Sorting atomic items

Chapter 5

Distribution based sorting paradigms

The distribution-based sorting

QuickSort is an in place algorithm, but...

Consider the stack for the recursive calls.

For balanced partitions: O(logn) space

Worst case of unbalanced partitions: Q(n) calls, ©(n) space!!
QuickSort is modified.

We can bound the recursive depth. Algorithm Bounded

Based on the fact that: Quicksort does not depend on the order in
which recursive calls are executed!

Small arrays can be better sorted with InsertionSort (whennis
typically of the order of tens).

The modified version mixes one recursive call with an iterative
while loop.

Algorithm Bounded(S, I, j)

Algorithm 5.6 The binary quick-sort with bounded recursive-depth:

1: while (j —i > ng) do

r = pick the position of a “good pivot™;

swap S [r] with S[i];

p = Partrmion(S, i, j);

if (p < %) then n>no
BounpenQS(S,i,p —1);
i=p+1;

else
BOLNDEDQS(S p+1,j)

11: end if
12: end while

13: InserTIONSORT(S, i, J); n< no

PO NS EWN

=)
-,
Il
=
I
Lry

Algorithm Bounded(S, I, j)

« The recursive call is executed on the smaller part of the
partition

« It drops the recursive call on the larger part of the partition in
favor of another execution of the while-loop.

¢ Ex:

10 3 7 15 21 18 2 11 pivot =5[2]=3

Partition

21310 7 15 21 18 11

Only one recursive call on S(i,p-1); For the larger part S(i+1,j) we
iterate to the while loop

« Technique: Elimination of Tail Recursion
« Bounded takes O(nlogn) time in average and O(logn) space.

Multi-way QuickSort

2-level model: M =internal memory size ; B = block size ;

Split the sequence S into k = O(M/B) sub-sequences
using k-1 pivots.

We would like balanced partitions, that is of O(n/k)
items each.

Select k-1 sy, s5, ...5, 1 "good pivots” is not a trivial task!
(later)

Multi-way QuickSort

Let bucket Bi the portion of S between pivot s, ;and s,
We want |Bi|= ©(n/k) for all buckets!
So:

at the first step the size of portions n/k

at the second step the size of portions n/k?

at the third step the size of portions n/k3

Stop whenn/ki< M: n/M <k’ ,iis the number of recursion steps
i 2 log, n/M = logy,s /M

This number of steps is enough to have portions shorter than M, and
sorted in internal memory!

Partition takes O(n/B) I/0O's (dual Yo multiway Merge) : 1 input block, k
output blocks (used to write into the k-partition under formation).

Randomized strategy called oversampling.

Multi-way QuickSort

Find k good pivots efficiently.

O(ak) items are sampled, a>0 parameter of the oversampling.

Algorithm 5.7 Selection of k - 1 good pivots via oversampling

I: Take (@ + 1)k - 1 samples at random from the input sequence;

5

3
4

: Sort them into an ordered sequence A;
: Fori=1,...,k-1, pick the pivot 5; = A[(a + 1)i];
. return the pivots s;;

O(ak) candidates
O(ak)log(ak) time
Select k-1 pivots
evenly distributed

Balanced selection of s; =A[(a+1)i] should provide good pivots!!

Multi-way QuickSort

a+l

a+l a+l a+l

sample

Multi-way QuickSort

The larger is a the closer to O(n/k)
If a=n/k the elements of set A cannot be sorted in M |

If a = O the selection is fast, but unbalanced partitions are is more
probable.

Good choice for a: O(log k). Pivot-selection costs O(klog®k)
Pivot selection costs O(ak log ak)

a=logk klogk log(klogk) = klogk (logk +loglogk)= O(k log?k)

Multi-way QuickSort

Lemma. Let k>2, a+1=12 In k. A sample of (a+1)k-1 suffices to
ensure that all buckets receive less than 4n/k elements, with
probability at least 3.

Proof. We find un upper bound to complement event: there exists 1
bucket containing more than 4n/k elements with probability at most
%. Failure sampling.

Consider the sorted version of S, S'. Logically split S’ in k/2 segments
(ty, ts, .., ti/») of 2n/k elements each.

Multi-way QuickSort

K/2
- -
t L 5 S Y
2n/k 2n/k 2n/k 2n/k
| I
= = -
Si1 ' S

The event is that there exists a bucket Bi with more that 4n/k items. It
spans more than one segment: pivots s, ; and s; fall outside 1.

In t, fall less than (a+1) samples (see selection algorithm: between 2 pivots
there are a+1 samples, hence in 1, there are less).

Pr (exists B.: |B:| >4 n/k) < Pr (exists t; : contains < (a+1) samples)
< k/2 Pr (aspecific segment contain < (a+1) samples)

Since k/2 is the number of segments.

Multi-way QuickSort

« Pr (1 sample goes in a given segment) = (2n/k)/n = 2/k
If drawn uniformly at random from S (and S').

« Let X the number of samples going in a given segment, we want to
compute:

Pr(X < a+1)

« Observe: E(X) = ((a+1)k-1) x 2/k > 2(a+1)-2/k, per k > 2
E(X)2 2(a+1)-1 > 3/2(a+1) foralla>1
a+l < 2/3 E(X) = (1-1/3) E(X)
By Chernoff bound
Pr(X<(1-0)E(X)<e™d2/2)E(X)})
Setting 8=1/3 and assume a+1 = 12|n k

Pr(X<a+l)<P(X < (1-1/3)E(X)) ¢
eEXV/18 ¢ p-(@1)/12 = g-Ink = 1/k

Multi-way QuickSort

Pr(X<a+l)<¢ 1/k

We have already derived:
Pr (exists B, : |B;| >4 n/k) < k/2xPr (a segment contain< (a+1) samples)

Pr (exists B, : |B;| 24 n/k) < 1/2 complement event of the lemma

« All buckets receives less than 4n/k elements with
probability > 1/2

Dual Pivot QuickSort

Good strategy in practice no theoretical result.
Empirical good results in average.

-Psisq > [g

p,q pivots |, k, g indices 2 4 pieces

. items smaller than p

items larger or equal to p and smaller or equal to q.

items not jet considered

items greater than q

Dual Pivot QuickSort

Similar to the 3-ways Partition: maintains the invariants.

« Items equal to the pivot are not treated separately.
« 2 indices move rightward , | and k, while g moves leftward.
« Termination: k > g.

* For item k, compare S[K] : p,
if S[k]<p exchange S[k] and S[I] and increment pointers

else if S[k]>q decrease g while S[g] > q and gzk
the last value of g : S[gl<q
exchange S[k] and S[g]

The comparison with S[k] drives the phases possibly including
a long shift to the left. The nesting of comparison is the key
for the efficiency of the algortihm.

Dual Pivot Partition

| kg g

| 512912131517 1912 26/ 1822200 p-12 ¢=17 g~
exchange 19 and 12, k++, g--

g
| k

512912131517 12192619 182220

no exchange , k++, g--

Dual Pivot QuickSort

You can find the complete code description and the
visualization of the algorithm on youtube by searching for
Dual pivot QuickSort.

Conclusions:

Even a very old, classic algorithm such as QuickSort can be
speed up and innovated!

