
Design and Analysis of Distributed Algorithms

Chapter 1:

DISTRIBUTED COMPUTING ENVIRONMENTS

c©2005, Nicola Santoro.

Contents

1 Entities 1

2 Communication 3

3 Axioms and Restrictions 4

3.1 Axioms . 4

3.1.1 Communication Delays . 4

3.1.2 Local Orientation . 5

3.2 Restrictions . 5

3.2.1 Communication Restrictions . 6

3.2.2 Reliability Restrictions . 8

3.2.3 Topological Restrictions . 8

3.2.4 Time Restrictions . 9

4 Cost and Complexity 9

4.1 Amount of Communication Activities . 9

4.2 Time . 10

5 An Example: Broadcasting 10

6 States and Events 14

6.1 Time and Events . 14

6.2 States and Configurations . 15

7 Problems and Solutions ⋆ 17

8 Knowledge 19

8.1 Levels of Knowledge . 19

8.2 Types of Knowledge . 21

9 Practical Considerations 22

9.1 Messages . 22

9.2 Protocol . 23

9.2.1 Notation . 23

ii

9.2.2 Precedence . 24

9.3 Communication Mechanisms . 24

10 Summary of Definitions 25

11 Exercises, Problems, and Answers 26

11.1 Exercises and Problems . 26

11.2 Answers to Exercises . 27

12 Bibliographical Notes 27

iii

The universe in which we will be operating will be called a distributed computing environment.
It consists of a finite collection E of computational entities communicating by means of
messages. Entities communicate with other entities to achieve a common goal; e.g., to
perform a given task, to compute the solution to a problem, to satisfy a request either from
the user (i.e., outside the environment) or from other entities. In this section, we will examine
this universe in some details.

1 Entities

The computational unit of a distributed computing environment is called an entity. De-
pending on the system being modeled by the environment, an entity could correspond to a
process, a processor, a switch, an agent, etc. in the system.

Capabilities
Each entity x ∈ E is endowed with local (i.e., private, non-shared) memory Mx. The ca-
pabilities of x include: access (storage and retrieval) to local memory, local processing, and
communication (preparation, transmission, and reception of messages). Local memory in-
clude a set of defined registers whose value is always initially defined; among them are the
status register (denoted by status(x)), and the input value register (denoted by value(x)).
The register status(x) is always defined and takes values from a finite set S; example of such
values are “Idle”, ”Processing”, “Waiting”,. . . etc.

In addition, each entity x ∈ E has available a local alarm clock cx which it can set and reset
(turn off).

An entity can perform only four types of operations:

- Local storage and processing
- Transmission of messages
- (Re-)Setting of the alarm clock
- Change the value of the status register

Note that, although setting the alarm clock and updating the status register can be con-
sidered part of local processing, because of the special role these operations play, we will
consider them as a distinct type of operations.

External Events
The behaviour of an entity x ∈ E is reactive: x only responds to external stimuli, which
we call external events; in absence of stimuli, x is inert and does nothing. There are three
possible external events:

- Arrival of a message
- Ringing of Alarm Clock
- Spontaneous Impulse

The arrival of a message and the ringing of the alarm clock are events that are external to
the entity, but originate within the system: the message is sent by another entity, the alarm

1

clock is set by the entity itself.

Unlike the other two types of events, a spontaneous impulse is triggered by forces external
to the system, and thus outside the universe perceived by the entity. As an example of
event generated by forces external to the system, consider an automated banking system: its
entities are the bank servers where the data is stored and the ATM machines; the request by
a customer for a cash withdrawal (i.e., update of data stored in the system) is a spontaneous
impulse for the ATM machine (the entity) where the request is made. For another example,
consider a communication subsystem in the OSI Reference Model: the request from the net-
work layer for a service by the data link layer (the system), is a spontaneous impulse for the
data-link layer entity where the requests is made. Appearing to entities as “acts of God”,
spontaneous impulses are the events that start the computation and the communication.

Actions
When an external event e occurs, an entity x ∈ E will react to e by performing a finite,
indivisible, terminating sequence of operations called action.

An action is indivisible (or atomic) in the sense that its operations are executed without
interruption; in other words, once an action starts, it will not stop until it is finished.
An action is terminating in the sense that, once it is started, its execution ends within finite
time. (Programs that do not terminate cannot be actions).

A special action that an entity may take is the null action nil, where the entity does not
react to the event.

Behaviour
The nature of the action performed by the entity depends on the nature of the event e, as
well as on which status the entity is in (i.e., the value of status(x)) when the events occurs.
Thus the specification will take the form

Status x Event −→ Action

which will be called a rule (or method, or production). In a rule s × e −→ A, we say that
that rule is enabled by (s, e).

The behavioural specification, or simply behaviour, of an entity x is the set B(x) of all the
rules that x obeys. This set must be complete and non ambiguous: for every possible event e
and status value s, there is one and only one rule in B(x) enabled by (s, e). In other words,
x must always know exactly what it must do when an event occurs.

The set of rules B(x) is also called protocol or distributed algorithm of x.

The behavioural specification of the entire distributed computing environment is just the
collection of the individual behaviours of the entities. More precisely, the collective behaviour
B(E) of a collection E of entities is the set

B(E) = {B(x): x ∈ E}

2

Thus, in an environment with collective behaviour B(E), each entity will be acting (behav-
ing) according to their distributed algorithm and protocol (set of rules) B(x).

Homogeneous Behaviour
A collective behaviour is homogeneous if all entities in the system have the same behaviour;
that is, ∀x, y ∈ E , B(x) = B(y).

This means that, to specify an homogeneous collective behaviour, it is sufficient to specify
the behaviour of a single entity; in this case, we will indicate the behaviour simply by B.
An interesting and important fact is the following.

Property 1.1 Every collective behaviour can be made homogeneous.

This means that, if we are in a system where different entities have different behaviours, we
can write a new set of rules, the same for all of them, which will still make them behave as
before.

Example Consider a system composed of a network of several identical workstations and
a single server; clearly the set of rules that the server and a workstation obey is not the
same, as their functionality differs. Still, a single program can be written that will run on
both entities without modifying their functionality. We need to add to each entity an input
register, my role, which is initialized to either “workstation” or “server”, depending on the
entity; for each status-event pair (s, e) we create a new rule with the following action:

s × e −→ { if my role = workstation then Aworkstation else Aserver endif }

where Aworkstation (resp. Aserver) is the original action associated to (s, e) in the set of rules
of the workstation (resp. server). If (s, e) did not enable any rule for a workstation (e.g., s
was a status defined only for the server), then Aworkstation = nil in the new rule; analogously
for the server.

It is important to stress that, in a homogeneous system, although all entities have the same
behavioural description (software), they do not have to act in the same way; their difference
will depend solely on the initial value of their input registers. An analogy is the legal system
in democratic countries: the law (the set of rules) is the same for every citizen (entity); still,
if you are in the police force you are allowed to perform actions which are unlawful for most
other citizens.

