
Map Reduce 

1 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms 



2 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms 

INPUT 

PROCESS 

OUTPUT 

Typical application 



3 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms 

INPUT 

PROCESS 

OUTPUT 

What if… 



4 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms 

INPUT 

OUTPUT 

Divide & Conquer 

I1 

W1 

O1 

I2 

W2 

O2 

I3 

W3 

O3 

I4 

W4 

O4 

I5 

W5 

O5 



Questions 

•  How do we split the input? 

•  How do we distribute the input splits? 

•  How do we collect the output splits? 

•  How do we aggregate the output? 

•  How do we coordinate the work? 

•  What if input splits > num workers? 

•  What if workers need to share input/output splits? 

•  What if a worker dies? 

•  What if we have a new input? 

5 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms 



6 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms 



Design ideas 

•  Scale “out”, not “up” 
–  Low end machines 

•  Move processing to the data 
–  Network bandwidth bottleneck 

•  Process data sequentially, avoid random access 
–  Huge data files 
–  Write once, read many 

•  Seamless scalability 
–  Strive for the unobtainable 

•  Right level of abstraction 
–  Hide implementation details from applications 

development 

7 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms 



Typical Large-Data Problem 

•  Iterate over a large number of records 
•  Extract something of interest from each 
•  Shuffle and sort intermediate results 
•  Aggregate intermediate results 
•  Generate final output 

(Dean and Ghemawat, OSDI 2004) 

Map Reduce 
Programming Model 

8 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms 



Intermediate Values 

Final Value Initial Value 

Intermediate list 

Input list 

Fold 

Map 

g g g g g 

f f f f f 

From functional programming… 

9 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms 



…To MapReduce 
•  Programmers specify two functions: 

map (k1, v1) → [(k2, v2)] 

reduce (k2, [v2]) → [(k3, v3)] 

•  All values with the same key are sent to the same 
reducer 

•  Input keys and values (k1, v1) are drawn from different 
domain than output keys and values (k3, v3) 

•  Intermediate keys (k2, v2) and values are from the same 
domain as the output keys and values (k3, v3) 

•  The runtime handles everything else… 

10 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms 



Programming Model (simple) 

INPUT 

OUTPUT 

O1 O2 O3 

I1 

map 

I2 

map 

I3 

map 

I4 

map 

I5 

map 

Aggregate values by key 

reduce reduce reduce 

11 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms 



Example (I) 

12 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms 



Example (II) 

13 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms 

Input 
Hello world 
Java and MapReduce 
Hello Java 

split 1 
Hello world 

split 2 
Java and 

MapReduce 

split 3 
Hello Java 

map 3 

(hello, 1) 

(java, 1) 

map 2 

(and, 1) 

(mapreduce, 1) 

(java, 1) 

reduce 1 

(hello, 1) 

(and, 1) 

(hello, 1) 

reduce 2 

(world, 1) 

(mapreduce, 1) 

(java, 1) 

(java, 1) 

map 1 

(hello, 1) 

(world, 1) 

Output 
(hello, 2) 
(world, 1) 
(and, 1) 
(java, 2) 
(mapreduce, 1) 



Runtime 

•  Handles scheduling 
–  Assigns workers to map and reduce tasks 

•  Handles “data distribution” 
–  Moves processes to data 

•  Handles synchronization 
–  Gathers, sorts, and shuffles intermediate data 

•  Handles errors and faults 
–  Detects worker failures and restarts 

•  Everything happens on top of a distributed 
FS 

14 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms 



Partitioners and combiners 

•  Programmers specify two functions: 
map (k1, v1) → [(k2, v2)] 
reduce (k2, [v2]) → [(k3, v3)] 
–  All values with the same key are reduced together 

•  The execution framework handles everything else… 

•  Not quite…usually, programmers also specify: 

partition (k2, number of partitions) → partition for k2 
–  Often a simple hash of the key, e.g., hash(k’) mod n 
–  Divides up key space for parallel reduce operations 

combine (k2, v2) → [(k2, v2)] 
–  Mini-reducers that run in memory after the map phase 
–  Used as an optimization to reduce network traffic 

15 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms 



Programming Model (complete) 

INPUT 

I1 

map 

I2 

map 

I3 

map 

I4 

map 

I5 

map 

Aggregate values by key 

OUTPUT 

O1 O2 O3 

reduce reduce reduce 

16 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms 

partition 

combine 

partition 

combine 

partition 

combine 

partition 

combine 

partition 

combine 



MapReduce can refer to… 

•  The programming model 
•  The execution framework (aka “runtime”) 
•  The specific implementation 

17 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms 



MapReduce Implementations 

•  Google has a proprietary implementation in 
C++ 
–  Bindings in Java, Python 

•  Hadoop is an open-source implementation 
in Java 
–  Development led by Yahoo, used in production 
–  Now an Apache project 
–  Rapidly expanding software ecosystem 

•  Lots of custom research implementations 
–  For GPUs, cell processors, etc. 

18 MCSN – N. Tonellotto – Complements of Distributed Enabling Platforms 


