
Algorithm Engineering -- EXERCISES  
21 June 2024  

 
Name and Surname:      #matricola:   
 
 
Question #1 [score 5]. Given the strings S = {abbc, abra, bach, acat}, show the 
structure of a Ternary Search Tree built by inserting them in that order. 
 
 
Question #2 [score 5+5]. Given the set S of pairs {<D,4>, <A,6>, <H, 10>, <B,3>, 
<G,7>, <F,2>}, where the first component is the key and the second component is 
the priority.  

• Build a TREAP data structure by inserting the pairs in that order (you can 
assume that it is a MIN heap). 

• Show the execution of the SPLIT operation on the key E 
 
 
Question #3 [score 5] Given the set of n=4 strings, each consisting of two digits:  
 

S = {11, 22, 33, 44} 
 
Build (if possible) the Minimal Ordered Perfect Hash for S using the following two 
hash functions: 

 
h1(xy) = x+5*y   mod 7  and  h2(xy) = x+3*y   mod 7 

 
in which x (resp., y) is the first (resp., second) digit of a string of S.  
As an example, if the string is 11, then x=1 and y=1. 
 
 
Question #4 [scores 3+2+2+3] Given the text T = BRABRA, apply the pipeline 
BWT+MTF+RLE0 (with Wheeler’s code for the 0-runs) and finally apply Arithmetic 
coding on the first 3 numbers of the output of this pipeline. 
 
 
 
 
  



 
Algorithm Engineering -- THEORY 

21 June 2024  
 
Name and Surname:      #matricola:   
 
 
Question #1 [score 5+3]  

- Prove that the expected length of an ordered sequence produced by the 
algorithm Snow Plow is 2M. 

- What is that expected length if the probability for an item to go in the “unsorted 
bucket” is 1/8 instead of ½ ? 

 
Question #2 [rank 5+5]. Given two sorted lists of integers, say L1 and L2 of lengths n 
and m respectively: 

- Describe the “two-level scan” algorithm to compute their intersection. 
- State and prove the time complexity of the previous point. 

 
Question #3 [score 4+4+4].  

- Describe why we introduced the Canonical Huffman encoding algorithm 
- Specify which data structures it keeps in the preamble of its compressed file 
- Write its pseudo-code to decompress one symbol 

 
 
 
 