An important consequence of the homogeneous behaviour property is that we can concentrate
only on environments where all the entities have the same behaviour. From now on, when
we mention behaviour we will always mean homogeneous collective behaviour.

2 Communication

In a distributed computing environment, entities communicate by transmitting and receiving
messages. The message is the unit of communication of a distributed environment. In its

3

more general definition, a message is just a finite sequence of bits.

An entity communicates by transmitting messages to and receiving messages from other
entities. The set of entities with which an entity can communicate directly is not necessarily
E ; in other words, it is possible that an entity can communicate directly only with a subset
of the other entities. We denote by Nout(x) ⊆ E the set of entities to which x can transmit
a message directly; we shall call them the out-neighbours of x. Similarly, we denote by
Nin(x) ⊆ E the set of entities from which x can receive a message directly; we shall call them
the in-neighbours of x.

The neighborhood relationship defines a directed graph ~G = (V, ~E), where V is the set of

vertices and ~E ⊆ V ×V is the set of edges; the vertices correspond to entities, and (x, y) ∈ ~E
if and only if the entity (corresponding to) y is an out-neighbour of the entity (corresponding
to) x.

The directed graph ~G = (V, ~E) describes the communication topology of the environment.

We shall denote by n(~G), m(~G), and d(~G) the number of vertices, edges, and the diameter of
~G, respectively. When no ambiguity arises, we will omit the reference to ~G, and use simply
n, m, and d.
In the following and unless ambiguity should arise, the terms vertex, node, site, and entity
will be used as having the same meaning; analogously, the terms edge, arc, link will be used
interchangeably.

Summarizing, an entity can only receive messages from its in-neighbours and send message
to its out-neighbours. Messages received at an entity are processed there in the order they
arrive; if more than one message arrives at the same time, they will be processed in arbitrary
order (see Sect. 9). Entities and communication may fail.

3 Axioms and Restrictions

The definition of distributed computing environments with point-to-point-communication
has two basic axioms, one on communication delays, the other on the local orientation of
the entities in the system.

Any additional assumption (e.g., property of the network, a priori knowledge by the entities)
will be called a restriction.

3.1 Axioms

3.1.1 Communication Delays

Communication of a message involves many activities: preparation, transmission, reception,
and processing. In real systems described by our model, the time required by these activities
is unpredictable. For example, in a communication network a message will be subject to
queueing and processing delays which change depending on the network traffic at that time;

4

e.g., consider the delay in accessing (i.e., sending a message to and getting a reply from) a
popular web site.

The totality of delays encountered by a message will be called the communication delay of
that message.

Axiom 3.1 Finite Communication Delays
In absence of failures, communication delays are finite

In other words, in absence of failures, a message sent to an out-neighbour will eventually
arrive in its integrity and be processed there. Note that the Finite Communication Delays
axiom does not imply the existence of any bound on transmission, queueing, or processing
delays; it only states that, in absence of failure, a message will arrive after a finite amount
of time without corruption.

3.1.2 Local Orientation

An entity can communicate directly with a subset of the other entities: its neighbours. The
only other axiom in the model is that an entity can distinguish between its neighbours.

Axiom 3.2 Local Orientation
An entity can distinguish among its in-neighbours.
An entity can distinguish among its out-neighbours.

In particular, an entity is capable of sending a message only to a specific out-neighbour
(without having to send it also to all other out-neighbours). Also, when processing a message
(i.e., executing the rule enabled by the reception of that message), an entity can distinguish
which of its in-neighbours sent that message.

In other words, each entity x has a local function λx associating labels, called also port
numbers, to its incident links (or ports), and this function is injective. We denote by λx(x, y)
the label associated by x to the link (x, y). Let us stress that this label is local to x, and in
general has no relationship at all with what y might call this link (or x, or itself). Note that

for each edge (x, y) ∈ ~E there are two labels: λx(x, y) local to x, and λy(x, y) local to y (see
Fig. 1).

Because of this axiom, we will always deal with edge-labelled graphs (~G, λ), where λ = {λx :
x ∈ V } is the set of these injective labellings.

3.2 Restrictions

In general, a distributed computing system might have additional properties or capabilities
that can be exploited to solve a problem, to achieve a task, to provide a service. This can
be achieved by using these properties and capabilities in the set of rules.

5

- yx
λy(x, y)

λx(x, y) &%
'$

&%
'$

Figure 1: Every edge has two labels

However, any property used in the protocol limits the applicability of the protocol. In
other words, any additional property or capability of the system is actually a restriction (or
submodel) of the general model.

Warning. When dealing with (e.g., designing, developing, testing, employing) a distributed
computing system or just a protocol, it is crucial and imperative that all restrictions are
made explicit. Failure to do so will invalidate the resulting communication software.

The restrictions can be varied in nature and type: they might be related to communication
properties, or to reliability, or synchrony, etc. In the following, we will discuss some of the
most common.

3.2.1 Communication Restrictions

A first category of restrictions includes those relating to communication among entities.

Queueing Policy
A link (x, y) can be viewed as a channel or a queue (see Sect. 9): x sending a message to
y is equivalent to x inserting the message in the channel. In general, all kinds of situations
are possible; for example, messages in the channel might overtake each other, and a later
message might be received first. Different restrictions on the model will describe different
disciplines employed to manage the channel; for example, FIFO queues are characterized by
the following restriction.

Message ordering: In absence of failure, the messages transmitted by an entity to the same
out-neighbour will arrive in the same order they are sent.

Note that Message Ordering does not imply the existence of any ordering for messages trans-
mitted to the same entity from different edges, nor for messages sent by the same entity on
different edges.

6

Link Property
Entities in a communication system are connected by physical links, which may be very
different in capabilities. Examples are simplex and full duplex links. With a fully-duplex
line it is possible to transmit in both directions. Simplex lines are already defined within the
general model. A duplex line can obviously be described as two simplex lines, one in each
direction; thus, a system where all lines are full duplex can be described by the following
restriction:

Reciprocal Communication: ∀x ∈ E , Nin(x) = Nout(x). In other words, if (x, y) ∈ ~E then

also (y, x) ∈ ~E.

Notice that however (x, y) 6= (y, x), and in general λx(x, y) 6= λx(y, x); furthermore, x might
not know that these two links are connections to and from the same entity. A system with
bidirectional links that offers such a knowledge is defined by the following restriction.

Bidirectional Links: ∀x ∈ E , Nin(x) = Nout(x) and λx(x, y) = λx(y, x).

IMPORTANT.
The case of Bidirectional Links is special. If it holds, we use a simplified terminology. The
network is viewed as an undirected graph G = (V, E) (i.e., ∀x, y ∈ E , (x, y) = (y, x)), and
the set N(x) = Nin(x) = Nout(x) will be called just the set of neighbours of x. Note that, in

this case, m(~G) = | ~E| = 2 |E| = 2 m(G).

b

b

b c

c

a
a

b

c

d
d

c
cb

da

cb

G = (V, E) G = (V, E)

YY

X Z X Z

Figure 2: In a network with Bidirectional Links we consider the corresponding undirected graph.

