
Grid computing

Mattia BUCCARELLA

2010 February, 24th

1 Abstract.

In this document we will deal about the principles of the distributed comput-
ing. In particular, this paper wants to emphasise some concept about the grid
computing technology.
In this sector, will be important being precise in terminology; that’s the reason
why we start to define the meaning of some words:

• distributed indicates something involving more than one calculator as per-
formers of a computation. These computers are interconnected through a
network that makes them communicate in order to share information they
stored, useful to achieve one common goal;

• enabling means something has the capability of making practically and
easily possible realize our ideas;

• a platform is the equipment needed to a particular purpose, where by
”equipement” we mean all the stuff we want to combine together to achieve
the result (i.e.: instruments, GPS, satellities, mobile devices, ...).

We mentioned above the expression ”common goal”. What does it mean? What
do we want to do with all these things combined together? The main topic under
consideration is finding a solution to a large scale problem. ”Large scale” means
that we are treating something that can not be solved on a single machine or
on a little network of computers. Thus, in some way, we have to widen our
perspective in order to consider a very extended solution, that requires a very
large number of equipments. Just to make some example, we can deal with
two types of situations: what happens in research and what happens in real
production.

• In research it is possible to think about several situations whose require-
ments are shed along the whole world (as technological stuff, specific en-
vironments or things that cannot be reproduced, etc...) or needed for
simulations of large- or world-scaled mathematical models (weather fore-
cast, avoidance of Earth’s quakes, etc...);

1



• on the other hand, in the production environment (tipically industrial
or oriented to the commerce), there are problems that require a lot of
calculators in order to perform operations, on-line analysis of petabytes of
data or space to store huge quantities of information (as an example, just
think about the quantity of 2.0-web traffic generated by a single facebook
user or about the quantity of space needed to store biological information,
etc...).

Thus we are dealing with numbers like 1019 bytes per year generated or, in the
case of Google, also 1019 bytes per day, maintaining that the query latency must
remain unchanged (about 0.1 seconds)!!!

2 An experiment.

However, even if we consider the possibility to use equipments shared from the
whole world, we have to take into account that there are several difficulties
bounded to the structure of the solution itself. To give a more precise idea of
above, we consider the following: someone is asking us to solve the problem of
printing on a paper (or on a book, in our case) the first 1020 prime numbers.
We don’t want to consider the computational aspetcs of the problem, hence we
can assume that we are given a best algorithm for the primality check, a best
way to parallelize the whole tasks, and so on, and so forth. We rather want to
understahd how to approach the problem. Certainly we:

• agree to collaborate;

• set our computer connected on a network;

• install the needed software;

• run the program;

• wait for the results.

All these operations seem to be quite simple, but in real world, all this process
has to solve some ”structural” problem. For example, it may be not so simple,
for an user, to agree to connect his computer on a network, because it is possible
that he does not trust some user or the network itself. Similarly, he should install
all the software, assuming that it is not dangerous for his system (but this is not
the typical behaviour of a computer scientist). However, assuming that the user
above wants to trust everything and everyone, what does it happen if after six
days of computation, the software administrator discovers that more computers
are needed? Or what does it happen if some IP address get lost? At this list
we can add more and more questions that are difficult to answer, hence the
conclusion is that all the things that people have to do are not so simple as they
seemed earlier. Indeed when people think about a distributed software, they
tipically have to solve problems about security, sharing of resources, dinamicity,
fault tollerance, and so on and so forth.

2



3 Tools we need.

Before starting to talk about grids, even in this case, it is really important to
precisely define our terminology. We basically have to deal with the following
different things:

• resources;

• protocols;

• services;

• APIs;

• SDKs;

and we shall formally define each entry.
A resource is an entity that may be shared. According to this definition, we
don’t have to think that it must necessarely be a physical object; clearly it could
be an object, as a CPU, an hard disk, but it can also be a software, a filesystem,
etc. It is more important to say that a resource is something defined in terms
of interfaces and capabilities. This means that the users, who want to use a
particular resource Ri, only have to know what kind of job Ri can perform and
what is the way of make Ri do it. As an example we can assume that Ri is a
filesystem which allows users to do read-only operations. Hence, its capabilities
could be:

• open a file or a directory x;

• read the content of x;

• release x (if it is a file).

