
1

Computations in Trees

Saturation
Election
Minimum Finding
Eccentricity
Center
Ranking

• Acyclic graph

• n entities

• n - 1 links

Trees

Saturation Technique

• Bidirectional links
• Ordered messages
• Reliability
• Knowledge of the topology
• Distinct identities

Each entity knows if it’s a leaf:

Internal node:

S = {available, awake, processing }

At the beginning, nodes are available

2

• Activation phase:
all nodes are activated

• Saturation Phase:
a unique pair of neighbours is identified

 (saturated nodes)

SATURATION: A General Technique

• Resolution Phase:
started by the saturated nodes

SATURATION

SAT

SA
T SAT

SATURATION

leaf

internal

init WAKE-UP

W
AKE

-U
P

W
AKE-UP

NOTIFICATION

Saturated node

1)

2)

3)

AVAILABLE

Spontaneously
send(Activate) to N(x);
Neighbours:= N(x)
if |Neighbours|=1 then

M:=("Saturation");
parent ⇐ Neighbours;
send(M) to parent;
become PROCESSING;

else
become ACTIVE;

S = {AVAILABLE, ACTIVE, PROCESSING,
SATURATED}
Sinit = AVAILABLE

/* special case if
I am a leaf */

Receiving(Activate)
send(Activate)to N(x)– {sender};
Neighbours:= N(x);
if |Neighbours|=1 then

 M:=("Saturation");
 parent ⇐ Neighbours;
 send(M) to parent;
 become PROCESSING;

else
 become ACTIVE;

3

ACTIVE
Receiving(M)

Neighbours:= Neighbours - {sender};
if |Neighbours|=1 then

M:=("Saturation");
parent ⇐ Neighbours;
send(M) to parent;
become PROCESSING;

PROCESSING

receiving(M)
become SATURATED;

become PROCESSING only after sending saturation

SAT

SATSAT

SAT SAT
SAT SAT

SAT

become SATURATED only after receiving something
in the state PROCESSING

TWO entities become saturated

Other Observations and Examples

Which entities become saturated
depends on the unpredictable delays

Complexity

Activation: Worst case - n initiators

Saturation:

Notification:

Tot: 2n -2+n+n-2=4n-4

2(n-1)

n - 2

n

4

Election

I am
the leader

Initially: everybody in
the same state

At the end: one entity different
 from the others

Election is in general impossible if the entities
 do not have distinct Identifiers

Ex.

Election

Initially: everybody in
the same state

At the end: one entity different
 from the others

Election is in general impossible if the entities
 do not have distinct Identifiers

Ex.

2

6
3

5

To each node x is associated a distinct
identifier v(x)

1) Execute the saturation technique,

2) Choose the saturated node holding
the minimum value

Election in the Tree

9 3

Minimum Finding

2

13

9 15

22

11 120

7 4

12 1424

Put information in the saturation message

5

States S {AVAILABLE, ACTIVE, PROCESSING,
SATURATED} Sinit = AVAILABLE

AVAILABLE

Spontaneously
send(Activate) to N(x);
min := v(x);
Neighbours:= N(x)
if |Neighbours|=1 then

M:=("Saturation", min);
parent ⇐ Neighbours;
send(M) to parent;
become PROCESSING;

 else become ACTIVE;

Receiving(Activate)
send(Activate) to N(x) – {sender};
min:=v(x);
Neighbours:= N(x);
if |Neighbours|=1 then
 M:=("Saturation", min);
 parent ⇐ Neighbours;
 send(M) to parent;
 become PROCESSING;
else become ACTIVE;

ACTIVE
Receiving(M)

min:= MIN{min, M}
Neighbours:= Neighbours - {sender}};
if |Neighbours|=1 then

M:=("Saturation", min);
parent ⇐ Neighbours;
send(M) to parent;
become PROCESSING;

PROCESSING

receiving(M)
min:= MIN{min, M}
Notification:= (“Resolution”, min)
send (Notification) to N(x) -parent
if v(x)=min then

become MINIMUM
else

become LARGE

receiving(Notification)
send(Notification) to N(x) -parent
if v(x)=Received_Value then

become MINIMUM;
else

become LARGE;

6

Finding Eccentricities

d(x,y) = distance between x and y

 Max{d(x,y} = r(x) eccentricity of x
y

x

Ex: r(x) ?

r(x) = 4

Idea:

Every node broadcasts a request, the leaves
send up a message that will collect the
distances.

Complexity: O(n2)

 based on the saturation technique:

1) Find the eccentricity of the
two saturated nodes

2) Propagate the needed info so that the
other nodes can find their eccentricity
(in the notification phase)

Complexity = saturation

Other Idea: Observations and Examples

States S {AVAILABLE, ACTIVE, PROCESSING,

SATURATED} Sinit = AVAILABLE

7

AVAILABLE

Spontaneously
send(Activate) to N(x);
Distance[x]:= 0;
Neighbours:=N(x)
if |Neighbours|=1 then

maxdist:= 1+ Max{Distance[*]}

M:=("Saturation", maxdist);
parent ⇐ Neighbours;
send(M) to parent;
become PROCESSING;

 else become ACTIVE;

define Distance[]

Receiving(Activate)
send(Activate)to N(x) – {sender};
Distance[x]:= 0;
Neighbours:= N(x);
if |Neighbours|=1 then
 maxdist:= 1+ Max{Distance[*]}
 M:=("Saturation", maxdist);
 parent ⇐ Neighbours;
 send(M) to parent;
 become PROCESSING;
else become ACTIVE;

ACTIVE
Receiving(M)

Distance[{sender}]:= Received_distance;
Neighbours:= Neighbours - {sender}};
if |Neighbours|=1 then

maxdist:= 1+ Max{Distance[*]}
M:=("Saturation", maxdist);
parent ⇐ Neighbours;
send(M) to parent;
become PROCESSING;PROCESSING

receiving(M)
Distance[{ sender}]:= Received_distance;
r(x):= Max { Distance[z]: z ∈ N(x) }
for all y ∈ N(x)-{parent} do

maxdist:= 1+ Max{Distance[z]:
z∈ N(x)- {y}

send(“Resolution”, maxdist) to y
endfor
become DONE

Center Finding

c is the center if r(c) ≤ r(x) for all x
belonging to V. Max distance is minimized.