For example, in Fig. 2 is depicted a graph ~G where the Bidirectional Links restriction holds,
and the corresponding undirected graph G.

7

3.2.2 Reliability Restrictions

Another type of restrictions are those related to reliability, faults and their detection.

Detection of Faults
Some systems might provide a reliable fault-detection mechanism. Following are two restric-
tions which describe systems which offer such capabilities in regards to component failures:

Edge Failure Detection: ∀(x, y) ∈ ~E, both x and y will detect whether (x, y) has failed and,
following its failure, whether it has been reactivated.

Entity Failure Detection: ∀x ∈ V , all in- and out- neighbours of x can detect whether x
has failed and, following its failure, whether it has recovered.

Restricted Types of Faults
In some systems only some types of failures can occur: e.g., messages can be lost but
not corrupted. Each situation will give rise to a corresponding restriction. More general
restrictions will describe systems or situations where there will be no failures:

Guaranteed Delivery: Any message that is sent will be received with its content uncorrupted.

Under this restriction protocols do not need to take into account omissions or corruptions of
messages. Even more general is the following.

Partial Reliability: No failures will occur.

Under this restriction, protocols do not need to take failures into account. Note that, under
Partial Reliability, failures might have occurred before the execution of a computation. A
totally fault-free system is defined by the following restriction.

Total Reliability: No failures have occurred nor will occur.

Clearly, protocols developed under this restriction are not fault-tolerant.

3.2.3 Topological Restrictions

In general, an entity is not directly connected to all other entities; it might still be able
to communicate information to a remote entity, using others as relayers. A system which
provides this capability for all entities is characterized by the following restriction.

Connectedness: The communication topology ~G is strongly connected.

That is, from every vertex in ~G it is possible to reach every other vertex. In case the
restriction “Bidirectional Links” holds as well, Connectedness will simply state that G is
connected.

8

3.2.4 Time Restrictions

An interesting type of restrictions are the one relating to time. In fact, the general model
makes no assumption about delays (except that they are finite).

Bounded Communication Delays: There exists a constant ∆ such that, in absence of failures,
the communication delay of any message on any link is at most ∆.

A special case of bounded delays is

Unitary Communication Delays: In absence of failures, the communication delay of any
message on any link is one unit of time.

The general model makes also no assumptions about the local clocks.

Synchronized Clocks All local clocks are incremented by one unit simultaneously and the
interval of time between successive increments is constant.

4 Cost and Complexity

The computing environment we are considering is defined at an abstract level. It models
rather different systems (e.g., communication networks, distributed systems, data networks,
. . .), whose performance is determined by very distinctive factors and costs.

The efficiency of a protocol in the model must somehow reflect the realistic costs encoun-
tered when executed in those very different systems. In other words, we need abstract cost
measures which are general enough but still meaningful.

A computation in a distributed environment will in general require both processing activities
(e.g., logic and arithmetic operations) performed locally by the entities, and communication
activities (e.g., transmission of a message) between entities.

Our emphasis is on the communication costs; we will treat processing costs (which are usually
negligible when compared to transmission and queueing delays) as part of the costs incurred
during communication.

We will use two types of measures: the amount of communication activities and the time
required by the execution of a computation. They can be seen as measuring costs from the
system point of view (how much traffic will this computation generate? how busy will the
system be?), and from the internal user point of view (how long will it take before I get the
results of the computation?).

4.1 Amount of Communication Activities

The transmission of a message through an out-port (i.e., to an out-neighbour) is the basic
communication activity in the system; note that, the transmission of a message which will

9

not be received due to failure still constitutes a communication activity. Thus, to measure
the amount of communication activities, the most common function used is the number of
message transmissions M, also called message cost. So in general, given a protocol, we will
measure its communication efficiency in terms of the number of transmitted messages.

Messages are sequences of bits; some protocols might employ messages which are very short
(e.g., O(1) bit signals), others very long (e.g., .gif files). Thus, for a more accurate assessment
of a protocol, or to compare different solutions to the same problem which use different sizes
of messages, it might be necessary to use as a cost measure the number of transmitted bits
B also called bit complexity.

Other functions of interest are the entity workload Lnode = M/|V |, i.e. the number of
messages per entity; and the transmission load Llink = M/|E|, that is the number of
messages per link.

4.2 Time

An important measure of efficiency and complexity is the total execution delay; that is, the
delay between the time the first entity starts the execution of a computation and the time the
last entity terminates its execution. Note that “time” is here intended as the one measured
by an observer external to the system.

In the general model there is no assumption about time except that communication delays for
a single message are finite in absence of failure (Axiom 3.1). In other words, communication
delays are in general unpredictable. Thus, even in absence of failures, the total execution
delay for a computation is totally unpredictable; furthermore, two distinct executions of
the same protocol might experience drastically different delays. In other words, we cannot
accurately measure time.

We however can measure time assuming particular conditions. The measure usually em-
ployed is the Ideal execution delay or ideal time complexity, T: the execution delay expe-
rienced under the restrictions “Unitary Transmission Delays” and “Synchronized Clocks”;
that is, when the system is synchronous and (in absence of failure) takes one unit of time
for a message to arrive and be processed.

A very different cost measure is the causal time complexity Tcausal. It is defined as the length
of the longest chain of causally related message transmissions, over all possible executions.
Causal time is seldom used and very difficult to measure exactly; we will employ it only
once, when dealing with synchronous computations.

5 An Example: Broadcasting

Let us clarify the concepts expressed so far by means of an example. Consider a distributed
computing system where one entity has some important information unknown to the others,
and would like to share it with everybody else.

10

This problem is called broadcasting and it is part of a general class of problems called Infor-
mation Diffusion. To solve this problem means to design a set of rules which, when executed
by the entities, will lead (within finite time) to all entities knowing the information; the
solution must work regardless of which entity had the information at the beginning.

Let E be the collection of entities and ~G be the communication topology.

To simplify the discussion, we will make some additional assumptions (i.e., restrictions) on
the system:

(1) Bidirectional Links; that is we consider the undirected graph G. (see Section 3.2)
(2) Total Reliability; that is, we do not have to worry about failures.

Observe that, if G is disconnected, some entities can never receive the information, and the
broadcasting problem will be unsolvable. Thus, a restriction that (unlike the previous two)
we need to make is:

(3) Connectivity; that is, G is connected.

Further observe that, built-in the definition of the problem, there is the assumption that
only the entity with the initial information will start the broadcast; Thus, a restriction built
in the definition is:

(4) Unique Initiator; that is, only one entity will start.

