
The magic of Algorithms!
Lectures on some algorithmic pearls

Paolo Ferragina, Università di Pisa

These notes should be an advise for programmers and software engineers: no matter how much
smart you are, the so called “5-minutes thinking” is not enough to get a reasonable solution for your
real problem, unless it is a toy one! Real problems have reached such a large size, machines got
so complicated, and algorithmic tools became so sophisticated that you cannot improvise to be an
algorithm designer: you should be trained to be one of them!

These lectures provide a witness for this issue by introducing challenging problems together with
elegant and efficient algorithmic techniques to solve them. In selecting their topics I was driven by
a twofold goal: from the one hand, provide the reader with an algorithm engineering toolbox that
will help him/her in attacking programming problems over massive datasets; and, from the other
hand, I wished to collect the stuff that I would have liked to see when I was a master/phd student!

The style and content of these lectures is the result of many hours of highlighting and, sometime
hard and fatiguing, discussions with many fellow researchers and students. Actually some of these
lectures composed the courses in Information Retrieval and/or Advanced Algorithms that I taught
at the University of Pisa and in various International PhD Schools, since year 2004. In particular,
a preliminary draft of these notes were prepared by the students of the “Algorithm Engineering”
course in the Master Degree of Computer Science and Networking in Sept-Dec 2009, done in col-
laboration between the University of Pisa and Scuola Superiore S. Anna. Some other notes were
prepared by the Phd students attending the course on “Advanced Algorithms for Massive DataSets”
that I taught at the BISS International School on Computer Science and Engineering, held in March
2010 (Bertinoro, Italy). I used these drafts as a seed for some of the following chapters.

My ultimate hope is that reading these notes you’ll be pervaded by the same pleasure and excite-
ment that filled my mood when I met these algorithmic solutions for the first time. If this will be
the case, please read more about Algorithms to find inspiration for your work. It is still the time that
programming is an Art, but you need the good tools to make itself express at the highest beauty!

P.F.

1
Set Intersection

“Sharing is caring!”

This lecture attacks a simple problem over sets, it constitutes the backbone of every query resolver
in a (Web) search engine. A search engine is a well-known tool designed to search for information
in a collection of documents D. In the present chapter we restrict our attention to search engines
for textual documents, meaning with this the fact that a document di ∈ D is a book, a news, a tweet
or any file containing a sequence of linguistic tokens (aka, words). Among many other auxiliary
data structures, a search engine builds an index to answer efficiently the queries posed by users. The
user query Q is commonly structured as a bag of words, say w1w2 · · ·wk, and the goal of the search
engine is to retrieve the most relevant documents in D which contain all query words. The peo-
ple skilled in this art know that this is a very simplistic definition, because modern search engines
search for documents that contain possibly most of the words in Q, the verb contain may be fuzzy
interpreted as contain synonyms or related words, and the notion of relevance is pretty subjective
and time-varying so that it cannot be defined precisely. In any case, this is not a chapter of an Infor-
mation Retrieval book, so we refer the interested reader to the Information Retrieval literature, such
as [4, 7]. Here we content ourselves to attack the most generic algorithmic step specified above.

Problem. Given a sequence of words Q = w1w2 · · ·wk and a document collection D, find
the documents inD that contain all words wi.

An obvious solution is to scan each document in D searching for all words specified by Q. This is
simple but it would take time proportional to the whole length of the document collection, which
is clearly too much even for a supercomputer or a data-center given the Web size! And, in fact,
modern search engines build a very simple, but efficient, data structure called inverted index that
helps in speeding up the flow of bi/million of daily user queries.

The inverted index consists of three main parts: the dictionary of words w, one list of occurrences
per dictionary word (called posting list, below indicated with L[w]), plus some additional infor-
mation indicating the importance of each of these occurrences (to be deployed in the subsequent
phases where the relevance of a document has to be established). The term “inverted” refers to the
fact that word occurrences are not sorted according to their position in the document, but according
to the alphabetic ordering of the words to which they refer. So inverted indexes remind the classic
glossary present at the end of books, here extended to represent occurrences of all the words present
into a collection of documents (and so, not just the most important words of them).

