An introduction to Apache Spark

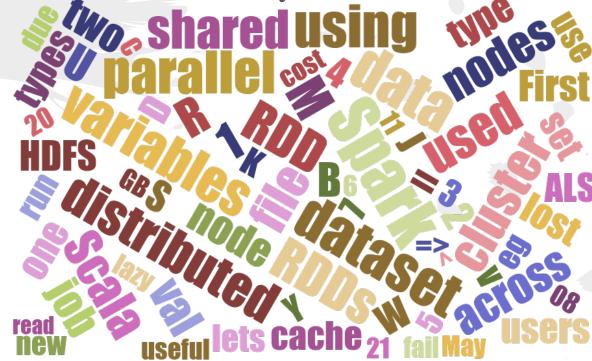
Strumenti di programmazione per sistemi paralleli e distribuiti 2014/2015 Prof. Massimo Coppola

Speaker: Alessandro Lulli - lulli@di.unipi.it

SUpp

Summary

- introduction to distributed graph processing
- RDDs: Resilient Distributed Datasets
- Apache Spark
- GraphX
- my experience: a case study with Connected Components



"text on cloud" generated from Zaharia, Matei, et al. "Spark: cluster computing with working sets"

A (big) data problem

- exponential growth of structured and unstructured data
- significant part of the data produced can be modelled as a graph
- data and graphs are produced continuously by internet users
- some examples:
 - US road network 10¹¹ nodes and edges
 - Web Page Graph 3.5 x 10⁹ nodes and 128 x 10⁹ edges
 - Twitter 40 x 10⁶ nodes and 10⁹ edges

Why data analytics?

- to provide new products and services tailored for users: ad-hoc advertisements and search results
- improve decision making: ranking methods
- minimise risks: search for vulnerability in road networks
- unearth valuable insights that would otherwise remain hidden: study human brain connectome

Facts

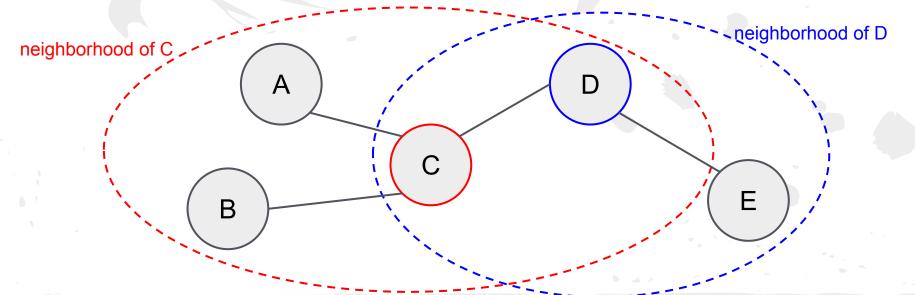
- we have a lot of data
- it is useful to elaborate data
- processing capacity is beyond the capacity of a single machine
- Our target
- efficient graph processing (GP) on distributed commodity hardware

Distributed frameworks for GP

- aim at easing the development task by:
 - letting programmers focus only on problem solving
 - automating data distribution
 - managing failures
- the vertex-centric computing model has momentum
 - computation follows the structure of the graph
- two main approaches:
 - data parallel, mainly based on Google's MapReduce:
 - Hadoop
 - Spark
 - BSP-Like:
 - Pregel
 - GraphX, built on top of Spark (2013)

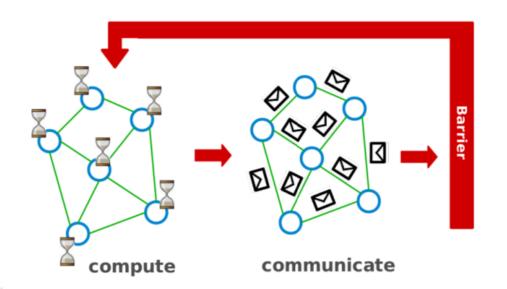
Vertex centric computing model

- each vertex
 - is a computational unit
 - local-knowledge computation: the computation for a node can rely only on its own data and the neighborhood data
 - there is no global knowledge
- each edge
 - is a communication channel
 - vertices interact with other vertices using messages