A simple strategy for solving the broadcast problem is the following:

“ if an entity knows the information, it will share it with its neighbours. ”

To construct the set of rules implementing this strategy, we need to define the set S of status
values; from the statement of the problem it is clear that we need to distinguish between the
entity that initially has the information, and the others: {initiator, idle} ⊆ S. The process
can be started only by the initiator; denote by I the information to be broadcasted. Here
is the set of rules B(x) (the same for all entities):

1. initiator × ι −→ { send(I) to N(x)}

2. idle × Receiving(I) −→ { Process(I); send(I) to N(x)}

3. initiator × Receiving(I) −→ nil

4. idle × ι −→ nil.

where ι denotes the spontaneous impulse event and nil denotes the null action.

Because of Connectivity and Total Reliability, every entity will eventually receive the infor-
mation. Hence, the protocol achieves its goal and solves the broadcasting problem.

However, there is a serious problem with these rules:

the activities generated by the protocol never terminate !

11

Consider for example the simple system with three entities x, y, z connected to each other
(see Fig. 2). Let x be the initiator, y and z be idle, and all messages travel at the same
speed; then y and z will be forever sending messages to each other (as well as to x).

To avoid this unwelcome effect, an entity should send the information to its neighbours only
once: the first time it acquires the information. This can be achieved by introducing a new
status done; that is S = {initiator, idle, done}.

1. initiator × ι −→ { send(I) to N(x); become done }

2. idle × Receiving(I) −→ { Process(I); become done; send(I) to N(x) }

3. initiator × Receiving(I) −→ nil

4. idle × ι −→ nil

5. done × Receiving(I) −→ nil

6. done × ι −→ nil

where become denotes the operation of changing status.

This time the communication activities of the protocol terminate: within finite time all
entities become done; since a done entity knows the information, the protocol is correct.
(see Exercise 11.2.) Note that, depending on transmission delays, different executions are
possible; one such execution in an environment composed of three entities x, y, z connected
to each other, where x is the initiator is depicted in Fig. 3.

IMPORTANT. Note that entities terminate their execution of the protocol (i.e., become
done) at different times; it is actually possible that an entity has terminated while others
have not yet started. This is something very typical of distributed computations: there is a
difference between local termination and global termination.

IMPORTANT. Notice also that, in this protocol, nobody ever knows when the entire
process is over. We will examine these issues in details in other chapters, in particular when
discussing the problem of Termination Detection.

The above set of rules correctly solves the problem of broadcasting. Let us now calculate
the communication costs of the algorithm.

First of all, let us determine the number of message transmissions. Each entity, initiator
or not, sends the information to all its neighbours. Hence the total number of messages
transmitted is exactly

∑
x∈E |N(x)| = 2 |E| = 2 m

We can actually reduce the cost. Currently, when an idle entity receives the message, it
will broadcast the information to all its neighbours, including the entity from which it had

12

X

X

X

X

Y

ZZ

Y

Z

Y Y

Z

Figure 3: An execution of Flooding.

received the information; this is clearly unnecessary. Recall that, by the Local Orientation
axiom, an entity can distinguish among its neighbours; in particular, when processing a
message, it can identify from which port it was received, and avoid sending a message there.
The final protocol is as the one above with only this small modification.

Protocol Flooding

1. initiator × ι −→ { send(I) to N(x); become done }

2. idle × Receiving(I) −→ { Process(I); become done; send(I) to N(x)-sender }

3. initiator × Receiving(I) −→ nil

4. idle × ι −→ nil

5. done × Receiving(I) −→ nil

6. done × ι −→ nil

where sender is the neighbour that sent the message currently being processed.

This algorithm is called Flooding as the entire system is “flooded” with the message during
its execution, and it is a basic algorithmic tool for distributed computing. As for the number
of message transmissions required by flooding, because we avoid transmitting some messages,
we know that it is less than 2m; in fact, (Exercise 11.3):

13

M[F looding] = 2m − n + 1 (1)

Let us examine now the ideal time complexity of flooding

Let d(x, y) denote the distance (i.e., the length of the shortest path) between x and y in G.
Clearly the message sent by the initiator has to reach every entity in the system, including
the furthermost one from the initiator. So, if x is the initiator, the ideal time complexity
will be r(x) = Max{d(x, y) : y ∈ E}, which is called the eccentricity (or radius) of x. In
other words, the total time depends on which entity is the initiator, and thus can not be
known precisely beforehand. We can however determine exactly the ideal time complexity
in the worst case.

Since every entity could be the initiator, the ideal time complexity in the worst case will
be d(G) = Max{r(x) : x ∈ E} which is the diameter of G. In other words, the ideal time
complexity will be at most the diameter of G:

T[F looding] ≤ d(G) (2)

6 States and Events

Once we have defined the behaviour of the entities, their communication topology, and the set
of restrictions under which they operate, we must describe what are the initial conditions of
our environment. This is done first of all by specifying the initial condition of all the entities.
The initial content of all the registers of entity x and the initial value of its alarm clock cx at
time t constitutes the initial internal state σ(x, 0) of x. Denote by Σ(0) = {σ(x, 0) : x ∈ E}
the set of all the initial internal states.

Once Σ(0) is defined, we have completed the static specification of the environment: the
description of the system before any event occurs and any activity takes place.

We are however also interested in describing the system during the computational activities,
as well as after such activities. To do so, we need to be able to describe the changes that the
system undergoes over time. As mentioned before, the entities (and, thus the environments)
are reactive. That is, any activity of the system is determined entirely by the external events.
Let us examine these facts in more detail.

6.1 Time and Events

In distributed computing environments, there are only three types of external events: spon-
taneous impulse (Spontaneously), reception of a message (Receiving), and alarm clock ring
(When).

When an external event occurs at an entity, it will trigger the execution of an action (the
nature of the action depends on the status of the entity when the event occurs). The executed

14

action may generate new events: the operation send will generate a Receiving event, and
the operation set alarm will generate a When event.

Note first of all that the events so generated might not occur at all. For example, a link
failure may destroy the travelling message, destroying the corresponding Receiving event; in
a subsequent action, an entity may turn off the previously set alarm destroying the When
event.

Notice now that, if they occur, these events will do so at a later time (i.e., when the message
arrives, when the alarm goes off). This delay might be known precisely in the case of the
alarm clock (because it is set by the entity); it is however unpredictable in the case of message
transmission (because is due to conditions external to the entity). Different delays give raise
to different executions of the same protocols with possibly different outcomes.

Summarizing, each event e is “generated” at some time t(e) and, if it occurs, it will happen
at some time later.

By definition, all spontaneous impulses are already generated before the execution starts;
their set will be called the set of initial events. The execution of the protocol starts when
the first spontaneous impulses actually happen; by convention, this will be time t = 0.

IMPORTANT. Notice that “time” is here considered as seen from an external observer,
and it viewed as real time. Each real time instant t separates the axis of time into three parts:
past (i.e., {t′ < t}), present (i.e., t), and future (i.e., {t′ > t}). All events generated before t
that will happen after t is called the future at t and denoted by Future(t); it represents the
set of future events determined by the execution so far.