Each posting list L[w] is stored contiguously in a single array, eventually on disk. The names of
the indexed documents (actually, their identifying URLs) are placed in another table and are suc-
cinctly identified by integers, called docIDs, which we may assume to have been assigned arbitrarily

c© Paolo Ferragina, 2009-2016 1-1

1-2 Paolo Ferragina

by the search engine.1 Also the dictionary is stored in a table which contains some satellite infor-
mation plus the pointers to the posting lists. Figure 1.1 illustrates the main structure of an inverted
index.

Dictionary Posting list

.
abaco 50, 23, 10
abiura 131, 100, 90, 132
ball 20, 21, 90

mathematics 15, 1, 3, 23, 30, 7, 10, 18, 40, 70
zoo 5, 1000
.

FIGURE 1.1: An example of inverted (unsorted) index for a part of a dictionary.

Coming back to the problem stated above, let us assume that the query Q consists of two words
abaco mathematics. Finding the documents inD that contain both two words of Q boils down to
finding the docIDs shared by the two inverted lists pointed to by abaco and mathematics: namely,
10 and 23. It is easy to conclude that this means to solve a set intersection problem between the two
sets represented by L[abaco] and L[mathematics], which is the key subject of this chapter.

Given that the integers of two posting lists are arbitrarily arranged, the computation of the
intersection might be executed by comparing each docID a ∈ L[abaco] with all docIDs b ∈
L[mathematics]. If a = b then a is inserted in the result set. If the two lists have length n
and m, this brute-force algorithm takes n × m steps/comparisons. In the real case that n and m are
of the order of millions, as it typically occurs for common words in the modern Web, then that
number of steps/comparisons is of the order of 106×106 = 1012. Even assuming that a PC is able to
execute one billion comparisons per second (109 cmp/sec), this trivial algorithm takes 103 seconds
to process a bi-word query (so about ten minutes), which is too much even for a patient user!

The bad news is that the docIDs occurring in the two posting lists cannot be arranged arbitrarily,
but we must impose some proper structure over them in order to speed up the identification of the
common integers. The key idea here is to sort the posting lists as shown in Figure 1.2.
It is therefore preferable, from a computational point of view, to reformulate the intersection prob-
lem onto two sorted sets A = L[abaco] and B = L[mathematics], as follows:

(Sorted) Set Intersection Problem. Given two sorted integer sequences A = a1a2 · · · an

and B = b1b2 · · · bm, such that ai < ai+1 and bi < bi+1, compute the integers common to
both sets.

The sortedness of the two sequences allows to design an intersection algorithm that is deceptively
simple, elegant and fast. It consists of scanning A and B from left to right by comparing at each
step a pair of docIDs from the two lists. Say ai and b j are the two docIDs currently compared,
initially i = j = 1. If ai < b j the iterator i is incremented, if ai > b j the iterator j is incremented,
otherwise ai = b j and thus a common docID is found and both iterators are incremented. At each

1To be precise, the docID assignment process is a crucial one to save space in the storage of those posting lists, but its
solution is too much sophisticated to be discussed here and thus it is deferred to the scientific literature [6].

Set Intersection 1-3

Dictionary Posting list

.
abaco 10, 23, 50
abiura 90, 100, 131, 132
ball 20, 21, 90

mathematics 1, 3, 7, 10, 15, 18, 23, 30, 40, 70
zoo 5, 1000
.

FIGURE 1.2: An example of inverted (sorted) index for a part of a dictionary.

step the algorithm executes one comparison and advances at least one iterator. Given that n = |A|
and m = |B| are the number of elements in the two sequences, we can deduct that i (resp. j) can
advance at most n times (resp. m times), so we can conclude that this algorithm requires no more
than n + m comparisons/steps; we write no more because it could be the case that one sequence is
exhausted much before the other one, so that many elements of the latter may be not compared. This
time cost is significantly smaller than the one mentioned above for the unsorted sequences (namely
n × m), and its real advantage in practice is strikingly evident. In fact, by considering our running
example with n and m of the order of 106 docIDs and a PC performing 109 comparisons per second,
we derive that this new algorithm takes 10−3 seconds to compute A ∩ B, which is in the order of
milliseconds, exactly what occurs in modern search engines.

