A warm up! Chapter 2 of the notes ## Maximum Sub-array Sum Problem: given an array of **n** integers (positive and negative) find the sub-array of maximum sum. Input: array A[1,n] of positive and negative integers Output: I, r where A'[I, r] is the sub-array Output: The sum value Example: Input -1 58 -9 1 1 Output 13 ``` max=a[0]; for(i=0; i<n; i++) for(j=i; j<n; j++) sum=0; for(k=i; k<=j; k++) sum+=a[k]; if (sum> max) max=sum; ``` ``` max=a[0]; for(i=0; i<n; i++) for(j=i; j<n; j++) sum=0; for(k=i; k<=j; k++) sum+=a[k]; if (sum > max) max=sum; -158-911 ``` ``` max=a[0]; for(i=0; i<n; i++) for(j=i; j<n; j++) sum=0; for(k=i; k<=j; k++) sum+=a[k]; if (sum > max) max=sum; ``` Time complexity $O(n^3)$ #### Lower Bound for Solution 1 Instruction somma+=a[k]; (on sub-arrays of length j-i+1) is executed $$\sum_{i=0,n-1} \sum_{j=i,n-1} (j-i+1)$$ times, or $$\sum_{i=0,n-1} \sum_{j=1,n-i} j \ge \sum_{i=0,n-1} (n-i+1)^2/2 = \sum_{j=1,n+1} j^2/2$$ $$\Omega$$ (n³) ``` max=a[0]; for(i=0; i<n; i++) sum=0; for(j=i; j<n; j++) sum+=a[j]; if(sum > max) max=sum; Input -1 5 8 -9 1 1 ``` ``` max=a[0]; for(i=0; i<n; i++) sum=0; for(j=i; j<n; j++) sum+=a[j]; if(sum > max) max=sum; Time complexity: O(n^2) ``` #### How to do better Observe 2 properties of the maximum sum subarray: - 1) The sum of the values in each prefix of the maximum sum sub-array is positive, otherwise we could remove this prefix obtaining a sub-array with greater sum (contradiction). - The value of the element previous than the first element of the maximum sum sub-array is negative, otherwise could be added to the sub-array obtaining a sub-array with greater sum (contradiction). -3 2 3 -1 8 1 ``` max = A[0]; sum = 0; for(i=0; i<n; i++) if(sum > 0) sum+=a[i]; extend the segment else sum=a[i]; start a new segment if(sum > max) max=sum; Time complexity: O(n) Optimal Algorithm! Why? ``` ## Example linear solution | | SUM | MAX | |------------|-----|-----| | 12-4132-21 | 1 | 1 | | 12-4132-21 | 3 | 3 | | 12-4132-21 | -1 | 3 | | 12-4132-21 | 1 | 3 | | 12-4132-21 | 4 | 4 | | 12-4132-21 | 6 | 6 | | 12-4132-21 | 4 | 6 | | 12-4132-21 | 5 | 6 | ## 2-level memory model - B= block (page) size - M= internal memory size How to evaluate the complexity of an algorithm? number of I/Os operations - In this model Solution3 takes n/B I/Os operations is optimal. - It is independent from the block size. Very important feature for an algorithm. Cache-oblivious. • Let $Sum_D(x,s)$ the sum of items in positions from x to s $Sum_D(x,s) = Sum_D(1,s) - Sum_D(1,x-1)$ Find the positions <1,r> of the subarray. Compute prefix sums of D in array P. Note that $$P[i] = P[i-1] + D[i]$$ pose $P[0] = 0$ Write the sum in terms of P: ``` \max(\max Sum_D(1,s) - Sum_D(1,b-1)) b≤s max(max (P[s] - P[b-1]) b<S ``` Decompose max computation in max-min computation: $$\max(\max(P[s] - P[b-1]) = \max((P[s] - \min P[b-1])$$ $s \quad b \le s$ independent from b can be precomputed in M Max value is 8 for s=7, Left extreme is computed as position where P' is min, l=2Return <2, 7> #### Algorithm 2.4 Another linear-time algorithm ``` MaxSum = -∞; b_o = 1; 2: TmpSum = 0; MinTmpSum = 0; 3: for (s = 1; s \le n; s++) do TmpSum += D[s]; if (MaxSum < TmpSum - MinTmpSum) then 5: MaxSum = TmpSum; s_o = s; 6: end if if (TmpSum < MinTmpSum) then 8: MinTmpSum = TmpSum; b_o = s + 1; 9: end if 10: 11: end for 12: return (MaxSum, b_o, s_o); ``` The discussed algorithm takes three scans over D, in fact can be organized in a single pass and no memory. Keep the values of P[s] of M[s-1] (max and min) in 2 variables Tmpsum and MinTmpSum scanning the array and compute formula P[s]- M[s-1] incrementally. #### Interesting variants with application to the Bioinformatics