An execution is fully described by the sequence of events that have occurred. For small
systems, an execution can be visualized by what is called a Time×Event Diagram (TED).
Such a diagram is composed of temporal lines, one for each entity in the system. Each event
is represented in such a diagram as follows:

A Receiving event r is represented as an arrow from the point tx(r), in the temporal line of
the entity x generating e (i.e., sending the message), to the point ty(r) in the temporal
line of the entity y where the events occurs (i.e., receiving the message).

A When event w is represented as an arrow from point t′x(w) to point t′′x(w) in the temporal
line of the entity setting the clock.

A Spontaneously event ι is represented as a short arrow indicating point tx(ι) in the temporal
line of the entity x where the events occurs.

For example, in Fig. 4 is depicted the TED corresponding to the execution of Protocol
Flooding of Fig. 3.

6.2 States and Configurations

The private memory of each entity, in addition to the behaviour, contains a set of registers,
some of them already initialized, others to be initialized during the execution. The content

15

TIME x EVENT Diagram

-

-

-

x

y

z

?

A
A
A
A
A
A
A
AU ����������1

Q
Q

Q
Q

QQs
Z

Z
Z

ZZ~

Figure 4: Time×Event Diagram

of all the registers of entity x and the value of its alarm clock cx at time t constitutes what
is called the internal state of x at t and denoted by σ(x, t). We denote by Σ(t) the set of the
internal states at time t of all entities. Internal states change with time and the occurrence
of events.

There is an important fact about internal states. Consider two different environments, E1

and E2, where, by accident, the internal state of x at time t is the same. Then x can
not distinguish between the two environments; that is, x is unable to tell whether it is in
environment E1 or E2.

There is another important fact. Consider the situation just described: at time t, the internal
state of x is the same both in E1 and E2. Assume now that, also by accident, exactly the
same event occurs at x (e.g., the alarm clock rings; or the same message is received from
the same neighbour). Then x will perform exactly the same action in both cases, and its
internal state will continue to be the same in both situations !

Property 6.1 Let the same event occur at x at time t in two different executions, and let
σ1 and σ2 be its internal state when this happens. If σ1 = σ2, then the new internal state of
x will be the same in both executions.

Remember: Internal states are local and an entity might not be able to infer from them
information about the status of the rest of the system.

We have talked about the internal state of an entity, initially (i.e., at time t = 0) and during
an execution. Let us now focus on the state of the entire system during an execution.

To describe the global state of the environment at time t we obviously need to specify the
internal state of all entities at that time; i.e., the set Σ(t). However, this is not enough ! In
fact, the execution so far might have already generated some events which will occur after
time t; these events, represented by the set Future(t), are integral part of this execution and

16

must be specified as well. Specifically, the global state, called configuration, of the system
during an execution is specified by the couple

C(t) = (Σ(t), Future(t))

The initial configuration C(0) contains not only the initial set of states Σ(0) but also the
set Future(0) of the spontaneous impulses. Environments that differ only in their initial
configuration will be called instances of the same system.

The configuration C(t) is like a snapshot of the system at time t.

7 Problems and Solutions ⋆

The topic of this book is how to design distributed algorithms and analyze their complexity.
A distributed algorithm is the set of rules which will regulate the behaviours of the entities.
The reason why we may need to design the behaviours is to enable the entities to solve a
given problem, perform a defined task, or provide a requested service.

In general, we will be given a problem, and our task is to design a set of rules which will
always solve the problem in finite time. Let us discuss these concepts in some details.

Problems.
To give a problem (or task, service) P means to give a description of what the entities must
accomplish. This is done by stating what are the initial conditions of the entities (and thus
of the system), and what the final conditions should be; it should also specify all given
restrictions. In other words,

P =< PINIT , PFINAL, R >

where PINIT and PFINAL are predicates on the values of the input registers of the entities,
and R is a set of restrictions. Denote by wt(x) the value of an input register w(x) at time t,
and by {wt} = {wt(x) : x ∈ E} the values of this register at all entities at that time. So, for
example, {status0} represents the initial value of the status registers of the entities.

For example, in the problem Broadcasting(I) described in Sect. 5, the initial and final
conditions are given by the predicates

PINIT (t) ≡ ∃x ∈ E (valuet(x) = I ∧ ∀y 6= x (valuet(y) = ø)) ≡
“ only one entity has the information at time t “ .

PFINAL(t) ≡ ∀x ∈ E (valuet(x) = I) ≡ “ every entity has the information at time t “

The restrictions we have imposed in our solution are BL (Bidirectional Links), TR (Total
Reliability), and CN (Connectivity). Implicit in the problem definition there is also the
condition that only the entity with the information will start the execution of the solu-
tion protocol; denote by UI the predicate describing this restriction, called Unique Initiator.

17

Summarizing, for Broadcasting, the set of restrictions we have made is {BL, TR, CN, UI}.

Status.
A solution protocol B for P =< PINIT , PFINAL, R > will specify how the entities will accom-
plish the required task. Part of the design of the set of rules B(x), is the definition of the
set of status values S, that is the values that can be held by the status register status(x).

We call initial status values those values of S which can be held at the start of the execution
of B(x), and denote by SINIT their set. By contrast, terminal status values are those values
which, once reached, can not ever be changed by the protocol; their set shall be denoted by
STERM . All other values in S will be called intermediate status values.

For example, in the protocol Flooding described in Sect. 5, SINIT = {initiator, idle}, and
STERM = {done}.

Depending on the restrictions of the problem, only entities in specific initial status values will
start the protocol; we shall denote by SSTART ⊆ SINIT the set of those status values. Typ-
ically, SSTART consists of only one status; for example, in Flooding, SSTART = {initiator}.
It is possible to rewrite a protocol so that this is always the case (see Exercise 11.6).

Among terminal status values we shall distinguish those in which no further activity can
take place; that is those where the only action is nil. We shall call such status values final
and we shall denote by SFINAL ⊆ STERM the set of those status values. For example, in
Flooding, SFINAL = {done}.

Termination.
Protocol B terminates if, for all initial configurations C(0) satisfying PINIT , and for all
executions starting from those configurations, the predicate

∃t > 0 : Terminate(t)

holds, where Terminate(t) ≡ ({statust} ⊆ SFINAL) (i.e., all entities enter a final status after
a finite time).

We have already remarked on that fact that an entity might not be aware that the termination
has occurred. In some situations, we want that all entities know of the overall termination.
This situation, called explicit termination, is said to occur if the predicate

Explicit-Terminate(t) ≡ (∃t′ ≤ t, Terminate(t′) ∧ ∀x Terminate(t′) ∈ LKt(x))

holds for some t > 0, where LKt denotes the local knowledge of x (i.e., the information held
at or derivable from the content of the local memory of x at time t), described in more details
in Section 8.

Correctness.
Protocol B is correct if, for all executions starting from initial configurations satisfying PINIT ,

18

∃t > 0 : Correct(t)

holds, where Correct(t) ≡ (∀t′ ≥ t, PFINAL(t)); that is, the final predicate eventually holds
and will not change.

