
Sorting atomic items

Chapter 5

Distribution based sorting paradigms

The distribution-based sorting
QuickSort (S ,i, j)
1.  If (i<j) {
2.  r = pick the position of a “good pivot”
3.  Swap S[r] with S[i];
4.  p = Partition (S, i, j);
5.  QuickSort (S, i, p-1);
6.  QuickSort (S, p+1, j)
7.  }
Based on Divide&Conquer. Combine step is not present.
Divide step : Procedure Partition
QuickSort is in place alg.

The distribution-based sorting
Partition divides the array in 3 parts:
 S(i,p-1) S(p) S(p+1,j)

Partition takes O(n)
If the two sub-arrays are balanced at each level of the recursion
T(n)=2T(n/2)+O(n) = O(nlogn) as MergeSort
To study the worst case, we look at the position of q that maximize
the time
 T(n) =max (T(q) + T(n-q-1))+O(n) where q range from 0 to n-1
 0≤q≤n-1

pivot Items ≤ pivot Items ≥pivot

The distribution-based sorting
Guess: T(n) ≤cn2

T(n) =max (cq2 + c(n-q-1)2)+O(n) = c max (q2 + (n-q-1)2)+O(n)
 0≤q≤n-1 0≤q≤n-1

Gives the maximum when q=0 or q=n-1:

 (q2 + (n-q-1)2) ≤ (n-1)2 =n2-2n-1

T(n) ≤ c(n2-2n-1) + O(n) ≤ cn2 worst case

QuickSort
Expected running time

•  Sequence S(1,n); Rank Z(1, n) : Zi is the i-th smallest
element;

•  pi,j is the probability that a comparison Zi : Zj occurs
during an execution of QiuickSort;

 n
•  The expected total number is: E= Σ Σ pi,j i=1 j>i
Remarks:
1.  In Partition two items are compared if one of them is a

pivot.
2.  If two items go in different sub-arrays they
 will never be compared in the future.

Expected running time
If j=i+1 the elements are compared for sure: there not
exist an element that, being the pivot, can put them in
separate sub-arrays as pivot. pi,i+1=1
If j>i+1 consider the set of elements A = {Zi, Zi+1,…, Zj)
if as pivot is selected an element not in A all elements
remain in the same partition and Zi and Zj are not
compared.
if Zi or Zj are selected as pivot, Zi and Zj are compared
If Zk is selected with k ≠i,j A is split into 2 sub-arrays
and Zi and Zj are not compared.
So pi,j=2/(j-i+1) (when j=i+1 pi,j=1)

QuickSort
Expected running time

The expected total number is:
 n n n n-i
 E= Σ Σ pi,j= Σ Σ pi,j=2/(j-i+1) =Σ Σ 2/(k+1) ≤
 i=1 j>i i=1 j>i i=1 k=1

 n n
 2Σ Σ 1/k
 i=1 k=1

 n since Σ 1/k = ln n +O(1) hence
 k=1

 E = O(nlogn)

In average quicksort takes at most 1.45 nlogn operations

3-ways Partition
In procedure Partition of QuickSort elements equal to the pivot
are arbitrarily distributed among the 2 partitions.

In 3-ways Partition we have:
 S(i,l-1) S(l,c) S(c+1,j)

3-ways Partition takes O(n). The central part can be discarded in the
Recursion.

Items=pivot Items < pivot
Items >pivot

3-ways partition

 i l r c j

Variable l indicates the last item < than the pivot
Variable r indicates the fist item > to the pivot
Variable c indicates the nextitem to be considered.
If S[c]>pivot c=c+1
If S[c]=pivot exchange S[c] and S[r] ; c=c+1; r=r+1;
If S[c] <pivot l=l+1: exchange S[c] and S[l]; S[c] and S[r]; r=r+1; c=c+1

<	
 	
 	
 	
 	
 	
 	
 =	
 	
 	
 	
 	
 	
 	
 >	
 	
 	
 	
 	
 	
 	
 	
 ?	
 	
 	
 	
 	
 	
 	
 	

3-ways partition
 l r c
 5 2 9 12 12 12 20 18 13 15 17 19 12 8
 l r c
 5 2 9 12 12 12 20 18 13 15 17 19 12 8 no exchange
 l r c
 5 2 9 12 12 12 12 18 13 15 17 18 20 8 1 exchange 12:20

 5 2 9 8 12 12 12 18 13 15 17 18 20 12 2 exchanges 8:12 and
 5 2 9 8 12 12 12 18 13 15 17 19 20 12 and 12:18
 5 2 9 8 12 12 12 12 13 15 17 18 20 18
 l r c

3-ways Partition(S, i,j)

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 11:	
 	
 	
 endfor	

	
 	
 	
 	
 	
 	
 	
 	
 12:	
 	
 	
 	
 return	
 <	
 l,	
 r-­‐1	
 >	

Recursion	
 on	
 S(i,	
 l-­‐1)	

and	
 S(r,	
 j)	

Modify QuickSort to select the k-th item

Idea: select an item at random S[r] and call Partition.
 Let k the position of the pivot.

 S(i,l-1) S(k) S(c+1,j)

If k is in the range of the items equal to the pivot return : S[r] is
the k-th item.
If k is in the range the items less than the pivot: Recurse on S(i,l-1)
and k.
If k is in the range the items greater than the pivot: Recurse on
S(c+1, j) and k-c.

Items = pivot Items < pivot Items > pivot

RandSelect

Expected running time
T(n) = T(n-1) + O(n) = O(n2) Worst case time
 O(n) Average time RAM model
 O(n/B) I/O’s for the disk model

“good selection” a partition where n< and n> are not larger than
2/3n. Positions of the pivot for a good selection: the blue

Probability to have a good selection is 1/3. Let Ta the average time:
 Ta (n) ≤ O(n) + 1/3 Ta((2/3)n) + 2/3 Ta(n) subtract Ta(n)
 1/3 Ta (n) ≤ O(n) + 1/3 Ta((2/3)n) multiply by 3
 Ta (n) ≤ O(n) + Ta((2/3)n)

Expected running time

 Ta (n) ≤ O(n) + Ta(2/3n)
It can be computed with Master Th. (or by substitution)
 Ta (n) ≤ O(n)

RandSelect is very efficient in average!

2-level model:
 Ta (n) ≤ O(n/B) + Ta(2/3n) = O(n/B)

Since the procedure partition can be executed in the 2-level model
with a single pass over the input items.

Use RandSelect to improve QuickSort

•  Instead of 1 pivot, select at random 2s+1 pivots.
•  Select the median pivot among the 2s+1

•  s=1 select 3 pivot and with 2 comparisons select the median.
•  s>1 : sort the items and select the median O(slogs)
•  select the median (k =s/2) by RandSelect O(s) average.

•  Select as pivot the median item of the whole array k=n/2
•  Select a pivot that generates 2 a balanced partition, the 2 parts

are fractions of n: αn and (1-α)n with α<0.5. Apparently
meaningless, is good for parallel CPU.

