the B-tree, and thus avoid the rescanning of these characters during the subsequent

5Actually, we could stop as soon as
∣

∣

∣Dk
∣

∣

∣ = O(M), but we prefer the former to get a standard B-Tree structure.

Searching Strings by Prefix 7-17

FIGURE 7.9: An example of an String B-tree on built on the suffixes of the strings in D =

{’ace’, ’aid’, ’atlas’, ’atom’, ’attenuate’, ’by’, ’bye’, ’car’, ’cod’, ’dog’, ’fit’, ’lid’, ’patent’, ’sun’, ’zoo’}.
The strings are stored in the B-tree leaves by means of their logical pointers 56, 1, 35, 5, 10, . . .,

31. Notice that strings are not sorted on disk, nevertheless sorting improves their I/O-scanning, and

indeed our theorems assume an ordered D on disk.

lcp-computations. So if f characters have been already matched in Q during some previous lcp-

computation, the next lcp-computation can compare Q with a dictionary string starting from their

(f + 1)-th character. The pro of this approach is that I/Os turn to be optimal, the cons is that strings

have to be stored uncompressed in order to support the efficient access to that (f + 1)-th character.

Working out all the details [4], one can show that:

THEOREM 7.11 A prefix search in the String B-Tree built over the dictionaryD takes O(
p+Nocc

B
+

logB n) optimal I/Os, where Nocc is the total length of the dictionary strings which are prefixed by P.

The data structure occupies O(N
B

) disk pages and, indeed, strings are stored uncompressed on disk.

If we want to store the strings compressed on disk, we cannot just plug LPFC in the approach

illustrated above, because the decoding of LPFC works only on full strings, and thus it does not

support the efficient skip of some characters without wholly decoding the compared string. [2]

7-18 Paolo Ferragina

discusses a sophisticated solution to this problem which gets the I/O-bounds in Theorem 7.11 but

in the cache-oblivious model and guaranteeing LPFC-compressed space. We refer the interested

reader to that paper for details.

7.6.2 Packing Trees on Disk

We point out that the advantage of finding a good layout for unbalanced trees among disk pages

(of size B) may be unexpectedly large, and therefore, must not be underestimated when designing

solutions that have to manage large trees on disk. In fact, while balanced trees save a factor O(log B)

when mapped to disk (pack B-node balanced subtrees per page), the mapping of unbalanced trees

grows with non uniformity and approaches, in the extreme case of a linear-height tree, a saving

factor of Θ(B) over a naı̈ve memory layout.

This problem is also known in the literature as the Tree Packing problem. Its goal is to find an

allocation of tree nodes among the disk pages in such a way that the number of I/Os executed for a

pattern search is minimized. Minimization may involve either the total number of loaded pages in

internal memory (i.e. page faults) , or the number of distinct visited pages (i.e. working-set size).

This way we model two extreme situations: the case of a one-page internal memory (i.e. a small

buffer), or the case of an unbounded internal memory (i.e. an unbounded buffer). Surprisingly, the

optimal solution to the tree packing problem is independent of the available buffer size because no

disk page is visited twice when page faults are minimized or the working set is minimum. Moreover,

the optimal solution shows a nice decomposability property: the optimal tree packing forms in turn

a tree of disk pages. These two facts allow to restrict our attention to the page-fault minimization

problem, and to the design of recursive approaches to the optimal tree decomposition among the

disk pages.

In the rest of this section we present two solutions of increasing sophistication and addressing

two different scenarios: one in which the goal is to minimize the maximum number of page faults

executed during a downward root-to-leaf traversal; the other in which the goal is to minimize the

average number of page faults by assuming an access distribution to the tree leaves, and thus to

the possible tree traversals. We briefly mention that both solutions assume that B is known; the

literature actually offers cache-oblivious solutions to the tree packing problem, but they are too

much sophisticated to be reported in these notes. For details we refer the reader to [1, 5].

Min-Max Algorithm. This solution operates greedily and bottom up over the tree to be packed with

the goal of minimizing the maximum number of page faults executed during a downward traversal

which starts from the root of the tree. The tree is assumed to be binary, this is not a restriction

for Patricia Tries because it is enough to encode the alphabet characters with binary strings. The

algorithm assigns every leaf to its own disk page and the height of this page is set to 1. Working

upward, Algorithm 7.1 is applied to each processed node until the root of the tree is reached.

The final packing may induce a poor page-fill ratio, nonetheless several changes can alleviate this

problem in real situations:

1. When a page is closed off, scan its children pages from the smallest to the largest and

check whether they can be merged with their parent.

2. Design logical disk pages and pack many of them into one physical disk page; possibly

ignore physical page boundaries when placing logical pages onto disk.

THEOREM 7.12 The Min-Max Algorithm provides a disk-packing of a tree of n nodes and

height H such that every root-to-leaf path traverses less than 1 + d H√
B
e + d2logBne pages.

Searching Strings by Prefix 7-19

Algorithm 7.1 Min-Max Algorithm over binary trees (general step).