Solution Protocol.
The set of rules B solves problem P if it always correctly terminates under the problem
restrictions R. Since there are two types of termination (simple and explicit) we will have
two types of solutions:

Simple Solution[B,P] where the predicate

PINITIAL(0) ∧ ∃t > 0 (Correct(t)∧ Terminate(t))

holds, under the problem restrictions R, for all executions starting from initial configurations
satisfying PINIT ; and

Explicit Solution[B,P] where the predicate

PINITIAL(0) ∧ ∃t > 0 (Correct(t)∧ Explicit-Terminate(t))

holds, under the problem restrictions R, for all executions starting from initial configurations
satisfying PINIT .

Conditional Solutions.
Sometimes it is possible to develop a protocol B that performs a given task P only for
particular cases or under specific conditions, not part of R. In this case we say that B solves
S under conditions R′, where R′ is the set of the additional restriction used by the solution.

IMPORTANT. Any knowledge (other than the port labeling) held by the entities at the
start of the algorithm is a restriction.

8 Knowledge

The notions of information and knowledge are fundamental in distributed computing. Infor-
mally, any distributed computation can be viewed as the process of acquiring information
through communication activities; conversely, the reception of a message can be viewed as
the process of transforming the state of knowledge of the processor receiving the message.

8.1 Levels of Knowledge

The content of the local memory of an entity and the information that can be derived from
it constitute the local knowledge of an entity. We denote by

19

p ∈ LKt[x]

the fact that p is local knowledge at x at the global time instant t. By definition, λx ∈ LKt[x]
for all t; that is, the (labels of the) in- and out- edges of x are time-invariant local knowledge
of x.

Sometimes it is necessary to describe knowledge held by more than one entity at a given
time.

Information p is said to be implicit knowledge in W ⊆ E at time t , denoted by p ∈ IKt[W],
if at least one entity in W knows p at time t; that is, p ∈ IKt[W] iff there exists x ∈ W such
that p ∈ LKt[x].

A stronger level of knowledge in a group W of entities is held when, at a given time t, p is
known to every entity in the group. In this case, p is said to be explicit knowledge in W ⊆ E
at time t,

p ∈ EKt[W] iff ∀x ∈ Wp ∈ LKt[x]

.

Consider for example broadcasting discussed in the previous section. Initially, at time t = 0,
only the initiator s knows the information I; in other words, I ∈ LK0[s]. Thus, at that time,
I is implicitly known to all entities; i.e., I ∈ IK0[E]. At the end of the broadcast, at time t′,
every entity will knows the information; in other words, I ∈ EKt′ [E].

Notice that, in absence of failures, knowledge can not be lost, only gained; that is, for all
t′ > t and all W ⊆ E , if no failure occurs, IKt[W] ⊆ IKt′ [W] and EKt[W] ⊆ EKt′ [W].

Assume that a fact p is explicit knowledge in W at time t. It is possible that some (maybe
all) entities are not aware of this situation. For example, assume that at time t entities x
and y know the value of a variable of z, say its ID; then the ID of z is explicit knowledge
in W = {x, y, z}; however, z might not be aware that x and y know its ID. In other words,
when p ∈ EKt[W], the fact ′′p ∈ EKt[W]′′ might not even be local knowledge of any of the
entities in W .

This gives rises to the highest level of knowledge within a group: common knowledge. Infor-
mation p is said to be common knowledge in W ⊆ E at time t , denoted by p ∈ CKt[W], if
and only if at time t every entity in W knows p, and knows that every entity in W knows p,
and knows that entity in W knows that every entity in W knows p, and . . . , etc. That is,

p ∈ CKt[W] iff
∧

1≤i≤∞ Pi

where the Pi’s are the predicates defined by: P1 = [p ∈ ESt[W]] and Pi+1 = [Pi ∈ EKt[W]].

In most distributed problems, it will be necessary for the entities to achieve common knowl-
edge. Fortunately, we do not always have to go to ∞ to reach common knowledge, as a finite
number of steps might actually do, as indicated by the following example.

Example (muddy forehead) : Imagine n perceptive and intelligent school children playing
together during recess. They are forbidden to play in the mudpuddles, and the teacher has

20

told them that if they do, there will be severe consequences. Each child wants to keep clean,
but the temptation to play with mud is too great to resist. As a result, k of the children get
mud on their foreheads. When the teacher arrives, she says: “I see that some of you have
been playing in the mudpuddle: the mud on your forehead is a dead giveaway !” and then
continues: “The guilty ones that come forward spontaneously will be given a small penalty;
those who don’t, will receive a punishment they will not easily forget.” She then adds: “I
am going to leave the room now, and I will return periodically; if you decide to confess, you
must all come forward together when I am in the room. In the meanwhile, everybody must
sit absolutely still and without talking.”
Each child in the room clearly understands that those with mud on their forehead are “dead
meat”, that will be punished no matter what. Obviously, she does not want to confess if the
forehead is clean ! and clearly, if the forehead is dirty, she wants to go forward so to avoid the
terrible punishment for those who do not confess ! Since each child shares the same concern,
the collective goal is for the children with clean forehead not to confess, and for those with
muddy foreheads to go forward simultaneously; and all of this without communication.
Let us examine this goal. The first questions is: can a child x find out whether her forehead
is dirty or not ? She can see how many, say cx, of the other children are dirty; thus, the
question is if x can determine whether k = cx or k = cx + 1.
The second, more complex question is: can all the children with mud on their forehead find
out at the same time so they can go forward together ? In other words, can the exact value
of k become common knowledge ?
The children, being perceptive and intelligent, determine that the answer to both questions is
positive, and find the way to achieve the common goal and thus common knowledge without
communication (Exercise 11.7).

IMPORTANT. When working in a submodel, all the restrictions defining the submodel
are common knowledge to all entities (unless otherwise specified).

8.2 Types of Knowledge

We can have various types of knowledge, such as knowledge about the communication topol-
ogy, about the labeling of the communication graph, about the input data of the commu-
nicating entities. In general, if we have some knowledge of the system, we can exploit it to
reduce the cost of a protocol, although this may result in making the applicability of the
protocol more limited.

A type of knowledge of particular interest is the one regarding the communication topology
(i.e., the graph ~G). In fact, as will be seen later, the complexity of a computation may vary

greatly depending on what the entities know about ~G. Following are some elements which,
if they are common knowledge to the processors, may affect the complexity.

1. Metric Information: numeric information about the the network; e.g., size n = |V | of
the network, number m = |E| of links, diameter, girth, etc. This information can be
exact, or approximate.

21

2. Topological Properties: knowledge of some properties of the topology; e.g., “ ~G is a ring
network”, “ ~G does not have cycles”, “ ~G is a Cayley graph”, etc.

3. Topological Maps: a map of the neighborhood of the entity up to distance d, a complete
“map” of ~G (e.g., the adjacency matrix of ~G); a complete “map” of (~G, λ) (i.e., it
contains also the labels), etc.

Note that some type of knowledge implies other; for example, if an entity with k neighbours
knows that the network is a complete undirected graph then it knows that n = k + 1.
Since a topological map provides all possible metric and structural information, this type of
knowledge is very powerful and important.