An attentive reader may have noticed this algorithm mimics the merge-procedure used in Merge-
Sort, here adapted to fing the common elements of the two sets A and B rather than merging them.

FACT 1.1 The intersection algorithm based on the merge-based paradigm solves the sorted set
intersection problem in O(m + n) time.

In the case that n = Θ(m) this algorithm is optimal, and thus it cannot be improved; moreover it is
based on the scan-based paradigm that it is optimal also in the disk model because it takes O(n/B)
I/Os. To be more precise, the scan-based paradigm is optimal whichever is the memory hierarchy
underlying the computation (the so called cache-oblivious model). The next question is what we can
do whenever m is much different of n, say m � n. This is the situation in which one word is much
more selective than the other one; here, the classic binary search can be helpful, in the sense that
we can design an algorithm that binary searches every element b ∈ B (they are few) into the (many)
sorted elements of A thus taking O(m log n) steps/comparisons. This time complexity is better than
O(n + m) if m = o(n/ log n) which is actually less stringent that the condition m � n we imposed
above.

FACT 1.2 The intersection algorithm based on the binary-search paradigm solves the sorted
set intersection problem in O(m log n) time.

The next question is whether an algorithm can be designed that combines the best of both merge-
based and search-based approaches. In fact, there is an inefficacy in the binary-search approach
which becomes apparent when m is of the order of n. When we search item bi in A we possibly
re-check over and over the same elements of A. Surely this is the case for its middle element, say
an/2, which is the first one checked by any binary search. But if bi > an/2 then it is useless to
compare bi+1 with an/2 because for sure it is larger, since bi+1 ≥ bi > an/2. And the same holds for

1-4 Paolo Ferragina

all subsequent elements of B. A similar argument applies possibly to other elements in A checked
by the binary search; so the next challenge we address is how to avoid this useless comparisons.

FIGURE 1.3: An example of the Intersection paradigm based on Mutual Partitioning: the pivot is
12, the median element of B.

This is achieved by adopting another classic algorithmic paradigm, called partitioning, which
is the one we used to design the Quicksort, and here applied to split repeatedly and mutually two
sequences. Formally, let us assume that m ≤ n and be both even numbers, we pick the median
element bm/2 of the shortest sequence B as a pivot and search for it into the longer sequence A. Two
cases may occur: (i) bm/2 ∈ A, say bm/2 = a j for some j, and thus bm/2 is returned as one of the
elements of the intersection A ∩ B; or (ii) bm/2 < A, say a j < bm/2 < a j+1 (where we assume that
a0 = −∞ and an+1 = +∞). In both cases the intersection algorithm proceeds recursively in the two
parts in which each sequence A and B has been split by the choice of the pivot, thus computing
recursively A[1, j] ∩ B[1,m/2 − 1] and A[j + 1, n] ∩ B[m/2 + 1, n]. A small optimization consists
of discarding from the first recursive call the element bm/2 = a j (in case (i)). The pseudo-code is
given in Figure 1.1, and a running example is illustrated in Figure 1.3. There the median element
of B used as the pivot for the mutual partitioning of the two sequences is 12, and it splits A into two
unbalanced parts (i.e. A[1, 4] and A[5, 12]) and B into two almost-halves (i.e. B[1, 5] and B[6, 9])
which are recursively intersected; since the pivot occurs both in A and B it is returned as an element
of the intersection. Moreover we notice that the first part of A is shorter than the first part of B and
thus in the recursive call their role will be exchanged.