Diametral path: Longest path

8

A

B C

Two diameters in this
example:
A-B, and A-C The center is the

 node with smallest
eccentricity

One Idea:
1) Find all the eccentricities
2) Find the smallest

A

B C

Proposition 1: There is only one center,
or there are two centers (neighbours)

Proposition 2: Centers are on diametral paths.

odd number of nodes
on diameter

even number of nodes
on diameter

Proposition 3: A node x is a center iff

d1[x] – d2[x] ≤ 1

(if d1[x]= d2[x] there is only one center).

d1[x] = 3, d2[x]=3

x
x

y
d1[y] = 3, d2[y]=2

d1[x] = 2, d2[x]=3

z

d1[z] = 4, d2[y]=1

d1[x] = max dist d2[x] = second max dist

(through different neighbours)

9

Another Idea:
1) Find all the eccentricities
2) Each node can find out locally whether

it is the center or not

Yet another Idea:

1) Find the eccentricities of the
saturated nodes

2) Check if I am the center (checking largest
 and second largest)
3) If I am NOT the center, propagate the

distance info ONLY in the direction of
the center

How do I know the direction of the center ?

Examples

Ranking

2

13

9 15

22

11 120

7 4

12 1424

1

2

34
5 6

7

8

9

10
11

12

13

In an arbitrary network:

1) Find a spanning tree
2) Use saturation+ minimum finding

to find a starting node
3) Do-rankingPhase 3 can be: Centralized

 De-centralized
2

13

9 15

22

11 120

7 4

12 1424

10

Centralized Ranking
2

13

9 15

22

11 120

7 4

12 1424

9 1

The leader knows the minimum, it sends
in that direction a ranking message

Every node knows the minimum in its
subtrees, they can then forward the ranking
message in the right direction
When the node to be ranked receives the message
It sends up a notification&update message that will
travel up to the leader

2

13

9 15

22

11 120

7 4

12 1424

9 1

9 15 11

12 24 14

7 4

4
1

(1,1)

(1,1)

2

13

9 15

22

11 120

7 4

12 1424

9 4

9 15 11

12 24 14

7 4

4
∞

first

Notif&update

Notif&update

1

2

13

9 15

22

11 120

7 4

12 1424

9 4

9 15 11

12 24 14

7 4

4
∞

first

second
(4,3)

(4,3)

2

13

9 15

22

11 120

7

12 1424

9 7

9 15 11

12 24 14

7 ∞

7
∞

first

second

third

Etc…

2

4

Complexity: worst case

6 5 4 3 2 1

11

Decentralized Ranking

2

13

9 15

22

11 120

7 4

12 1424

9 1

9 15 11

12 24 14

7 4

4 1

(1,2,1)

The starter node send a ranking message of the form:
(first, second,rank) in the direction of first.

first: smallest value
second: second smallest known SO FAR

 (this is a guess on the value that has to be
 ranked after first)

(1,2,1)
∞

∞

2 The value on a link indicates the
SMALLEST value in the corresponding
subtree.

If no value is indicated (or the value is ∞)
it means that the smallest in the
corresponding subtree is unknown
(for the moment)

22
11 1

2 ∞

2

13

9 15

22

11 120

7 4

12 1424

9 ∞

9 15 11

12 24 14

7 4

4
∞ (2, ∞,2)

The ranked node attempts to send a ranking
message to the next node to be ranked
Second might now be unknown, in this case the
 value ∞ is used

The second variable of the rank message is updated
during its travel and the minimum values on the links
of the tree are also updates

2

∞
1

2

13

9 15

22

11 120

7 4

12 1424

9 4

9 15 11

12 24 14

7 4

4
∞ (2, ∞,2)

(2, 4,2)

2

13

9 15

22

11 1

20

7 4

12 1424

9

9 15 11

12 24 14

7

∞

(4, 9,3)

(4, 7,3)

(4, 7,3)

∞

∞

∞

9

9

7

12

2

20

4

4

4

4

(4, 9,3)

(4, 7, 3)

(4, 7, 3)

22

Notice the update

7

9

9

7

2

13

9 15

22

11
1

20

7

4

12
1424

9

9 15 11

12
24 14

7 ∞

∞

(7, ∞, 4)

∞

∞

9

(7, 9, 4)

9

9

7

2

13

9
15

22

11
1

20

7
4

12
1424

9

9 15 11

12 24 14

12 ∞

∞
12

11

9

(9,12,5)
9

(9,11,5)(9,11,5)

911

11
(9, 11, 5)

7

(9,12,5)

∞

∞

∞ 2

13

9 15

22

11
1

20

7

4

12 1424

 15 11

12 24 14

12 ∞

∞
12

11

(11, ∞, 6)

11

9

13

Complexity: worst case

1 3 5 6 4 2