Bulk Synchronous Parallel

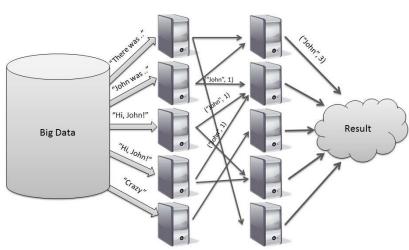
- define a computation as a sequence of iterations called *superstep*
- synchronization barrier at the end of each superstep
- all communications are from superstep S to superstep S+1
- re-introduced by Google with Pregel and Giraph based on Hadoop MapReduce



MapReduce

• three step model:

- *Map*: each sub-problem takes an input key/value pair and produces a set of intermediate key/value pairs
- *Shuffle*: key value pairs having the same key are assigned to the same worker
- *Reduce*: all the results from the Map tasks are gathered from the worker nodes and then merged to form the output solution
- a graph is usually represented by assigning each vertex to a key

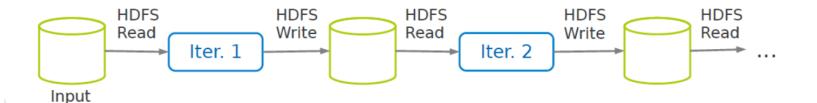


REDUCE

MAP

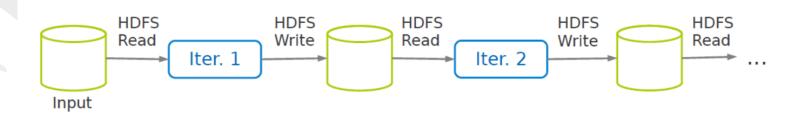
Motivation to move forward

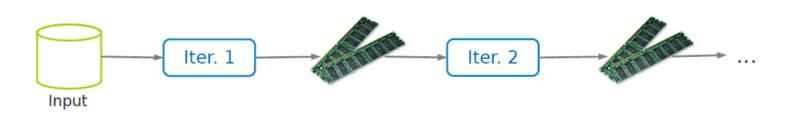
- MapReduce greatly simplified big data analysis on large, unreliable clusters
- it provides fault-tolerance, but also has drawbacks
 - iterative computation: hard to reuse intermediate results across multiple computations
 - efficiency: the only way to share data across jobs is stable storage, which is slow



Proposed solution: Spark

- challenge: how to design a distributed memory abstraction that is both fault tolerant and efficient?
- idea: in-memory data processing and sharing using Resilient Distributed Datasets (RDDs)





Resilient Distributed Datasets (RDDs)

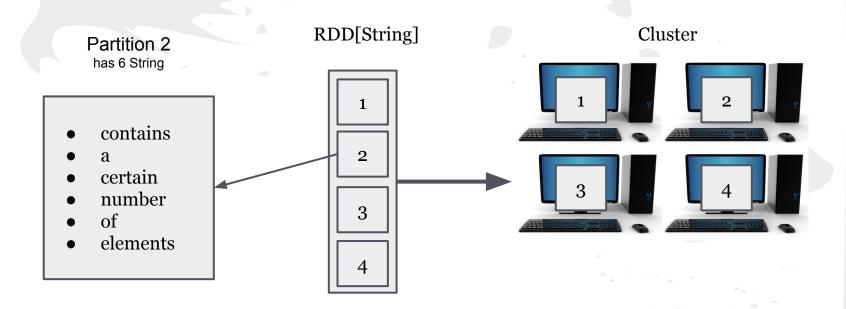
- a distributed memory abstraction
- restricted form of distributed shared memory
 - read-only, partitioned collection of records
 - immutable collections of objects spread across a cluster
- can only be built through coarse-grained deterministic transformations from:
 - data in stable storage
 - transformations from other RDDs
- express computation by defining RDDs

What is an RDD?