In order to evaluate the time complexity we need to identify the worst case. Let us begin with the
simplest situation in which the pivot falls outside A (i.e. j = 0 or j = n). This means that one of the
two parts in A is empty and thus the corresponding halve of B can be discarded from the subsequent
recursive calls. So one binary search over A, costing O(log n), has discarded an half of B. If this
occurs at any recursive call, the total number of calls will be O(log m) thus inducing an overall cost
for the algorithm equal to O(log m log n). That is, an unbalanced partitioning of A induces indeed a
very good behavior of the intersection algorithm; this is something opposite to what stated typically
about recursive algorithms. On the other hand, let us assume that the pivot bm/2 falls inside the
sequence A and consider the case that it coincides with the median element of A, say an/2. In this
specific situation the two partitions are balanced in both sequences we are intersecting, so the time
complexity can be expressed via the following recurrent relation T (n,m) = O(log n)+2T (n/2,m/2),

Set Intersection 1-5

Algorithm 1.1 Intersection based on Mutual Partitioning
1: Let m = |B| ≤ n = |A|, otherwise exchange the role of A and B;
2: Pick the median element p = bbm/2c of B;
3: Binary search for the position of p in A, say a j ≤ p < a j+1;
4: if p = a j then
5: print p;
6: end if
7: Compute recursively the intersection A[1, j] ∩ B[1,m/2];
8: Compute recursively the intersection A[j + 1, n] ∩ B[m/2 + 1, n].

with the base case of T (n,m) = O(1) whenever n,m ≤ 1. It can be proved that this recurrent relation
has solution T (n,m) = O(m(1 + log n

m)) for any m ≤ n. It is interesting to observe that this time
complexity subsumes the ones of the previous two algorithms (namely the one based on merging
and the one based on binary searching). In fact, when m = Θ(n) it is T (n,m) = O(n) (á la merging);
when m � n it is T (n,m) = O(m log n) (á la binary searching). As we will see in Chapter ??, about
Statistical compression, the term m log n

m reminds an entropy cost of encoding m items within n
items and thus induces to think about something that cannot be improved (for details see [1]).

FACT 1.3 The intersection algorithm based on the mutual-partitioning paradigm solves the
sorted set intersection problem in O(m(1 + log n

m)) time.

We point out that the bound m log n
m is optimal in the comparison model because it follows from

the classic binary decision-tree argument. In fact, they do exist at least
(

n
m

)
solutions to the set inter-

section problem (here we account only for the case in which B ⊆ A), and thus every comparison-
based algorithm computing anyone of them must execute Ω(log

(
n
m

)
) steps, which is Ω(m log n

m) by
definition of binomial coefficient.

Algorithm 1.2 Intersection based on Doubling Search
1: Let m = |B| ≤ n = |A|, otherwise exchange the role of A and B;
2: i = 1;
3: for j = 1, 2, . . . ,m do
4: k = 0;
5: while (i + 2k ≤ n) and (B[j] > A[i + 2k]) do
6: k = k + 1;
7: end while
8: i′ = Binary search B[j] into A[i + 1,min{i + 2k, n}];
9: if (ai′ = b j) then

10: print b j;
11: end if
12: i = i′.
13: end for

Although this time complexity is appealing, the previous algorithm is heavily based on recursive
calls and binary searching which are two paradigms that offer poor performance in a disk-based
setting when sequences are long and thus the number of recursive calls can be large (i.e. many

1-6 Paolo Ferragina

dynamic memory allocations) and large is the number of binary-search steps (i.e. random memory
accesses). In order to partially compensate with these issues we introduce another approach to
ordered set intersection which allows us to discuss another interesting algorithmic paradigm: the so
called doubling search or galloping search or also exponential search. It is a mix of merging and
binary searching, which is clearer to discuss by means of an inductive argument. Let us assume that
we have already checked the first j − 1 elements of B for their appearance in A, and assume that
ai ≤ b j−1 < ai+1. To check for the next element of B, namely b j, it suffices to search it in A[i + 1, n].
However, and this is the bright idea of this approach, instead of binary searching this sub-array, we
execute a galloping search which consists of checking elements of A[i + 1, n] at distances which
grow as a power of two. This means that we compare b j against A[i + 2k] for k = 0, 1, . . . until we
find that either b j < A[i + 2k], for some k, or it is i + 2k > n and thus we jumped out of the array A.
Finally we perform a binary search for b j in A[i + 1,min{i + 2k, n}], and we return b j if the search is
successful. In any case, we determine the position of b j in that subarray, say ai′ ≤ b j < ai′+1, so that
the process can be repeated by discarding A[1, i′] from the subsequent search for the next element
of B, i.e. b j+1. Figure 1.4 shows a running example, whereas Figure 1.2 shows the pseudo-code of
the doubling search algorithm.