An interface of above (in a one-to-one correspondence) could be the following
set of identificators:

• open;

• read;

• close;

and this could conclude the description needed to use Ri.
A protocol is a set of rules describing a format that resources have to be com-
pliant to in order to use messages to communicate. Tipically a protocol is a
good one when it defines rules for doing one single thing: defining more than
one thing can be diffficult and it can incurr in some mistake. Also a protocol
has to be defined in terms of its capabilities and interfaces, hence it is easy to
conclude that a protocol is one particular resource. The capabilities and the
interfaces of a protocol are called API s.
In the end, a service is an implementation of a server-side protocol providing

3



a set of capabilities. If, for example, we consider the HTTP protocol, we have
that a web server implementing it is the HTTP service.
An API (Application Programming Interface) defines the logic and the seman-
tics of a set of functions or functionalities without providing an implementation
of them. This latter is a duty of an SDK (Software Development Kit). Clearly,
given an API, it is possibile to have more than one implementation, that is more
than one SDK; for example we can consider the Java language, hence we have
the Sun’s implementation, the Blackdown’s one, the IBM’s one, etc. Further-
more, when we talk about API/SDK, we also have to talk about standards. This
strange word is important because standards are capable to achieve portability
of applications between systems of a different type. That does not mean that
without standards it is impossible to port something to another platform, but
without them it could become a very difficult process.

4 How to use these stuff?

We can define several roles and assign each of them to the entities componing
our distributed environment. Tipically we deal with two important entities: the
service provider and the service requestor. The first one may be an HTTP server
as we have seen above or a different service provider. The requestor is the entity
that wants to use the provided service under consideration. However, for the
current state-of-the-art, it is not enough to have these two components: how
can the requestor know that some service exists? Another entity, the service

registry, answers this question by providing a list of available services to the
requestor. After the requestor has discovered the service that is of its interest,
it will be able to use it without any problem. This sequence of operations is
performed thanks to existing web services that provide interactions between
these three entities. In particular, an entity can use the following web services:

• UDDI to ask the registry about available services and their addresses in
order to discover and use them;

• WSDL to retrieve a description of a particular service (compliant to a
standard human-readable XML format);

• finally SOAP to perform an invocation on a service.

These three services communicate with each other by using XML messages and
these messages are tipically transported over HTTP.
The latter point needs a bit of explainations. We are talking about one entity
C (possibly located in Italy) that wants to use a service s provided by another
entity S (tipically located in the USA). How does it work? Well, provided that
C has already discovered s and retrieved its description through UDDI and
WSDL, it’s now time to perform an invocation. Either C and S must have an
environment that describes them to each other. This thing is called ”STUB”
and it can be informally defined as the fake C or S. More precisely, C will call
(locally) its STUB. This invocation generates a SOAP request that will reach

4



S in order to invoke the service s. Thus this invocation gets serialized into a
sequence of bytes (marshalling) and sent to S. The thing that will receive this
sequence of bytes is the server’s STUB, which has the duty to deserialize that
sequence (unmarshalling), interprete it and finally perform the real request to
the real server. After the request is served, the game is repeated again in the
reverse direction in order to give back to the client the answer he wanted.
The reason why these web services are used in order to perform communica-
tions is that, in general, the interlocutors may be substantially different from
each other. Using a normal communication layer (as TCP) may cause different
interpretation of the sent data, due to these differences. The problem could be
solved by giving to each entity the specifics of all of its interlocutors, but this is a
very long and complex process and it is not dynamic enough (just think of what
happens if a new interlocutor joins the network under consideration). Since
the SOAP messages are XML messages, they exploit their general and always-
working format because XML is independent of the architecture. Thanks to
this assumption we solve readly the problem.