• imagine to have a list distributed on different computer

RDD Partitions

- an RDD is divided into a number of partitions, which are atomic pieces of information
- each partition:
 - contains a certain number of elements of type T
 - can be stored on different nodes of a cluster



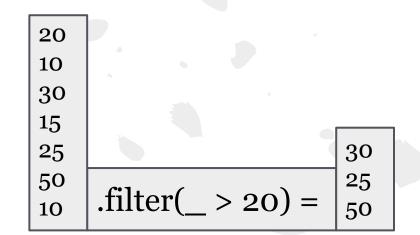
RDD Generic

- an RDD is generic (the same of a Java List) -> RDD[T]
- it is possible to make an RDD[String], RDD[Int], RDD [List<String>]...
- it is enough to have type T Serializable

RDD Operations: Transformations

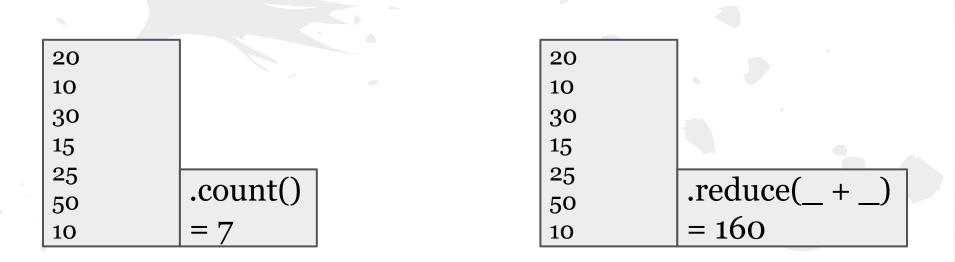
- lazy operators that create new RDDs from existing ones
 - map (f: T->U)
 - filter (f: T->Bool)
 - reduceByKey()
 - o join()
 - union()
 - ... (and lots of others)

20.56		20
10.34		10
30.78		30
15.98		15
25.31		25
50.53		50
10.57	.map(toInt) =	10



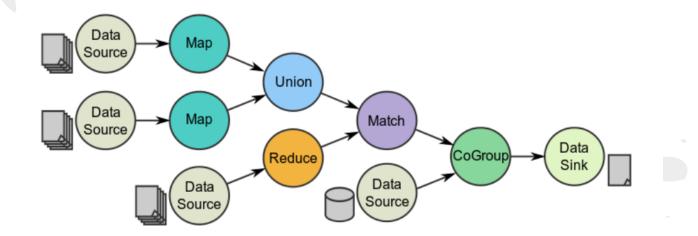
RDD Operations: Actions

- launch a computation on a RDD and return a value to the program, or write data to the external storage
 - count()
 - reduce()
 - save(): actually saves an RDD to permanent storage
 - ... (and lots of others)



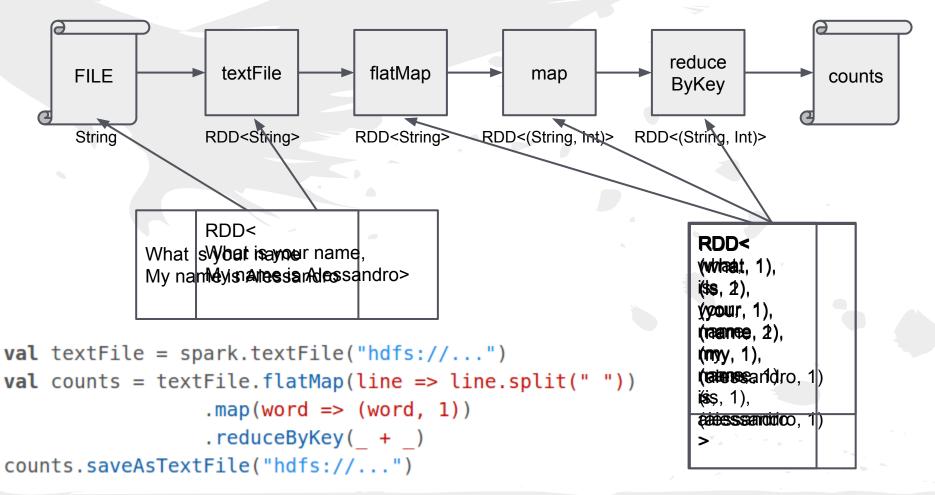
Programming Model

- based on parallelizable operators:
 - higher-order functions that execute user defined functions in parallel
- a data flow is composed of any number of data sources and operators
 - data sinks by connecting their inputs and outputs
 - job description based on directed acyclic graphs (DAG)



