
Sorting atomic items

Chapter 5

Distribution based sorting paradigms

The distribution-based sorting
QuickSort is an in place algorithm, but…
Consider the stack for the recursive calls.
For balanced partitions: O(logn) space
Worst case of unbalanced partitions: Ω(n) calls, Θ(n) space!!
QuickSort is modified.

We can bound the recursive depth. Algorithm Bounded
Based on the fact that: Quicksort does not depend on the order in
which recursive calls are executed!

Small arrays can be better sorted with InsertionSort (when n is
typically of the order of tens).

The modified version mixes one recursive call with an iterative
while loop.

Algorithm Bounded(S, I, j)

n ≤ no

n > no

Algorithm Bounded(S, I, j)
•  The recursive call is executed on the smaller part of the

partition
•  It drops the recursive call on the larger part of the partition in

favor of another execution of the while-loop.
•  Ex:

Partition

Only one recursive call on S(i,p-1); For the larger part S(i+1,j) we
iterate to the while loop

•  Technique: Elimination of Tail Recursion
•  Bounded takes O(nlogn) time in average and O(logn) space.

10	
 	
 3	
 	
 7	
 	
 15	
 	
 21	
 	
 18	
 	
 2	
 	
 11	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 pivot	
 =S[2]=3	

2 3 10 7 15 21 18 11

Multi-way QuickSort
•  2-level model: M =internal memory size ; B = block size ;
•  Split the sequence S into k = Θ(M/B) sub-sequences using k-1 pivots.
•  We would like balanced partitions, that is of Θ(n/k) items each.
•  Select k-1 s1, s2, …sk-1 “good pivots” is not a trivial task!

Let bucket Bi the portion of S between pivot si-1 and si.
We want guarantee that |Bi|= Θ(n/k) for all buckets.
So, at the first step of Multi-way QuickSort size of portions n/k
 at the second step the size of portions n/k2
 at the third step the size of portions n/k3
 ……….
Stop when n/ki ≤ M: n/M ≤ ki , i is the number of steps
 i ≥ logk n/M = logM/B n/M
This number of steps is enough to have portions shorter than M, and sorted in
internal memory!
Partition takes O(n/B) I/O’s (dual to MS) : 1 input block, k output blocks.

Multi-way QuickSort
•  2-level model: M =internal memory size ; B = block size ;
•  Split the sequence S into k = Θ(M/B) sub-sequences using k-1 pivots.
•  We would like balanced partitions, that is of Θ(n/k) items each.
•  Select k-1 s1, s2, …sk-1 “good pivots” is not a trivial task!

Let bucket Bi the portion of S between pivot si-1 and si.
We want guarantee that |Bi|= Θ(n/k) for all buckets.
So, at the first step of Multi-way QuickSort size of portions n/k
 at the second step the size of portions n/k2
 at the third step the size of portions n/k3
 ……….
Stop when n/ki ≤ M: n/M ≤ ki , i is the number of steps
 i ≥ logk n/M = logM/B n/M
This number of steps is enough to have portions shorter than M, and sorted in
internal memory!
Partition takes O(n/B) I/O’s (dual to MS) : 1 input block, k output blocks.

Multi-way QuickSort
Find k good pivots efficiently.
Randomized strategy called oversampling.
Θ(ak) items are sampled, a≥0 parameter of the oversampling.

Balanced selection of si =A[(a+1)i] should provide good pivots!!

Θ(ak) candidates
Θ(ak)log(ak) time
Select k-1 pivots
evenly distributed

Multi-way QuickSort
•  K=5

	
 	
 	
 	
 a+1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 a+1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 a+1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 a+1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

sample	

Multi-way QuickSort
•  The larger is a the closer to Θ(n/k)
•  If a=n/k the elements of set A cannot be sorted in M !
•  If a = 0 the selection is fast, but unbalanced partitions are is more

probable.
•  Good choice for a: Θ(log k). Pivot-selection costs Θ(klog2k)

Lemma. Let k ≥ 2, a + 1 =12 ln k. A sample of (a+1)k-1 suffices to ensure that
all buckets receive less than 4n/k elements, with probability at least ½.

