Lab Lecture #3

Introduction

Suppose we have a set of English text documents and wish to determine which document is
most relevant to the query "the brown cow". A simple way to start out is by eliminating
documents that do not contain all three words "the", "brown" and "cow", but this still leaves
many documents. To further distinguish them, we might count the number of times each term
occurs in each document and sum them all together; the number of times a term occurs in a
document is called its term frequency. However, because the term "the" is so common, this
will tend to incorrectly emphasize documents which happen to use the word "the" more,
without giving enough weight to the more meaningful terms "brown" and "cow". Also the term
"the" is not a good keyword to distinguish relevant and non-relevant documents and terms
like "brown" and "cow" that occur rarely are good keywords to distinguish relevant
documents from the non-relevant documents. Hence an inverse document frequency factor
is incorporated which diminishes the weight of terms that occur very frequently in the
collection and increases the weight of terms that occur rarely.

The term count in the given document is simply the number of times a given term appears in
that document. This count is usually normalized to prevent a bias towards longer documents
(which may have a higher term count regardless of the actual importance of that term in the
document) to give a measure of the importance of the term ¢; within the particular document
dj. Thus we have the term frequency, defined as follows.
iy =~
) N)

J
where nj is the number of occurrences of the considered term (¢;) in document dj, and the
denominator N; is the sum of number of occurrences of all terms in document d; (the
document length).
The inverse document frequency is a measure of the general importance of the term
(obtained by dividing the total number of document by the number of documents containing
the term, and then taking the logarithm of that quotient).
. D
idf, =log M,
where:
* |D| is total number of documents in the corpus;
* Mi=|{d: ti € d}| is the number of documents where the term ¢t; appears in.

Then
(tf - ldf),] = tfu ldfz

A high weight in tf-idf is reached by a high term frequency (in the given document) and a low
document frequency of the term in the whole collection of documents; the weights hence tend
to filter out common terms. The tf-idf value for a term will always be greater than or equal to
ZEero.

Consider a document containing 100 words wherein the word “cow” appears 3 times.
Following the previously defined formulas, the term frequency (TF) for “cow” is then 0.03.
Now, assume we have 10 million documents and “cow” appears in one thousand of these.
Then, the inverse document frequency is calculated as In(10000000/1000) = 9.21. The tf-idf
score is the product of these quantities: 0.03 x 9.21 = 0.28.

Compute TF-IDF using MapReduce

Given a small collection of documents, we are going to implement tf-idf scores using Hadoop.
We will need the following information:

* number of times term ¢t; appears in a given document (n)
* number of terms in each document (N)

* number of documents term ¢; appears in (m)

* total number of documents (|D|)

We use multiple rounds of Map/Reduce to gradually compute tf-idf:

1. Word frequency in document: starting from a directory containing a set of text files,
we will produce another set of files associating the couple (t;, d;) to the number n of
times the term ¢; appears in the document d,.

Mapper: input: (doc name, doc contents)
output: ((word, doc name), 1)

Reducer: sums counts for word in document
outputs ((word, doc name), n)

2. Word count in document: starting from the directory containing the output of the
previous job, we will produce another set of files associating the couple (t;, d;) to the
couple (n, N), where N represents the total number of terms in the document d;.

Mapper: input: ((word, doc name), n)
output: (doc name, (word, n))

Reducer: sums frequencies n for individual terms in the same document
outputs ((word, doc name), (n, N))

3. Word frequency in collection: starting from the directory containing the output of
the previous job, we will produce another set of files associating the couple (¢;, d;) to
the triple (n, N, m), where m represents the number of documents the term t; appears
in the document d;.

Mapper: input: ((word, doc name), (n, N))
output: (word, (doc name, n, N))

Reducer: sums counts for word in collection
output: ((word, doc name), (n, N, m))

4. Calculate tf-idf: starting from the directory containing the output of the previous job,
and assuming |D| is known, we will produce another set of files associating the couple
(i, d;) its tf-idf score.

Mapper: input: ((word, doc name), (n, N, m))
output: ((word, doc name), tf-idf)
Reducer: do nothing
output: ((word, doc name), tf-idf)

