
The MPI Message-passing Standard
Practical use and implementation (I)

SPD Course
23/02/2015

Massimo Coppola

References

•  Standard MPI 2.2
–  Only those parts that we will cover during the

lessons
–  They will be specified in the slides/web site.
–  Available online : http://www.mpi-forum.org/

docs/mpi-2.2/mpi22-report.pdf

•  B. Wilkinson, M. Allen Parallel Programming,
2nd edition. 2005, Prentice-Hall.
–  This book will be also used; the 1st edition can as

well do, and it is available in the University Library
of the Science Faculty, [C.1.2 w74 INF]

SPD - MPI Standard Use and Implementation 2

What is MPI

•  MPI: Message Passing Interface
–  a standard defining a communication library that allows

message passing applications, languages and tools to be
written in a portable way

•  MPI 1.0 released in 1994
•  Standard by the MPI Forum

–  aims at wide adoption
•  Goals

–  Portability of programs, flexibility, portability and efficiency of
the MPI library implementation

–  Enable portable exploitation of shortcuts and hardware
acceleration

•  Approach
–  Implemented as a library, static linking

•  Intended use of the implemented standard
–  Support Parallel Programming Languages and Application-

specific Libraries, not only parallel programs

SPD - MPI Standard Use and Implementation 3

Standard history

•  1994 - 1.0 core MPI
–  40 organizations aim at a widely used standard

•  1995 - 1.1 corrections & clarifications
•  1997 - 1.2

–  small changes to 1.1 allow extensions to MPI 2.0
•  1997 - 2.0

–  large additions: process creation/management, one-
sided communications, extended collective
communications, external interfaces, parallel I/O

•  2008 - 1.3 combines MPI 1.1 and 1.2 + errata
•  2008 - 2.1 merges 1.3 and 2.0 + errata
•  2009 - 2.2 few extensions to 2.1 + errata
•  MPI3.0

SPD - MPI Standard Use and Implementation 4

What do we mean with
message passing?

•  An MPI program is composed of multiple
processes with
separate memory spaces & environments

•  Processes are possibly on separate
computing resources

•  Interaction happens via
explicit message exchanges

•  Support code provides primitives for
communication and synchronization

•  The M.P.I., i.e. the kind of primitives and the
overall communication structure they
provide, constrain the kind of applications
that can be expressed

•  Different implementation levels will be
involved in managing the MPI support

SPD - MPI Standard Use and Implementation 5

SPMD: single-program multiple-data

•  A basic MPI program is a single executable that is started in multiple parallel
instances (possibly on separate hardware resources)

•  As already stated, an MPI program is composed of multiple processes with
separate memory spaces & environments

•  Each process has its own execution environment, status and control-flow

•  In SPMD C/C++/Fortran programs, sequential data types are likely common to
all process instances

•  However, variable and buffer allocation as well as MPI runtime status (e.g. MPI
data types, buffers) are entirely local

•  Understanding (and debugging) the interaction of multiple program flows
within the same code requires proper program structuring

•  Changes were introduced with MPI2.0 and over, with dynamic process spawn
allowing a full MPMD (multiple-program, multiple data) execution model

SPD - MPI Standard Use and Implementation 6

On the meaning of Portability

•  Preserve software functional behaviour across
systems :
–  (recompiled) programs return correct results

•  Preserve non-functional behaviour :
–  You expect also performance, efficiency, robustness

and other features to be preserved

In the “parallel world”, the big issue is to safekeep
parallel performance and scalability

•  Performance Tuning
–  Fiddling with program and deployment parameters to enhance performance

•  Performance Debugging
–  Correct results, but awful performance: what happened?
–  Mismatched assumptions among SW/HW layers

SPD - MPI Standard Use and Implementation 7

What do we do with
MPI?
MPI is a tool to develop:
•  Applications
•  Programming Languages
•  Libraries

Much more than the
typical usage patterns you
can find around on the
web!