FIGURE 1.4: An example of the Doubling Search paradigm: the two sequences A and B are as-
sumed to have been intersected up to the element 12. The next element in B, i.e. 41, is taken to be
exponentially searched in the suffix of A following 12. This search checks A’s elements at distances
which are a power of two— namely 1, 2, 4, 8, 16— until it finds the element 60 which is larger than
41 and thus delimits the portion of A within which the binary search for 41 can be confined. We
notice that the searched sub-array has size 16, whereas the distance of 41 from 12 in A is 11 thus
showing, on this example, that the binary search is executed on a sub-array whose size is smaller
than twice the real distance of the searched element.

As far as the time complexity is concerned, we observe that the parameter k satisfies the property
that A[i + 2k−1] < b j ≤ A[i + 2k]. So the position i′ − i of b j in A[i + 1,min{i + 2k, n}] is not much
smaller than the size of this sub-array, because it is 2k−1 < i′ − i ≤ 2k and so 2k < 2(i′ − i). Let
us therefore denote with ∆ j the size of the sub-array where the binary search of b j is executed, and
let us denote with i j = i′ as the position where b j occurs in A. For the sake of presentation we
set i0 = 0. Clearly i j − i j−1 ≤ ∆ j ≤ 2k and thus, from before, we have ∆ j ≤ 2(i j − i j−1). These
sub-arrays may be overlapping but by not much, as indeed we have

∑m
j=1 ∆ j ≤

∑m
j=1 2(i j − i j−1) = 2n

because this is a telescopic sum in which consecutive terms in the summation cancel out. For
every j, the algorithm in Figure 1.2 executes O(log ∆ j) steps because of the while-statement and

Set Intersection 1-7

because of the binary search. Summing for j = 1, 2, . . . ,m we get a total time complexity of
O(

∑m
j=1 log ∆ j) = O(m log

∑m
j=1

∆ j

m) = O(m log n
m).

FACT 1.4 The intersection algorithm based on the doubling-search paradigm solves the sorted
set intersection problem in O(m(1+ log n

m)) time. This is the same time complexity of the intersection
algorithm based on the mutual-partitioning paradigm but without incurring in the costs due to
the recursive partitioning of the two sequences A and B. The time complexity is optimal in the
comparison model.

Although the previous approach avoids some of the pitfalls due to the recursive partitioning of the
two sequences A and B, it still needs to jump over the array A because of the doubling scheme; and
we know that this is inefficient when executed in a hierarchical memory. In order to avoid this issue,
programmers adopt a two-level organization of the data, which is a very frequent scheme of efficient
data structures for disk. The main idea of this storage scheme is to logically partition the sequence
A into blocks Ai of size L each, and copy the first element of each block (i.e. Ai[1] = A[iL + 1]) into
an auxiliary array A′ of size O(n/L). For the simplicity of exposition, let us assume that n = hL so
that the blocks Ai are h in number. The intersection algorithm then proceeds in two main phases.
Phase 1 consists of merging the two sorted sequences A′ and B, thus taking O(n/L + m) time. As a
result, the elements of B are interspersed among the element of A′. Let us denote by Bi the elements
of B which fall between Ai[1] and Ai+1[1] and thus may occur in the block Ai. Phase 2 then consists
of executing the merge-based paradigm of Fact 1.1 over all pairs of sorted sequences Ai and Bi

which are non empty. Clearly, these pairs are no more than m. The cost of one of these merges is
O(|Ai| + |Bi|) = O(L + |Bi|) and they are at most m because this is the number of unempty blocks Bi.
Moreover B = ∪iBi, consequently this intersection algorithm takes a total of O(n

L + mL) time. For
further details on this approach and its performance in practice the reader can look at [5].