The strongest form of this type is full topological knowledge: availability at each entity of
a labelled graph isomorphic to (~G, λ), the isomorphism, and its own image; that is, every
entity has a complete map of (v, λ) with the indication “You are here”.

Another type of knowledge refers to the labeling λ; we will discuss at length in other chapters,
especially when discussing Sense of Direction.

We can distinguish two other types, depending on whether the knowledge is about the (input)
data or the status of the entities and of the system, and we shall call them type-D and type-S,
respectively.

Examples of type-D knowledge are: Unique identifiers: all input values are distinct. Multiset:
input values are not necessarily identical. Size: number of distinct values.

Examples of type-S knowledge are: System with leader: there is a unique entity in status
“leader”. Reset: all nodes are in the same status. Unique initiator: there is a unique entity
in status “initiator”. For example, in the broadcasting problem we discussed in Section 5,
this knowledge was assumed as part of the problem definition.

9 Practical Considerations

9.1 Messages

The content of a message obviously depends on the application; in any case it consists of a
finite (usually bounded) sequence of bits.

The message is typically divided into subsequences, called fields with a predefined meaning
(“type”) within the protocol.

Examples of field types are:

message identifier or header, used to distinguish between different types of messages;

originator and destination fields, used to specify the (identity of the) entity originating this
message and of the entity to whom the message is intended for;

22

data fields used to carry information needed in the computation (the nature of the infor-
mation obviously depends on the particular application under consideration).

Thus, in general, a message M will be viewed as a tuple M =< f1, f2, . . . fk > where k is a
(small) predefined constant, and each fi(1 ≤ i ≤ k) is a field of a specified type, each type
of a fixed length.

So, for example, in protocol Flooding, there is only one type of message; it is composed of
two fields M =< f1, f2 > where f1 is a message identifier (containing the information: “this
is a broadcast message”), and f2 is a data field containing the actual information I being
broadcasted.

If (the limit on) the size of a message is a system parameter (i.e., it does not depend on the
particular application), we say that the system has bounded messages. Such is, for example,
the limit imposed on the message length in packet-switching networks, as well as on the
length of control messages in circuit switching networks (e.g., telephone networks) and in
message switching networks.

Bounded messages are also called packets, and contain at most µ(G) bits, where µ(G) is the
system-dependent bound called packet size. Notice that, to send a sequence of K bits in G
will require the transmission of at least ⌈K/µ(G)⌉ packets.

9.2 Protocol

9.2.1 Notation

A protocol B(x) is a set of rules. We have introduced already in Section 5 most of the
notation for describing those rules. Let us now complete the description of the notation we
will use for protocols. We will employ the following conventions:

1. Rules will be grouped by status.

2. If the action for a (status,event) pair is nil, then, for simplicity, the corresponding rule
will be omitted from the description. As a consequence, if no rule is described for a
pair (status,event), the default will be that the pair enables the Null action.

WARNING. Although convenient (it simplifies the writing), the use of this convention must
generate extra care in the description: if we forget to write a rule for an event occurring in
a given status, it will be assumed that a rule exists and the action is nil.

3. If an action contains a change of status, it will be the last operation before exiting the
action.

4. The set of status values of the protocol, and the set of restrictions under which the
protocol operates will be explicit.

Using these conventions, the protocol Flooding defined in Sect. 5 will be written as shown
in Figure 5.

23

PROTOCOL Flooding .

• Status Values: S = {INITIATOR, IDLE, DONE};
SINIT = {INITIATOR, IDLE};
STERM = {DONE}.

• Restrictions: Bidirectional Links, Total Reliability, Connectivity, Unique Initiator.

INITIATOR

Spontaneously
begin

send(M) to N(x);
become DONE;

end

IDLE

Receiving(I)
begin

Process(M);

send(M) to N(x) − {sender};
become DONE;

end

Figure 5: Flooding Protocol

9.2.2 Precedence

The external events are: spontaneous impulse (Spontaneously), reception of a message
(Receiving), and alarm clock ring (When). Different types of external events can occur
simultaneously; e.g., the alarm clock might ring at the same time a message arrives. The
simultaneous events will be processed sequentially. To determine the order in which they
will be processed, we will use the the following precedence between external events:

Spontaneously > When > Receiving

that is, the spontaneous impulse takes precedence over the alarm clock, which has precedence
over the arrival of a message.

At most one spontaneous impulse can ever occur at an entity. Since there is locally only
one alarm clock, at any time there will be at most one When event. On the other hand, it
is possible that more than one message arrives at the same time to an entity from different
neighbours; should this be the case, these simultaneous Receiving events have all the same
precedence, and will be processed sequentially in an arbitrary order.

9.3 Communication Mechanisms

The communication mechanisms of a distributed computing system must handle transmis-
sions and arrivals of messages. The mechanisms at an entity can be seen as a system of

24

queues. There are two types of queues: out-ports, one for each out-neighbour (or out-link),
and in-port, one for each in-neighbour.

Thus, the link (x, y) ∈ ~E will correspond to two ports: an out-port in x and an in-port
at y. At an entity, each out-port has a distinct label (recall the Local Orientation axiom)
called port number: the out-port corresponding to (x, y) has label λx(x, y); similarly for the
in-ports. The sets Nin and Nout will in practice consist of the the port numbers associated
to those neighbours; this is because an entity has no other information about its neighbours
(unless we add restrictions).

Messages are sent through ports. The command “send M to W” will have a copy of the
message M inserted in each of the out-ports specified by W .

Once a message is put in an out-port, in absence of failures (recall the Finite Communi-
cation Delays axiom), it will eventually be removed from the out-port and entered in the
corresponding in-port at the other entity.

A message M in an in-port labeled l, in absence of failures (recall the Finite Communication
Delays axiom), will eventually be extracted, generating the Receiving(M) event; at that
time the variable sender will be set to l.

10 Summary of Definitions

Distributed Environment Collection of communicating computational entities.

Communication transmission of message

Message Bounded sequence of bits.

Entity’s Capability local processing, local storage, access to a local clock,communication.

Entity’s Status Register At any time an entity status register has a value from a prede-
fined set of status values.

External Events arrival of a message, alarm clock ring, spontaneous impulse.

Entity’s Behaviour Entities react to external events. The behaviour is dictated by a set
of rules. Each rule has the form

STATUS × EV ENT → Action

specifying what the entity has to do if a certain external event occurs when the entity
is in a given status. The set of rules must be non-ambiguous, and complete.

Actions An action is an indivisible (i.e., uninterruptable) finite sequence of operations (local
processing, message transmission, change of status, setting of alarm clock)

Homogeneous System A system is homogeneous if all the entities have the same be-
haviour. Every system can be made homogeneous.

25

Neighbours The in-neighbours of an entity are those entities from which x can receive a
message directly; the out-neighbours are those to which x can send a message directly.