5 Grid computing.

We mentioned a lot of stuff because they are the fundamental components to
set up a grid computing. Indeed, first of all we need a set of shared resources

(like computers, data storage, networks, etc...) and these resources are shared
and then used according to a certain set of rules orchestraring negotiations,
payments, etc.
Thus, we are thinking about solving problem in a coordinated way, and we
will see that these problems will be solved in a dynamic and multi-institutional
virtual organization. This concept needs to be discussed a bit more in detail.
A virtual organization is a dynamic set of individuals and/or institutions that
share a goal and a set of rules. The keyword ”virtual” means that there is no
physical entities identifying or formalizing this concept. As a simple example,
we can consider a class of students as a virtual organization. Indeed all the
students have to share some didactic rules and they, for example, have to submit
some work realized by collaborating with each other (i.e. they have to write
LATEX notes for a course in a distributed way). A virtual organization is also
characterized by the fact that it may vary in size, scope, duration and structure
(for example, think about some student, of the class above, who gives up).
Furthermore, in a virtual organization, resources are highly controlled.
There is not a strict definition of ”grid computing”. The Wikipedia’s definition
of Grid computing is the following:

Definition combination of computer resources from multiple administrative
domains applied to a common task, usually to a scientific, technical or business
problem that requires a great number of computer processing cycles or the need
to process large amounts of data.

Our definition could be:

5



Definition Grid computing is all about achieving performance and throughput
by pooling and sharing resources on a local, national or world-wide leve.

The advantages of using a grid are:

• clearly that each user can access the resources simply by plugging his
computer in the network, without having any problem (as legal problems
or other constraints that people typically have when they use physical
things);

• on-demand services are dinamically coordinated and combined with each
other, and furthermore this dinamicity includes the capability of adding
other new resources applying the minimum effort;

• components are autonomically managed, hence the complexity of the struc-
ture is completely invisible to the users that are connected to.

In order to maintain these properties, however, some characteristics are needed.
The first thought goes to the security. Indeed also this kind of structure needs
protection, especially intrusion detection, fault management, and so on. This
mechanism means that there should be authantication systems (with authoriza-
tions, etc...) in order to access remote data, possibility to discover resources,
get their characterizing description and finally use them. This is not enough: to
solve a problem in a distributed way, the system needs distributed algorithms,
distributed management of resources, and all these things put together make
the payment system (if any) more complicated to be handled too.
The architecture of a grid can be defined independently of its services and re-
sources. We can divide protocols in levels:

• fabric layer;

• connectivity layer;

• resource layer;

• collective layer;

• application layer.

The fabric layer is the set of services and capabilities and protocols that allow
to control locally the resources. Since these resources need some way to com-
municate with each other, then we have the connectivity layer that is the way
of making these resources interact. At this level we also have security issues in
order to guarantee that the communications above are secure. When we need
to do something, or use some resource, we are in the resource layer, and there
resources are combined together with the collective layer. All these layers make
possible have the final layer we are interested in, that is the application layer.
These stuff need to be implemented in some way. The hourglass model gives this
implementation. For the current state-of-the-art, there are no standards imple-
menting a grid computing architectures; each grid has its own implementation.

6



However, the Globus Tooklit (some basic information on the wikipedia’s page)
has emerged as a de-facto standard that can be followed to achieve several and
important connectivity, resources and collective protocols.

6 Using grids.

Now the question is: how grids are used? Which kind of problems they can
solve? First of all, grids are used to perform collaborative jobs. For example,
in the aeroplane building problem, tipically people and different organizations
work together according to the specific role each one can provide to help the
others. Other examples could be given by weather simulation, mathematical
computations, etc. Grids are also used to solve problems that have a really
huge amount of data as input (this is the typical situation we have when we
think of google, yahoo and other contexts in which petabytes of data must be
stored somewhere and processed in a few fractions of second).

7

http://en.wikipedia.org/wiki/Globus_Toolkit

	Abstract.
	An experiment.
	Tools we need.
	How to use these stuff?
	Grid computing.
	Using grids.