FACT 1.5 The intersection algorithm based on the two-level storage paradigm solves the sorted
set intersection problem in O(n

L + mL) time and O(n
LB + mL

B + m) I/Os, because every merge of two
sorted sequences Ai and Bi takes at least 1 I/O and they are no more than m.

The two-level storage paradigm is suitable to adopt a compressed storage for the docIDs in order
to save space and, surprisingly, also speed up performance. Let a′1, a

′
2, . . . , a

′
L be the L docIDs stored

ordered in some block Ai. These integers can be squeezed by adopting the so called ∆-compression
scheme which consists of setting a′0 = 0 and then representing a′j as its difference with the preceding
docID a′j−1 for j = 1, 2, . . . , L. Then each of these differences can be stored somewhat compressed
by using dlog2 maxi{a′i − a′i−1}e bits, instead of the full-representation of four bytes. Moreover they
can be easily decompressed if the algorithm proceeds by scanning rightward the sequence.

The ∆-compression scheme is clearly advantageous in space whenever the differences are much
smaller than the universe size u from which the docIDs are taken. The distribution of docIDs which
guarantees the smallest-maximum gap is the uniform one: for which it is maxi{a′i − a′i−1} ≤

u
n . In

order to force this situation we preliminary shuffle the docIDs via a random permutation π : U −→
U and then apply the two-level approach above onto the permuted sequences.

More precisely, in the preprocessing phase, for each list A of length n we permute A according
to the random permutation π and then assign its permuted elements to the buckets Ui according to
their ` = dlog2

n
L e most significant bits. Then to implement the following query phase we need to

have available π−1 so that we can retrieve the original element from its π-image.
In the query phase, the intersection of two sets A and B exploits the intuition that, since the

permutation π is the same for all sets, if element z ∈ A ∩ B then π(z) is the same for A and B.
The algorithm proceeds as in the above two-level storage paradigm and thus solves the sorted set

1-8 Paolo Ferragina

FIGURE 1.5: An example of the Random Permuting and Splitting paradigm. We assume universe
U = {1, . . . , 13}, set L = 2 and n = 8, and consider the permutation π(x) = 1 + (4x mod 13). So U
is partitioned in n/L = 4 buckets identified by the most significant bits ` = dlog2 n/Le = dlog2 4e = 2
bits of the π-image of each element. Recall that every π-image is represented in log2 u = 4 bits, so
that π(1) = 5 = (0101)2 and its 2 most significant bits are 01. The figure shows in bold the elements
of A∩ B, moreover it depicts for the sake of exposition each docID as the pair x | π(x) and, on top of
every sublist, shows the 2 most significant bits. In the example only three buckets of B are unempty,
so we intersect only them with the corresponding ones of A, so that we drop the sublist A0 without
scanning it. The result is {4|4, 2|9, 12|10}, that gives A ∩ B by dropping the second π-component:
namely, {2, 4, 12}.

intersection problem in O(n
L + min{n,mL}) time on average (because of the random permuting) and

O(n
LB + mL

B + m) I/Os (see Fact 1.5). Note that we have available π−1, so we can recover the original
shared item z after having matched π(z). A running example is shown in Figure 1.6.

As far as the space occupancy is concerned we notice that there are Θ(n/L) buckets for A, and
the largest difference between two bucket entries can be bounded in two ways: the bucket width
O(uL/n) and the largest difference between any two consecutive list entries (after π-mapping). The
latter quantity is well known from balls-and-bins problem: here having n balls and u bins. It can
be shown that the largest difference is O(u

n log n) with high probability. The two bounds can be
combined to a bound of log2 min{ uL

n ,
u
n log n} = log2

u
n + log2 min{L, log n} + O(1) bits per list ele-

ment (after π-mapping). The first term is unavoidable since it already shows up in the information
theoretic lower bound, the other is expected to be very small. In addition to this we should consider
O(n

L log n) bits for each list in order to account for the cost of the O(log n)-bits pointer to (the begin-
ning of) each sublist of A, which are at most equal to the number of buckets. This term is O(log n

L)
per element of A and thus it is negligible indeed in practice.

