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Questions 

•  How do we split the input? 

•  How do we distribute the input splits? 

•  How do we collect the output splits? 

•  How do we aggregate the output? 

•  How do we coordinate the work? 

•  What if input splits > num workers? 

•  What if workers need to share input/output splits? 

•  What if a worker dies? 

•  What if we have a new input? 
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Design ideas 

•  Scale “out”, not “up” 
–  Low end machines 

•  Move processing to the data 
–  Network bandwidth bottleneck 

•  Process data sequentially, avoid random access 
–  Huge data files 
–  Write once, read many 

•  Seamless scalability 
–  Strive for the unobtainable 

•  Right level of abstraction 
–  Hide implementation details from applications 

development 
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Typical Large-Data Problem 

•  Iterate over a large number of records 
•  Extract something of interest from each 
•  Shuffle and sort intermediate results 
•  Aggregate intermediate results 
•  Generate final output 

(Dean and Ghemawat, OSDI 2004) 

Map Reduce 
Programming Model 
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From functional programming… 
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…To MapReduce 
•  Programmers specify two functions: 

map (k1, v1) → [(k2, v2)] 

reduce (k2, [v2]) → [(k3, v3)] 

•  All values with the same key are sent to the same 
reducer 

•  Input keys and values (k1, v1) are drawn from different 
domain than output keys and values (k3, v3) 

•  Intermediate keys (k2, v2) and values are from the same 
domain as the output keys and values (k3, v3) 

•  The runtime handles everything else… 
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Programming Model (simple) 
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Example (I) 
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Example (II) 
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Runtime 

•  Handles scheduling 
–  Assigns workers to map and reduce tasks 

•  Handles “data distribution” 
–  Moves processes to data 

•  Handles synchronization 
–  Gathers, sorts, and shuffles intermediate data 

•  Handles errors and faults 
–  Detects worker failures and restarts 

•  Everything happens on top of a distributed 
FS 
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Partitioners and combiners 

•  Programmers specify two functions: 
map (k1, v1) → [(k2, v2)] 
reduce (k2, [v2]) → [(k3, v3)] 
–  All values with the same key are reduced together 

•  The execution framework handles everything else… 

•  Not quite…usually, programmers also specify: 

partition (k2, number of partitions) → partition for k2 
–  Often a simple hash of the key, e.g., hash(k’) mod n 
–  Divides up key space for parallel reduce operations 

combine (k2, v2) → [(k2, v2)] 
–  Mini-reducers that run in memory after the map phase 
–  Used as an optimization to reduce network traffic 
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Programming Model (complete) 
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MapReduce can refer to… 

•  The programming model 
•  The execution framework (aka “runtime”) 
•  The specific implementation 
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MapReduce Implementations 

•  Google has a proprietary implementation in 
C++ 
–  Bindings in Java, Python 

•  Hadoop is an open-source implementation 
in Java 
–  Development led by Yahoo, used in production 
–  Now an Apache project 
–  Rapidly expanding software ecosystem 

•  Lots of custom research implementations 
–  For GPUs, cell processors, etc. 
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