
Sorting atomic items 
 

Chapter 5 

Distribution based sorting paradigms 



The distribution-based sorting 
QuickSort (S ,i, j) 
1.  If (i<j) { 
2.       r = pick the position of a “good pivot” 
3.       Swap S[r] with S[i]; 
4.       p = Partition (S, i, j); 
5.       QuickSort (S, i, p-1); 
6.       QuickSort (S, p+1, j) 
7.  } 
Based on Divide&Conquer. Combine step is not present. 
Divide step : Procedure Partition 
QuickSort is in place alg. 
 



The distribution-based sorting 
Partition divides the array in 3 parts: 
            S(i,p-1) S(p)             S(p+1,j) 
 
 
 
 
 
 
Partition takes O(n) 
If the two sub-arrays are balanced at each level of the recursion 
T(n)=2T(n/2)+O(n)   = O(nlogn) as  MergeSort 
To study the worst case, we look at the position of q that maximize 
the time 
 T(n) =max  (T(q) + T(n-q-1))+O(n)     where q range from 0 to n-1 
         0≤q≤n-1 

pivot Items ≤ pivot Items ≥pivot 



The distribution-based sorting 
Guess: T(n) ≤cn2             
 
T(n) =max  (cq2 + c(n-q-1)2)+O(n) = c max  (q2 + (n-q-1)2)+O(n)  
         0≤q≤n-1                                         0≤q≤n-1 
 
Gives the maximum when q=0 or q=n-1: 
 
  (q2 + (n-q-1)2) ≤ (n-1)2 =n2-2n-1 
 
T(n)  ≤ c(n2-2n-1) + O(n)   ≤ cn2      worst case 



QuickSort 
Expected running time 

•  Sequence S(1,n);  Rank Z(1, n) : Zi is the i-th smallest 
element; 

•  pi,j  is the probability that a comparison Zi : Zj occurs 
during an execution of QiuickSort; 

                                                         n  
•  The expected total number is: E= Σ Σ  pi,j                                                 i=1 j>i  
Remarks: 
1.   In Partition two items are compared if one of them is a 

pivot.  
2.  If two items go in different sub-arrays they  
       will never be compared  in the future. 



Expected running time 
If j=i+1 the elements are compared for sure: there not 
exist an element that, being the pivot, can put them in 
separate sub-arrays as pivot. pi,i+1=1  
If j>i+1 consider the set of elements A = {Zi, Zi+1,…, Zj) 
if as pivot is selected an element not in A all elements 
remain in the same partition and Zi and Zj are not 
compared. 
if Zi or Zj are selected as pivot, Zi and Zj are compared 
If Zk is selected with k ≠i,j A is split into 2 sub-arrays 
and Zi and Zj are not compared. 
So    pi,j=2/(j-i+1)   (when j=i+1 pi,j=1) 
 
 
 



QuickSort 
Expected running time 

  
The expected total number is:  
        n                      n                                      n    n-i 
   E= Σ  Σ pi,j=   Σ  Σ pi,j=2/(j-i+1) =Σ  Σ 2/(k+1) ≤ 
      i=1   j>i              i=1 j>i                               i=1 k=1       
 
                        n   n 
                    2Σ Σ 1/k  
                     i=1 k=1  
 
                      n      since  Σ 1/k = ln n +O(1) hence 
                  k=1  
                    
                     E =  O(nlogn)   
 
  
In average quicksort takes at most  1.45 nlogn operations 
       



3-ways Partition 
In procedure Partition of QuickSort elements equal to the pivot 
are arbitrarily distributed among the 2 partitions. 
 
In 3-ways Partition we have: 
            S(i,l-1)       S(l,c)             S(c+1,j) 
 
 
 
 
 
 
 
 
 
 
 
3-ways Partition  takes O(n). The central part can be discarded in the  
Recursion. 

Items=pivot Items < pivot 
Items >pivot 



3-ways partition 
 
            i             l              r             c                  j 
 
 
 
Variable l indicates the last item < than the pivot 
Variable r indicates the fist item > to the pivot 
Variable c indicates the nextitem to be considered. 
If S[c]>pivot c=c+1 
If S[c]=pivot exchange S[c] and S[r] ; c=c+1; r=r+1;  
If S[c] <pivot l=l+1: exchange S[c] and S[l]; S[c] and S[r]; r=r+1;  c=c+1   
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3-ways partition 
             l             r                 c  
       5 2 9 12 12 12 20 18 13 15 17 19 12 8 
               l                r                          c  
        5 2 9 12 12 12 20 18 13 15 17 19 12 8       no exchange 
              l                      r                         c 
        5 2 9 12 12 12 12 18 13 15 17 18 20 8      1 exchange 12:20 
 
       5 2 9 8 12 12 12 18 13 15 17 18 20 12      2 exchanges   8:12 and      
       5 2 9 8 12 12 12 18 13 15 17 19 20 12       and 12:18 
       5 2 9 8 12 12 12 12 13 15 17 18 20 18 
                 l                    r                         c 



3-ways Partition(S, i,j) 
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Modify QuickSort to select the k-th item 

Idea: select an item at random S[r] and call Partition.  
         Let k the position of the pivot. 
 
             S(i,l-1)        S(k)             S(c+1,j) 
 
 
 
 
 
 
If k is in the range of the items equal to the pivot return : S[r] is 
the k-th item. 
If k is in the range the items less than the pivot: Recurse on S(i,l-1) 
and k. 
If k is in the range the items greater than the pivot: Recurse on 
S(c+1, j) and  k-c. 
 
 

Items = pivot Items < pivot Items > pivot 



RandSelect 
 
 
 



Expected running time 
T(n) = T(n-1) + O(n) = O(n2)    Worst case time 
                                   O(n)    Average time    RAM model 
                                O(n/B)    I/O’s for the disk model 
 
“good selection” a partition where n< and n> are not larger than 
2/3n.   Positions of the pivot for a good selection: the blue 
 
 
Probability to have a good selection is 1/3. Let Ta the average time: 
                   Ta (n) ≤ O(n) + 1/3 Ta((2/3)n) + 2/3 Ta(n)    subtract Ta(n) 
                    1/3 Ta (n) ≤ O(n) + 1/3 Ta((2/3)n)    multiply by 3 
                       Ta (n) ≤ O(n) + Ta((2/3)n)  
 
 



Expected running time 
 
                       Ta (n) ≤ O(n) + Ta(2/3n)  
It can be computed with Master Th. ( or by substitution) 
                      Ta (n) ≤ O(n)      
 
RandSelect is very efficient in average! 
 
2-level model: 
                    Ta (n) ≤ O(n/B) + Ta(2/3n) = O(n/B) 
 
Since the procedure partition can be executed in the 2-level model 
with a single pass over the input items. 



Use RandSelect to improve QuickSort 
 
•  Instead of 1 pivot, select at random 2s+1 pivots. 
•  Select the median pivot among the 2s+1 

•  s=1 select 3 pivot and with 2 comparisons select the median. 
•  s>1 : sort the items and select the median O(slogs) 
•         select the median (k =s/2) by RandSelect O(s) average.  

•  Select as pivot the median item of the whole array k=n/2 
•  Select a pivot that generates 2 a balanced partition, the 2 parts 

are fractions of n:  αn and (1-α)n with α<0.5. Apparently 
meaningless, is good for parallel CPU.  


