Lab Lecture #3.1

Word frequency in document

This phase is designed in a job whose task is to count the number of words in each of the
documents in the input directory. The mapper will receive as input a key that is, by default,
the byte offset of the current line in the current file processed (LongWritable object) and a
value that is the line read from the file (Text object). It must output another (key, value) pair.
The problem is coding the (word, doc name) pair in a single object. While it is possible to
implement a custom class to do the job, we will use a “string trick”, emitting a simple string
composed by the word, the special character “@” and the doc name. In order to obtain the
document name from the Context object, use the following statement:

String fileName = ((FileSplit)context.getInputSplit()).getPath().getName();

Then, use the following statements to remove punctuation and other word anomalies:

Pattern p Pattern.compile("\\w+");
Matcher m = p.matcher(value.toString());

while (m.find()) {
String word = m.group().toLowerCase();
// remaining code

}

During the mapper execution, each word in the line should be lower-cased, and ignored if it
does not start with a letter or if it contains the character “_".

The reducer behaves as the standard, well-known WordCount reducer. In this case, keys are
represented by Text objects, and values by IntWritable objects. The output will be a set of
files (one per reducer): each line of each file will contain a word@document string, a tab
character and an integer coded as string. Please remember that Hadoop requires the same
classes for keys in the mapper output and the reducer input, as well as the same classes for
relative values, although key and value classes can be different.