RDD Example: Word Count

• build a dataset of (String, Int) pairs called counts and then save it to a file

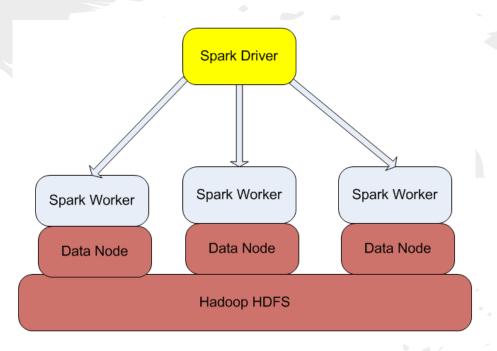


Spark

- implementation of the RDD abstraction
 - Scala interface
 - each RDD is represented as an object in Spark
- two components
 - Driver
 - Workers
- API available in Scala, Java and Python

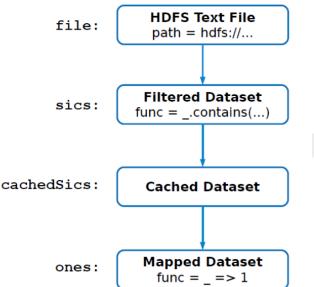
Spark Runtime

- Driver
 - defines and invokes actions on RDDs
 - tracks the RDDs' lineage
- Workers
 - store RDD partitions
 - perform RDD transformations



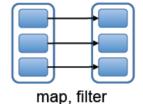
Lineage

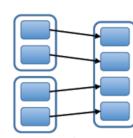
- it is the list of transformations (dependency) of a RDD
- how an RDD has been built from other RDDs or files
- transformations used to build an RDD
- RDDs are stored as a chain of objects capturing the lineage of each RDD
- important for job scheduling, fault tolerance and memory management

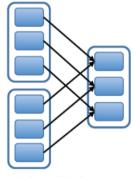


RDD Dependencies

- narrow dependencies
 - each partition of the parent RDD is used by at most one partition of the child RDD
 - allow for pipelined execution on one cluster node
 - easy fault recovery
- wide dependencies
 - multiple child partitions may depend on it
 - require data from all parent partitions to be available and to be shuffled across the nodes
 - a single failed node might cause a complete re-execution

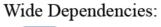


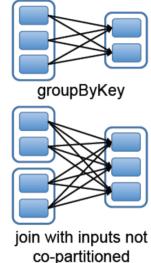




join with inputs co-partitioned

union





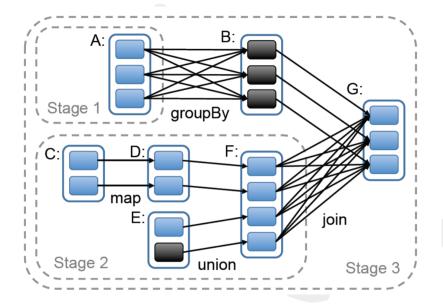
Data Partitioning

- users can decide how to assign data to partitions and the number of partitions
- but Spark decides how partitions are assigned to machines
 - no control where data are at runtime
 - spark adopts load balancing techniques

my	name
what	is
is	ale
your	name

Job Scheduling

- in order to execute an action on an RDD
 - scheduler decides the stages from the RDD's lineage graph
 - each stage contains as many pipelined transformations with narrow dependencies as possible
- tasks are assigned to machines based on data locality
- if a task needs a partition, which is available in the memory of a node, the task is sent to that node