Interoperation of
Programming languages

 (Fortran, C, C++ …)
Heterogeneous resources

 Big/little endianness
 FP formats
 …

SPD - MPI Standard Use and Implementation 8

Hardware

(Virtualization)

Operating System

Execution Platform

Grids: middleware layer Cloud: Cloud API Cluster: local accounting
mechanisms

Programming language

Run-time support Message passing support

Application

App code App-specific Libraries

MPI functionalities

•  MPI lets processes in a distributed/parallel
execution environment coordinate and
communicate
–  Possibly processes on different machines
–  We won’t care about threads

•  MPI implementations can be compatible with threads, but
you program the threads using some other shared-memory
mechanism: pthreads, OpenMP …

•  Same MPI library instance can be called by
multiple high-level languages
–  Interoperability, multiple language bindings
–  impact on standard definition and its implementation
–  The MPI Library is eventually linked to the program, its

support libraries and its language runtime
–  Some functionalities essential for programming

language development

SPD - MPI Standard Use and Implementation 9

Key MPI Concepts

•  Communicators

•  Point to point communication

•  Collective Communication

•  Data Types

SPD - MPI Standard Use and Implementation 10

Key MPI Concepts: Communicators

•  Communicators
–  Process groups + communication state
–  Inter-communicators vs Intra-communicators
–  Rank of a process

•  Point to point communication

•  Collective Communication

•  Data Types

SPD - MPI Standard Use and Implementation 11

Communicators

•  Specify the communication context
–  Each communicator is a separate “universe”, no

message interaction between different
communicators

•  A group of processes AND a global
communication state
–  Forming a communicator implies some

agreement among the communication support
of the composing processes

–  A few essential communicators are created by
the MPI initialization routine
(e.g. MPI_COMM_WORLD)

–  More communicator features later in the course

SPD - MPI Standard Use and Implementation 12

Types of communicators

•  Intracommunicator
–  Formed by a single group of processes
–  Allows message passing interaction among the

processes within the communicator

•  Intercommunicators
–  Formed by two groups A, B of processes
–  Allows message passing between pairs of processes

of the two different groups
(x,y) can communicate if-and-only-if
 x belongs to group A and y belongs to B

SPD - MPI Standard Use and Implementation 13

Communicators and Ranks

•  No absolute process identifiers in MPI
•  The Rank of a process is always relative to a

specific communicator
•  In a group or communicator with N

processes, ranks are consecutive integers
0…N-1

•  No process is guaranteed to have the same
rank in different communicators,

•  unless the communicator is specially built by the user

SPD - MPI Standard Use and Implementation 14

Key MPI Concepts : point to point

•  Communicators

•  Point to point communication
–  Envelope
–  Local vs global completion
–  Blocking vs non-blocking communication
–  Communication modes

•  Collective Communication

•  Data Types

SPD - MPI Standard Use and Implementation 15

Envelopes

Envelope =

 (source, destination, TAG, communicator)

•  Qualifies all point to point communications
•  Source and dest are related to the communicator
•  Two point-to-point operations (send+receive)

match if their envelopes match exactly
•  TAG meaning is user-defined à play with tags to

assign semantics to a communication
–  TAG provide communication insulation within a

communicator, for semantic purposes
–  Allow any two processes to establish multiple

communication “Channels” (in a non-technical meaning)

SPD - MPI Standard Use and Implementation 16

Envelopes and comunication semantics

•  Messages with the
same envelope
never overtake
each other

•  No guarantee on
messages with
different envelope!