Sub-array — Segment Maximum-sum segment problem DNA sequence is a string on 4 letters (A,T,C,G) Problem: Identify segments reach of C and G nucleotides (biologically significant). Is it possible to exploit our algorithm? Input: from DNA sequences to arrays of numbers. ## Two ways 1. Assign penalty -p to A and T and a reward 1-p to C and G. In this way the sum of the values of a segment of length I containing x C or G is x-pl. $$x(1-p)-(1-x) p = x-xp - x1+xp = x-p1$$ Our linear algorithm can be used to solve this problem with this objective function. Often biologist prefer to put limits on the length of the segments, to avoid extremely short or long segments. Now the algorithm cannot be applied!!! Another linear solution, however, is possible. # Small changes in the problem:: Big Jump in the complexity The trap is: no limits to the segment length implies only trivial solutions of length 1. Circumvent the single output searching: Problem: Given an array D[1,n] of positive and negative integers, find the longest segment in D whose sum is largest of a fixed threshold t. Complement of the previous one: Maximize the sum provided that its length is within a given range. The structure of the algorithmic solution is the same! The two problem can be reduced one into the other $$\frac{\operatorname{Sum}_{D}(x,y)}{y-x+1} = \sum_{k=x,y} \underbrace{D[k]}_{y-x+1} \ge 1 \qquad \sum_{k=x,y} \underbrace{D[k]-t} \ge 0$$ Subtracting t to all elements in D, the problem of bounded density becomes equivalent to find the longest segment with sum larger or equal to 0. A sum based problem is equivalent to adensity based problem! Reduction is very important technique to reuse solutions. #### Go back to the problem: Given an array D[1,n] of positive and negative integers, find the longest segment in D whose sum is larger than a fixed threshold t. #### Algorithm Inductively let D[1, i-1] the longest segment with sum $\geq t$ already computed for i=1, ..., n with solution D[I_{i-1} , r_{i-1}]. Compute D[1, i]: 2 possibilities 1. $r_i < i$ the solution does not change 2. $r_i = i$ D[l_i , r_i] is longer than D[l_{i-1} , r_{i-1}]. Observe: I_i occurs to the left of position L_i = i- $(r_{i-1}-I_{i-1})$ We can discard for l_i all positions between Li and i since they generate solutions shorter than $D[l_{i-1}, r_{i-1}]$. Reformulated problem. Given D[1, n] of positive and negative numbers we want to find at every step the smallest index i such that $Sum_D[l_i, i] \ge t$. #### Algorithm Recall to compute the sum compute the prefix sums as before so that $Sum_D[1, i]$ - $Sum_D[1, i-1] = P[i]-P[i-1]$. We look for the smallest index li in [1, Li] such that $P[i]-P[li-1] \ge t$. Array P pre-computed in linear time and space. But we have to find a minimum for all values of i that means $O(n^2)$. Instead, we identify a set of candidate positions for iteration: $C_{i,j}$ is the leftmost minimum of the sub-array $P[1, C_{i,j}-1]$. C_{i0} =Li. $$C_{i3}$$ C_{i2} C_{i1} C_{i0} Properties: $C_{i3} < C_{i2} < C_{i1} < C_{i0}$ =Li P[C_{i3}] > P[C_{i2}] > P[C_{i1}] $P[C_{ij}]$ is the leftmost minimum of prefix $P[1, C_{i,j}-1]$ hence is smaller than any other values on its left #### Algorithm Fact: At each iteration i, the largest index j^* such that $Sum_D[C_{i,j^*+1}, i] \ge t$ if any is the longest segment we are searching for. Proof: in the lecture notes. The computation of all candidate positions takes O(n) time. See also lecture notes. The computation of j* is not constant, but if at each iteration i we go on of si steps, we also go on in the construction of a longest solution of si steps. We extend the solution of $\theta(si)$. The sum of all these extra costs cannot be larger than O(n).