RDD Fault Tolerance

- RDDs maintain lineage information that can be used to reconstruct lost partitions
- logging lineage rather than the actual data
 no replication
- recompute only the lost partitions of an RDD
- recovery may be time-consuming for RDDs with long lineage chains and wide dependencies
- it can be helpful to checkpoint some RDDs to stable storage
- decision about which data to checkpoint is left to users

Checkpointing

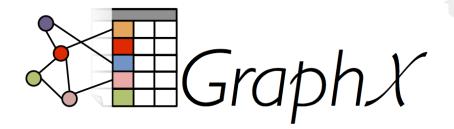
- BEWARE! checkpointing of RDDs is necessary to prevent long lineage chains during fault recovery
- low overhead and complexity than checkpointing of other shared memory structures
 - no need to synchronize
 - read-only, immutable nature of RDDs

Memory Management

- three options for persistent RDDs
 - in-memory storage as deserialized Java objects
 - in-memory storage as serialized data
 - on-disk storage
- more, bigger RDDs require memory management
- LRU eviction policy at the level of RDDs
 - when there is not enough memory, evict a partition from the least recently accessed RDD
 - possible thanks to the functional semantics and immutable nature of RDDs
 - exploit lineage to recompute discarded partitions which the program may need again

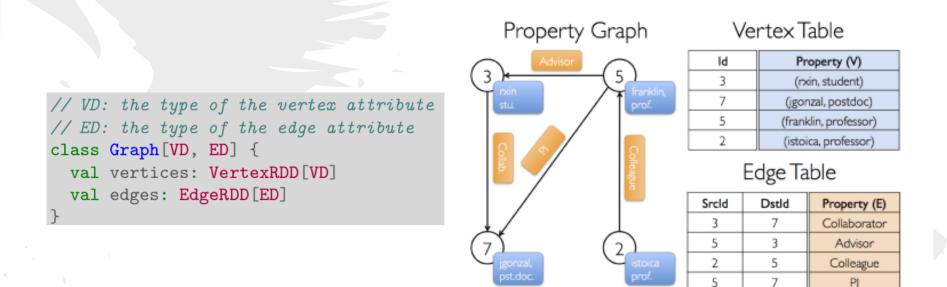
GraphX

- it is implemented on top of Spark
- explore the design of graph processing systems on top of general-purpose distributed data-flow systems
- provides a new API collection targeting graph processing
 - enables composition of graphs with unstructured and tabular data
 - allows to view the same physical data both as a graph and as a collection without data movement or duplication



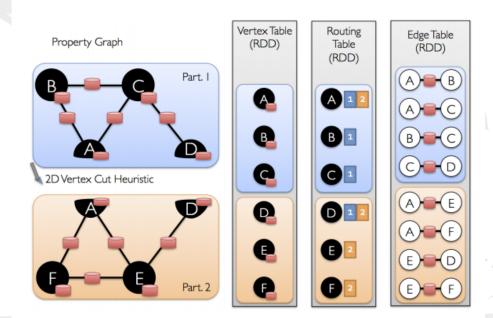
Data Model

- property graph
- graphs represented using two Spark RDDs:
 - edge collection: VertexRDD
 - vertex collection: EdgeRDD



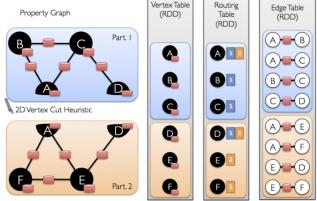
Edge Collection

- edges are split on different partitions
- different partitioning strategies can be applied
 - a few partitioning heuristics are predefined (4)
 - based on some hashing of the vertex identifier
 - more can be defined by the user
 - may need some vertex relabeling
 - getPartition(VertexId, VertexId, numParts): PartitionID



Vertex Collection

- *routing table*: a logical map from a vertex id to the set of edge partitions that contains adjacent edges
- *bitmask*: store the visibility of the vertices enabling soft deletion and index reuse
 - vertices bitmasks are updated after each operation (e.g. mapReduceTriplets).
 - vertices hidden by the bitmask do not participate in the graph operations (soft-deletion)
 - rebuild index structure is a costly operations, due to this RDD can reuse indices of previous RDD to rec and accelerate graph operations