•  E.g. : different tags

SPD - MPI Standard Use and Implementation 17

M M M M

M M M M

M

A first look at the SEND primitive

MPI_SEND(buf, count, datatype, dest, tag, comm)

•  IN buf initial address of send buffer
•  IN count number of elements in send buffer

 (non-negative integer, in datatypes)
•  IN datatype datatype of each send buffer element

 (handle)
•  IN dest rank of destination
•  IN tag message tag
•  IN comm communicator (handle)

SPD - MPI Standard Use and Implementation (2) 18

Local and global completion

•  Local completion : a primitive does not
need to interact with other processes to
complete
–  Forming a group of processes
–  Asynchronous send of a message while ignoring

the communication status

•  Global completion : interaction with other
processes is needed to complete the
primitive
–  Turning a group into a communicator
–  Synchronous send/receive : semantics mandates

that parties interact before communication
happens

SPD - MPI Standard Use and Implementation 19

Blocking vs non-blocking operations

•  Blocking operation
–  The call returns only once the operation is complete
–  No special treatment is needed, only error checking

•  non blocking operation
–  The call returns as soon as possible
–  Operation may be in progress or haven’t started yet
–  Resources required by the operation cannot be

reused (e.g. message buffer is not to be modified)
–  User need to subsequently check the operation

completion and its results

•  Tricky question: do we mean local or global
completion?

SPD - MPI Standard Use and Implementation 20

Communication MODES

•  Synchronous
–  Follows the common definition of synchronous

communication, first process waits for the second one to
reach the matching send/receive

•  Buffered
–  Communication happens through a buffer, operation

completes as soon as the data is in the buffer
–  Buffer allocation is onto the user AND the MPI

implementation
•  Ready

–  Assumes that the other side is already waiting (can be used
if we know the communication party already issued a
matching send/receive)

•  Standard
–  The most common, and less informative
–  MPI implementation is free to use any available mode, i.e.

almost always Synchronous or Buffered

SPD - MPI Standard Use and Implementation 21

Example: portability and modes

•  Standard sends are implementer's choice
–  Choice is never said to remain constant…

•  A user program exploit standard sends,
implicitly relying on buffered sends
–  Implementation actually chooses them, so

program works

•  What if
–  Implementation has to momentarily switch to

synchronous sends due to insufficient buffer
space?

–  Program is recompiled on a different MPI
implementation, which does not use buffered
mode by default?

SPD - MPI Standard Use and Implementation 22

Combining concepts

•  Point to point concepts of communication
mode and non-blocking are completely
orthogonal : you can have all combinations

•  local / global completion depends on
–  The primitive (some inherently local/global)
–  The combination of mode and blocking behavior
–  The MPI implementation and the hardware

always have the last word

•  We will be back to this later on in the course

SPD - MPI Standard Use and Implementation 23

Key MPI Concepts : Collective op.s

•  Communicators

•  Point to point communication

•  Collective Communication
–  A whole communicator is involved
–  Always locally blocking *

•  No longer true since MPI 3.0, but we will ignore this in this
course

–  No modes: collectives in a same communicator are
serialized

•  Data Types

SPD - MPI Standard Use and Implementation 24

Collective operations - I

•  Basically a different model of parallelism in the
same library

•  Collectives act on a whole communicator
–  All processes in the communicator must call the

collective operation
–  With compatible parameters
–  Locally the collectives are always blocking

(no longer true since MPI 3, but outside course scope)

•  Collective operations are serialized within a
communicator
–  By contrast, point to point message passing is

intrinsically concurrent
–  No communication modes or non-blocking behaviour

apply to collective operations

SPD - MPI Standard Use and Implementation 25

Collective operations - II

•  Much detail is left to the implementation
–  The standards makes minimal assumptions
–  Leaves room for machine specific optimization

•  Still No guarantee that all processes are
actually within the collective at the same
time
–  Freedom for MPI developers to choose the

implementation algorithms: collective may start
or complete at different moments for different
processes

–  MPI_Barrier is of course an exception

SPD - MPI Standard Use and Implementation 26

Key MPI Concepts : Datatypes

•  Communicators

•  Point to point communication

•  Collective Communication

•  Data Types
–  A particular kind of Opaque objects
–  MPI primitive datatypes
–  MPI derived datatypes

SPD - MPI Standard Use and Implementation 27

Opaque objects

•  Data structures whose exact definition is
hidden
–  Obj. internals depend on the MPI implementation
–  Some fields may be explicitly documented and

made accessible to the MPI programmer
–  Other fields are only accessed through

dedicated MPI primitives and object handles
–  Allocated and freed (directly or indirectly) only

by the MPI library code
•  If the user is required to do so, it has to call an MPI

function which is specific to the kind of opaque object

–  Example:
Communicators and datatypes are Opaque Obj.