Proof. We find un upper bound to complement event: there exists 1 bucket
containing more than 4n/k elements with probability at most ½. Failure
sampling.
Consider the sorted version of S, S’. Logically split S’ in k/2 segments (t1, t2,
…, tk/2) of 2n/k elements each.

Multi-way QuickSort

•  The event is that there exists a bucket Bi with more that 4n/k items. It
spans more than one segment: pivots si-1 	
 and si fall outside t2.

•  In t2 fall less than (a+1) samples (see selection algorithm: between 2 pivots
there are a+1 samples, hence in t2 there are less).

•  Pr (exists Bi : |Bi| ≥ 4 n/k) ≤ Pr (exists tj : contains < (a+1) samples)
 ≤ k/2 Pr (a specific segment contain < (a+1) samples)

 Since k/2 is the number of segments.

	

si-1 	
 si	

Multi-way QuickSort
•  Pr (1 sample goes in a given segment) = (2n/k)/n = 2/k
 If drawn uniformly at random from S (and S’).
•  Let X the number of samples going in a given segment, we want to

compute:
 Pr(X < a+1)

•  Observe : E(X) = ((a+1)k-1) × 2/k ≥ 2(a+1)-2/k, per k ≥ 2
 E(X) ≥ 2(a+1) – 1 ≥ 3/2(a+1) for all a ≥ 1
 a+1 ≤ 2/3 E(X) = (1-1/3) E(X)
By Chernoff bound

 Pr (X < (1 - δ) E(X) ≤ e^{δ2 /2)E(X)})
Setting δ=1/3 and assume a+1 = 12ln k

 Pr (X < a+1) ≤ P(X ≤ (1-1/3)E(X)) ≤
 e-E(X)/18 ≤ e-(a+1)/12 = e-lnk = 1/k

	

Multi-way QuickSort
•  Pr (X < a+1) ≤ 1/k

We have already derived:
•  Pr (exists Bi : |Bi| ≥ 4 n/k) ≤ k/2×Pr (a segment contain< (a+1) samples)

•  Pr (exists Bi : |Bi| ≥ 4 n/k) ≤ 1/2 complement event of the lemma

•  All buckets receives less than 4n/k elements with

probability > 1/2

	

Dual Pivot QuickSort
•  Good strategy in practice no theoretical result.
•  Empirical good results in average.

•  p, q pivots l, k, g indices è 4 pieces

1.  items smaller than p

2.  items larger or equal to p and smaller or equal to q.

3.  items not jet considered

4.  items greater than q

	
 	
 	
 	
 	
 < p l p ≤ i ≤ q k ? g > q

Dual Pivot QuickSort
Similar to the 3-ways Partition: maintains the invariants.

•  Items equal to the pivot are not treated separately.
•  2 indices move rightward , l and k, while g moves leftward.
•  Termination: k ≥ g.

•  For item k, compare S[k] : p,
 if S[k] < p exchange S[k] and S[l] and increment pointers

 else if S[k] > q decrease g while S[g] > q and g≠k
 the last value of g : S[g] ≤ q
 exchange S[k] and S[g]
 ……

The comparison with S[k] drives the phases possibly including
a long shift to the left. The nesting of comparison is the key
for the efficiency of the algortihm.

Dual Pivot Partition
 l k g
 5 12 9 12 13 15 17 19 12 26 18 22 20 p=12 q= 17
 exchange 19 and 17, k++, g—

 l k g
 5 12 9 12 13 15 17 19 12 26 18 22 20

 l++ exchange 12 and 13, k++
 l k g
 5 12 9 12 12 15 17 19 12 13 26 18 22 20 no exchange

Dual Pivot QuickSort
You can find the complete code description and the
visualization of the algorithm on youtube by searching for
Dual pivot QuickSort.

Conclusions:

Even a very old, classic algorithm such as QuickSort can be
speed up and innovated!