Vertex Cut

- vertex and edge collections partitioned independently
- edges belong to only one partition
- a vertex can have edges on different partitions, so
- vertex mirroring
 - vertex properties shipped across the network, to the edges
 - usually graphs have many more edges than vertices
 - cheaper than shipping edges
 - a vertex may have many edges in the same partition, enabling reuse of vertex property and message combiners

Vertex-Cuts Partitioning

Caching / Mirroring

Remote

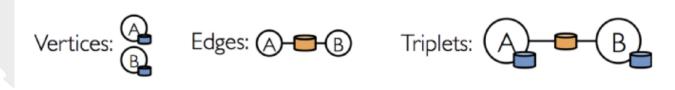
Message Combiners

GAS Decomposition for the computation

- idea: most vertex programs interact with neighbouring vertices by collecting messages in the form of a generalized commutative associative sum
- three data parallel stages:
 - **Gather**: message to a vertex are merged using associative function i.e. (int a, int b) -> return a+b
 - **Apply**: from previous vertex state and the aggregated messages it is generated the new vertex state
 - **Scatter**: each edge produce message for the adjacent vertices based on vertices states
- prohibits direct communication between vertices that are not adjacent in the graph

Primitive Data Types: Triplet

• EdgeTriplet represents an edge along with the vertex attributes of its neighboring vertices



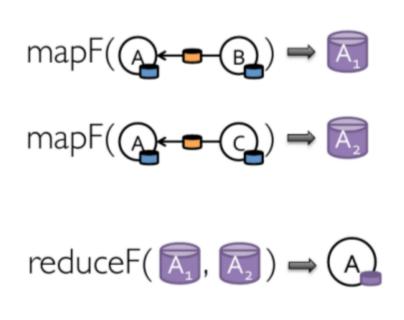
// Vertex collection
class VertexRDD[VD] extends RDD[(VertexId, VD)]

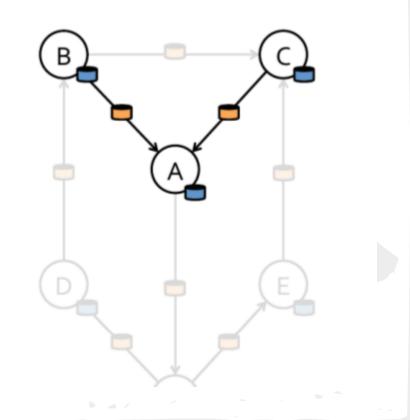
// Edge collection

// Edge Triple
class EdgeTriplet[VD, ED] extends Edge[ED]

Map Reduce Triplets

- Map Reduce for each vertex
- Map is the action during the *Scatter* phase
- Reduce is the action during the *Gather* phase





My Experience: Connected Components

- what is:
 - a CC is a subset of the vertices where there is a path between any pair of such vertices

• two algorithms

- hashMin: each node propagates to neighbours the minimum known node identifier until no changes
- cracker: the graph is simplified until only one vertex per CC remains (the seed), after the seed id is propagated to all the CC
- implementations:
 - Spark MapReduce
 - Spark GraphX

Spark MapReduce UP

- vertex-centric approach (both)
 - think from the point of view of the vertex
 - communicate with neighborhood
- neighborhood can easily change (cracker)
 - just have a Set of your neighbours identifier and modify the Set
 - also number of vertices can change
- explicit message passing seems to have control (both)

Spark MapReduce DOWN

- the vertex state must be re-sent between iterations (both)
 - no automatic vertex state saving
- curse of the last reducer (both)
 - high degree vertices computation usually require a lot more time than low degree vertices

Spark GraphX UP

- vertex state is provided to you from the framework (both)
 - easy to change it
- in general GAS model (and vertex cut) improve performances on high degree vertices (both)

Spark GraphX DOWN

- it is not easy to think with the GAS model if you are used to vertex-centric (both)
- neighborhood can NOT change, although there exist tricky operations that require a full vertexRDD indices rebuilding (cracker)
 - the same apply to vertices inclusion / removal