FACT 1.6 The intersection algorithm based on the random-permuting and splitting paradigm
solves the sorted set intersection problem in O(m + min{n,mL}) time and O(m + min{ n

B ,
mL
B }) I/Os.

The space cost for storing a list of length n is n(log2
u
n + log2 min{L, log n} +

log n
L) bits with high

probability.

By analyzing the algorithmic structure of this last solution we notice few further advantages. First,
we do not need to sort the original sequences, because the sorting is required only within the indi-
vidual sublists which have average length L; this is much shorter than the lists’ length so that we
can use an internal-memory sorting algorithm over each π-permuted sublist. A second advantage
is that we can avoid the checking of some sublists during the intersection process (by exploting
the π-mapping like an hash-based merge), without looking at them; this allows to drop the term n

L

Set Intersection 1-9

occurring in Fact 1.5. Third, the choice of L can be done according to the hierarchical memory in
which the algorithm is run; this means that if sublists are stored on disk, then L = Θ(B) can be the
right choice.

The authors of [5, 3, 2] discuss some variants and improvements over all previous algorithms,
some really sophisticate, we refer the interested reader to this literature. Here we report a picture
taken from [5] that compares various algorithms with the following legenda: zipper is the merge-
based algorithm (Fact 1.1), skipper is the two-level algorithm (Fact 1.5, with L = 32), Baeza-Yates
is the mutual-intersection algorithm (Fact 1.3, 32 denotes the bucket size for which recursion is
stopped), lookup is our last proposal (Fact 1.6, L = 8).

FIGURE 1.6: An experimental comparison among four sorted-set intersection algorithms.

We notice that lookup is the best algorithm up to a length ratio close to one. For lists of similar
length all algorithms are very good. Still, it could be a good idea to implement a version of lookup
optimized for lists of similar length. It is also interesting to notice that skipper improves Baeza-
Yates for all but very small length ratios. For compressed lists and very different list lengths, we can
claim that lookup is considerably faster over all other algorithms. Randomization allows interesting
performance guarantees on both time and space performance. The experimented version of skipper
uses a compressed first-level array; probably by dropping compression from the first-level would not
increase much the space, but it would induce a significant speedup in time. The only clear looser is
Baeza-Yates, for every list lengths there are other algorithms that improve it. It is pretty much clear
that a good asymptotic complexity does not reflect onto a good time efficiency whenever recursion
is involved.

References

[1] Ricardo Baeza-Yates. A fast set intersection algorithm for sorted sequences. In Procs of
Annual Symposium on Combinatorial Pattern Matching (CPM), Lecture Notes in Com-

puter Science 3109, pp. 400-408, 2014.

[2] Jérémy Barbay, Alejandro López-Ortiz, Tyler Lu, Alejandro Salinger. An experimental

1-10 Paolo Ferragina

investigation of set intersection algorithms for text searching. ACM Journal of Experi-
mental Algorithmics, 14, 2009.

[3] Bolin Ding, Arnd Christian König. Fast set intersection in memory. PVLDB, 4(4):

255-266, 2011.

[4] Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze. Introduction to
Information Retrieval. Cambridge University Press, 2008.

[5] Peter Sanders, Frederik Transier. Intersection in integer inverted indices. In Procs of
Workshop on Algorithm Engineering and Experiments (ALENEX), 2007.

[6] Hao Yan, Shuai Ding, Torsten Suel. Inverted index compression and query processing

with optimized document ordering. In Procs of WWW, pp. 401-410, 2009.

[7] Ian H. Witten, Alistair Moffat, Timoty C. Bell. Managing Gigabytes. Morgan Kauffman,

second edition, 1999.