Let u be the currently visited node;

if If both children of u have the same page height d then

if If the total number of nodes in both children’s pages is < B then

Merge the two disk pages and add u;

Set the height of this new page to d;

else

Close off the pages of u’s children;

Create a new page for u and set its height to d + 1;

end if

else

Close off the page of u’s child with the smaller height;

If possible, merge the page of the other child with u and leave its height unchanged;

Otherwise, create a new page for u with height d + 1 and close off the child’s page;

end if

Distribution-aware Packing. We assume that it is known an access distribution to the Patricia

trie leaves. Since this distribution is often skewed towards some leaves, that are then accessed

more frequently than others, the Min-Max algorithm may be significantly inefficient. The following

algorithm is based on a Dynamic-Programming scheme, and optimizes the expected number of I/Os

incurred by any traversal of a root-to-leaf path.

We denote by τ this optimal tree packing (from tree nodes to disk pages), so τ(u) denotes the

disk page to which the tree node u is mapped. Let w(f) be the probability to access a leaf f , we

derive a distribution over all other nodes u of the tree by summing up the access probabilities of its

descending leaves. We can assume that the tree root r is always mapped to a fixed page τ(r) = R.

Consider now the set V of tree nodes that descend from R’s nodes but are not themselves in R. We

observe that the optimal packing τ induces a tree of disk pages and consequently, if τ is optimal for

the current tree T , then τ is optimal for all subtrees Tv rooted in v ∈ V .

This result allows to state a recursive computation for τ that first determines which nodes reside

in R, and then continues recursively with all subtrees Tv for which v ∈ V . Dynamic programming

provides an efficient implementation of this idea, based on the following definition: An i-confined

packing of a tree T is a packing in which the page R contains exactly i nodes (clearly i ≤ B). Now,

in the optimal packing τ, the root page R will contain i∗ nodes from the left subtree Tle f t(r) and

(B − i∗ − 1) nodes from the right subtree Tright(r), for some i∗. The consequence is that τ is both

an optimal i∗-confined packing for Tle f t(r) and an optimal (B − i∗ − 1)-confined packing for Tright(r).

This property is at the basis of the Dynamic-Programming rule which computes A[v, i], for a generic

node v and integer i ≤ B, as the cost of an optimal i-confined packing of the subtree Tv. In the paper

[5] the authors showed that A[v, i], for i > 1, can be computed as the access probability w(v) plus

the minimum among the following three quantities:

1. A[le f t(v), i − 1] + w(right(v)) + A[right(v), B]

2. w(le f t(v)) + A[le f t(v), B] + A[right(v), i − 1]

3. min1≤ j<i−1{A[le f t(v), j] + A[right(v), i − j − 1]}

Rule (1) accounts for the (unbalanced) case in which the i-confined packing is obtained by storing

i − 1 nodes from Tle f t(v) into the v’s page; Rule (2) is the symmetric of Rule (1); whereas Rule (3)

accounts for the case in which j nodes from Tle f t(v) and i − j − 1 nodes from Tright(v) are stored

into the page of v to form the optimal i-confined packing of Tv. The special case i = 1 is given by

A[v, 1] = w(Tv) + A[le f t(v), B] + A[right(v), B].

7-20 Paolo Ferragina

Algorithm 7.2 deploys these rules to compute the optimal tree packing in O(nB2) time and O(nB)

space.

Algorithm 7.2 Distribution-aware packing of trees on disk.

Initialize A[v, i] = w(v), for all leaves v and integers i ≤ B;

while there exist an unmarked node v do

mark v;

update A[v, 1] = w(v) + A[le f t(v), B] + A[right(v), B];

for i = 2 to B do

update A[v, i] according to the dyn-prog rule specified in the text.

end for

end while

THEOREM 7.13 An optimal packing for a f -ary tree of n nodes can be computed in O(nB2 log f)

time and O(B log n) space. The packing maps the tree into at most 2b n
B
c disk pages. Optimality is

with respect to the expected number of I/Os incurred by any root-to-leaf traversal.

References

[1] Stefan Alstrup, Michael A. Bender, Erik D. Demaine, Martin Farach-Colton, Jan I.

Munro, Theis Rauhe, and M. Thorup. Efficient Tree Layout in a Multilevel Memory

Hierarchy, 2003. Personal Communication, corrected version of a paper appeared in

the European Symposium on Algorithms 2002.

[2] Michael A. Bender, Martin Farach-Colton, and Bradley C. Kuszmaul. Cache-oblivious

string B-trees. In Procs ACM Symposium on Principles of Database Systems, pages 223–

242, 2006.

[3] Erik D. Demaine, Thouis Jones, and Mihai Pătraşcu. Interpolation search for non-

independent data. In Procs ACM-SIAM Symposium on Discrete algorithms, pages 529–

530, 2004.

[4] Paolo Ferragina and Roberto Grossi. The String B-tree: a new data structure for string

search in external memory and its applications. Journal of the ACM, 46(2):236–280,

1999.

[5] Joseph Gil and Alon Itai. How to pack trees. Journal of Algorithms, 32(2):108–132,

1999.

