Algo Eng Fixed Your 15/12/21

Ex 1

```
"a" \rightarrow root \rightarrow x=4 is the "rank" of the viriled woole

"e" is the right shill of "a" \rightarrow rank (c) = rank, (2x+1) =

rank, (3) = 3

rank, (3) = 1 = 0

L> noole exists.
```

Check (Trouds, Louds, X, d) n = # nodes in T;for i = 1 To n obe

if (Louds [i] = X) then y = i; dix = 0;

while (y > 1) do $y = L \text{ select}_1(y)/2 J;$ $y = L \text{ select}_1(y)/2 J;$

retur FALSE;

symb	0	1	2	3
1		//		
2	A	B		
3	C	D	E	
4	TF	G	1	//

FC		
1	2 ←	- dunny
2	2	
3	1	
4	0	

V=0; $l=1 \rightarrow V < FC[2] \rightarrow continue$ $V=(00)_2=0$; $l=2 \rightarrow V < FC[2] \rightarrow continue$ $V=(000)_2=0$; $l=3 \rightarrow V < FC[3] \rightarrow continue$ $V=(000)_2=0$; $l=4 \rightarrow V > FC[4] \rightarrow Symb[l, V-FC[0]]$ $V=(0001)_2=1$; $l=4 \rightarrow V > FC[4] \rightarrow Symb[4, 1-0]=G$

 $\nabla = \mathbf{1}$; $\ell = 1$; $\rightarrow \nabla < FC[1] \rightarrow continue$ $\nabla = (11)_c = 3$; $\ell = 2 \rightarrow \nabla > FC[1] \rightarrow symb[2, 3-2] = B$

Ex 3

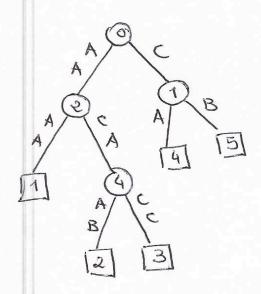
(8, ACC BAAB >

Modifies MTF

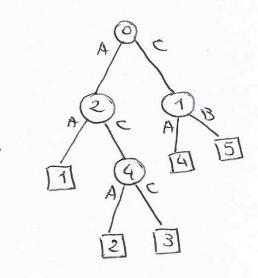
2-33, 1-32

O-rows have love 1

so are encoded

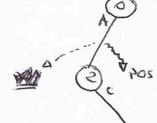

on Ø.

To apply hulfman: $P(0) = \frac{3}{7} P(0) = \frac{1}{7}$


 $P(\mathbf{3}) = \frac{3}{7}$

0 2

€ compressing HTF we obtain: 00,1,00,1,1,00,01,



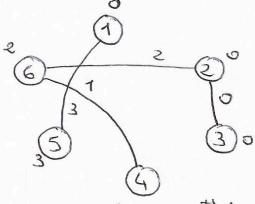
Comported Trie

Potricie Trie

P1= ABC

Two leaf, e.g. [2]

AACA AB


2 comprte LCH = 1 misuatel P1->B

3) so the position of P1 is To the night of 3

EE EX 5

			, ,	1
1	4 1	hi	1 nz	
11	0	2	3	
22	1	4	6	
33	2	6	2	
44	3	1	5	

@ I've not shown the mode o because this value is not used

It is not acyclic, so the solution for g() sloes exist of 1 2 3 4 5 6

~ 1 .	2 1 5
3	3 1 <
0	_
	3 '

h(t) = g(h,(t)) + g(h,(t)) mod 4