SPD - MPI Standard Use and Implementation 28

Primitive Datatypes

•  MPI Datatypes are needed to let the MPI
implementation know how to handle data
–  Data conversion
–  Packing data into buffers for communication,

and unpacking afterwards
–  Also used for MPI I/O functionalities

•  Primitive datatypes
–  Correspond to basic types of most programming

languages: integers, floats, chars…
–  Have bindings for MPI supported languages
–  Enough for simple communication

SPD - MPI Standard Use and Implementation 29

MPI derived datatypes

•  Derivate datatypes correspond to
composite types of modern programming
languages
–  Set of MPI constructors corresponding to various

kinds of arrays, structures, unions
–  Memory organization of the data is highly

relevant, and can be explicitly considered
–  Derived datatypes can automate packing and

unpacking of complex data structures for
communications, and allow semantically correct
parallel operation on partitioned data structures

SPD - MPI Standard Use and Implementation 30

FILLING IN THE GAPS

SPD - MPI Standard Use and Implementation (3) 31

Beware

•  MPI uses a different abstraction than physical /
logic channels, the one you know from previous
courses

•  When we speak of “channels” in MPI we mean
the set of messages sharing the same envelope
and some ordering constraint

•  There is not such thing as an implementation of
the channel defined or referenced in the MPI
standard

•  The two abstractions have different goals, but
the implementation issues are the same: HW
features, coprocessors, zero copy…

•  You are expected to understand both and not
confuse them

SPD - MPI Standard Use and Implementation (3) 32

From Send and Recv to programs

•  Simplest programs do not need much
beyond Send and Recv

•  Keep in mind that each process lives in a
separate memory space
–  Need to initialize all your data structures
–  Need to initialize your instance of the MPI library
–  Should you make assumptions on process

number?
–  How portable will your program be?

SPD - MPI Standard Use and Implementation (3) 33

Running, Initializing the runtime

•  Basic process spawning is done by the MPI launcher:
mpirun [mpi options] <program _name>[arguments]
–  Check the mpirun man page of your MPI implementation

Each MPI process calls AT LEAST
•  MPI_Init(int *argc, char ***argv)

–  Shall be called before using any MPI calls (very few
exceptions)

–  Initializes the MPI runtime for all processes in the running
program, some kind of handshaking implied
•  e.g. creates MPI_COMM_WORLD

•  MPI_Finalize()
–  Frees all MPI resources and cleans up the MPI runtime, taking

care of any operation pending
–  Any further call to MPI is forbidden
–  some runtime errors can be detected at finalize

•  e.g. calling finalize with communications still pending and unmatched

SPD - MPI Standard Use and Implementation (3) 34

References

•  MPI 2.2 standard (see http://www.mpi-forum.org/)
–  Only some parts

•  Parallel Programming, B. Wilkinson & M.
Allen. Prentice-Hall (2nd ed., 2005)
–  Only some references, 1st edition is ok too.

•  Relevant Material for 1st lesson, MPI standard
–  Chapter 1: have a look at it.
–  Chapter 2:

sec. 2.3, 2.4, 2.5.1, 2.5.4, 2.5.6, 2.6.3, 2.6.4, 2.7, 2.8
–  Chapter 3:

sec. 3.1, 3.2.3, 3.4, 3.5, 3.7

SPD - MPI Standard Use and Implementation 35