Communication Topology The directed graph G = (V, E) defined by the neighborhood
relation. If the Bidirectional Links restriction holds, then G is undirected.

Axioms There are two axioms: local orientation and finite communication delays.

Local Orientation An entity can distinguish between its out-neighbours, and between its
in-neighbours.

Finite Communication Delays In absence of failures, a message eventually arrives.

Restriction Any additional property.

11 Exercises, Problems, and Answers

11.1 Exercises and Problems

Exercise 11.1 Show how the communication mechanisms for a distributed computing en-
vironment can be achieved in a parallel random-access machine with exclusive-read and
exclusive-write (EREW-PRAM).

Exercise 11.2 Prove that the flooding technique introduced in Sect. 5 is correct; that is,
it terminates within finite time, and all entities will receive the information held by the
initiator.

Exercise 11.3 Determine the exact number of message transmissions required by the pro-
tocol Flooding described in Sect. 5.

Exercise 11.4 In Sect. 5 we have solved the broadcasting problem under the restriction
of Bidirectional Links. Solve the problem using the Reciprocal Communication restriction
instead.

Exercise 11.5 In Sect. 5 we have solved the broadcasting problem under the restriction of
Bidirectional Links. Solve the problem without this restriction.

Exercise 11.6 Show that any protocol B can be rewritten so that SSTART consists of only
one status. (Hint: Introduce a new input variable)

Exercise 11.7 Consider the muddy children problem discussed in Section 8.1. Show that,
within finite time, all the children with a muddy forehead can simultaneously determine that
they are not clean. (Hint: Use induction on k.)

Exercise 11.8 Half duplex links allow communication to go in both directions, but not si-
multaneously. Design a protocol which implements half-duplex communication between two
connected entities, a and b. Prove its correctness and analyze its complexity.

Exercise 11.9 Half duplex links allow communication to go in both directions, but not si-
multaneously. Design a protocol which implements half-duplex communication between three
entities, a, b and c, connected to each other. Prove its correctness and analyze its complexity.

26

11.2 Answers to Exercises

Answer to Exercise 11.2
Let us prove that every entity will indeed receive the message. The proof is by induction on
the distance d of an entity from the initiator s. The result is clearly true for d = 0. Assume
that it is true for all entities at distance at most d. Let x be a process at distance d + 1
from s. Consider a shortest path s → x1 → . . . → xd+1 → x between s and x Since process
xd−1 is at distance d − 1 from s, then by the induction assumption it receives the message.
If xd−1 received the message from x, then this means that x already received the message
and the proof is completed. Otherwise, xd−1 received the message from a different neighbor,
and it then sends the message to all its neighbors, including x. Eventually, x will receive
this message as its first message, or it will not receive it since it received an earlier message.
In any case we conclude that x will eventually receive the message.

Answer to Exercise 11.3
The total number of messages sent without the improvement was

∑
x∈E |N(x)| = 2|E| = 2m;

in Flooding, every entity (except the initiator) will send one less message. Hence the total
number of messages is 2m − (|V | − 1) = 2m − n + 1.

Answer to Exercise 11.7 (Basis of Induction only)
Consider first the case k = 1: only one child, say z, has a dirty forehead. In this case, z will
see that everyone else has a clean forehead; since the teacher has said that at least one child
has a dirty forehead, z knows that he must be the one ! Thus, when the teacher arrives,
he comes forward. Notice that a clean child sees that z is dirty but finds out that her own
forehead is clean only when z goes forward.
Consider now the case k = 2: there are two dirty children, a and b; a sees the dirty forehead
of b and the clean one of everybody else. Clearly he does not know about his status; he knows
that if he is clean, b is the only dirty one and will go forward when the teacher arrives. So,
when the teacher comes and b does not go forward, a understands that also her forehead is
dirty. (A similar reasoning is carried out by b.) Thus, when the teacher returns the second
time, both a and b go forward.

12 Bibliographical Notes

Several attempts have been made to derive formalisms capable of describing both distributed
systems and computations performed in such systems. A significant amount of study has
been devoted to defining formalisms which would ease the task of formally proving properties
of distributed computation (e.g., absence of deadlock, liveness, etc.). The models proposed
for systems of concurrent processes do provide both a formalism for describing a distributed
computation and a proof system which can be employed within the formalism; such is for
example the Unity model of Mani Chandy and Jayadev Misra [1]. Other models, whose
intended goal is still to provide a proof system, have been specifically tailored for distributed
computations. In particular, the Input-Output Automata model of Nancy Lynch and Mark
Tuttle [3] provides a powerful tool which has helped discover and fix “bugs” in well known

27

existing protocols.

For the investigators involved in the design and analysis of distributed algorithms, the main
concern rests with efficiency and complexity; proving correctness of an algorithm is a com-
pulsory task, but it is usually accomplished using traditional mathematical tools (which are
generally considered informal techniques) rather than with formal proof systems. The for-
mal models of computation employed in these studies, as well as the one used in this book,
mainly focus on those factors that are directly related to efficiency of a distributed computa-
tion and complexity of a distributed problem: the underlining communication network, the
communication primitives, the amount and type of knowledge available to the processors,
etc.

Modal logic, and in particular the notion of common knowledge, is a useful tool to reason
about distributed computing environments in presence of failures. The notion of knowledge
used here was developed independently by Joseph Halpern and Yoram Moses [2], and S.
Rosenschein [4].

The model we have described and will employ in this book uses reactive entities (they re-
act to external stimuli). Several formal models (including IO Automata) use instead active
entities. To understand this fundamental difference, consider a message in transit towards
an entity that is expecting it, with no other activity in the system. In a reactive model,
the entity does nothing; the only event is the arrival of the message that will “wake up”
the entity and trigger its response. By contrast, in an active model, the entity is active
attempting to receive the message, even while it is not there; each attempt is an event;
hence, this simple situation can actually cause an unpredictable number of events. Using an
analogy, the difference is between the pizza-delivery person that rings the door bell at the
address (reactive model), and the one that just waits on the front porch (active model): in
the first case, you (the entity) can sit in the living room until the bell rings (and then react);
in the second, you must repeatedly open the door (i.e., act) to see if the pizza-delivery person
has arrived. The two approaches are equally powerful: they just represent different ways of
looking at and expressing the world. It is our contention that, at least for the description
and the complexity analysis of protocols and distributed algorithms, the reactive model is
more expressive and simpler to understand, to handle and to use.

References

[1] K. Mani Chandi and Jayadev Misra. Parallel Program Design: A Foundation. Addison-
Wesley, 1988.

[2] Joseph Y. Halpern and Yoram Moses. Knowledge and common knowledge in a distributed
envirobment. Journal of the A.C.M., 37(3):549–587, 1987.

[3] Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness proofs of distributed
algorithms. In Proceedings of the 6th ACM Symposium on Principles of Distributed
Computing (PODC), pages 137–151, 1987.

28

[4] S.J. Rosenschein. Formal theories of AI in knowledge and robotics. New Generation
Computing, 3:345–357, 1985.

29

