
Intel Thread Building Blocks

SPD course 2014-15
Massimo Coppola

31/03/2015

1 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Thread Building Blocks : History

•  A library to simplify writing thread-parallel
programs and debugging them

•  Originated circa 2006 as a commercial
product
–  First version was still very low-level
–  Little more than a debugging tool
–  Strong emphasis was put on how to performance

debug thread-parallel programs

•  Several releases improved the abstraction
level
–  Nowadays a programming model

2 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Thread Building Blocks Today

•  Version 4.0 released Sept. 2011
–  V4.3 update 4 released Mar 2015

•  A C++ based pattern language for threads
–  Supports generic programming
–  Supports nested parallelism

•  Nowadays double licensed
–  Commercial version for industrial users
–  Open source version under GPLv2

•  Stable versions aligned with commercial ones
•  Developer, source-only versions

–  Multi-OS
•  Windows*, Linux, OS X direct support
•  Other o.s. support in the open source

3 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

What is TBB today

•  A runtime and a template library for C++
•  Eases writing thread programs by raising the

abstraction level
–  Tasks production and processing instead of threads
–  OS-portable thread programs (Win, Linux, OS X)
–  HW independent programs, of course

•  Templates and classes are defined for
–  Common forms of parallelism
–  Data structures used by these parallel “skeletons”

•  Heavy use of generics for expressiveness
–  Data structures to control parallelism

•  e.g. range to define the set of values of a parameter
–  Operators to specify each skeleton semantics

•  A form of encapsulation of sequential behaviour

4 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

TBB Features

•  Portable environment
–  Based on C++11 standard compilers
–  Extensive use of templates

•  No vectorization support (portability)
–  use vector support from your specific compiler

•  Full environment: compile time + runtime
•  TBB supports patterns as well as other

features
–  algorithms, containers, mutexes, tasks...
–  mix of high and low level mechanisms
–  programmer must choose wisely

5 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

TBB Runtime support

•  Runtime supports
–  memory allocation
–  synchronization
–  task management

•  Provide operating system-independent basic
primitives

•  Two support libraries
–  The two can also be used independently

•  One library for
–  Task generation
–  Parallel patterns
–  Task scheduling to threads,

•  A specific library for scalable memory allocation

6 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

TBB “layers”

•  All TBB architectural elements are present in
the user API, except the actual threads

7 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Parallel algorithms
generic and scalable: for, reduce,

work pile, scan, pipeline, flow graph ...

Concurrent Containers
vectors, hash tables, queues

Tasks
Scheduler, work stealing,

groups, over/under
subscription

Synchronization
atomic ops, mutexes,

condition variables

Memory
Scalable mem. allocation,
false-sharing avoidance,

thread-local storage

Threads

Utility
cross-thread timers

Threads and composability

•  Composing parallel patterns
–  a pipeline of farms of maps of farms
–  a parallel for nested in a parallel loop within a pipeline
–  each construct can express more potential parallelism
–  deep nesting à too many threads à overhead

•  Potential parallelism should be expressed
–  difficult or impossible to extract for the compiler

•  Actual parallelism should be flexibly tuned
–  messy to define and optimize for the programmer,

performance hardly portable

•  TBB solution
–  Potential parallelism = tasks
–  Actual parallelism = threads
–  Mapping tasks over threads is largely automated and

performed at run-time

8 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Tasks vs threads

•  Task is a unit of computation in TBB
–  can be executed in parallel with other tasks
–  the computation is carried on by a thread
–  task mapping onto threads is a choice of the

runtime
•  the TBB user can provide hints on mapping

•  Effects
–  Allow Hierarchical Pattern Composability
–  raise the level of abstraction

•  avoid dealing with different thread semantics

–  increase run-time portability across different
architectures
•  adapt to different number of cores/threads per core

9 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Some supported abstractions

More patterns added with each version
•  parallel_for
•  lambda expressions
•  parallel_reduce
•  parallel_do
•  pipeline
–  Extended to dags as supersets of pipelines

•  concurrency-safe containers
•  mutex helper objects
•  atomic<t> template (atomic operations)

10 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Parallel for (and partitioners)

•  Express independent task computations
–  parallel_for (iteration space , function)

•  Exploit a blocked_range template to express
iteration space
–  Ranges can be recursively split by the library
–  1D, 2D, 3D blocked ranges as of TBB 4.0

•  Automatic dispatch to independent threads
–  Heuristics within the library, but it can be customized

•  Specify optional partitioner function to the parallel_for
•  Specify grainsize parameter in the range

–  Partitioners allow to customize the way ranges are
split in order to obtain tasks amenable to concurrent
computation

–  Grainsize is the standard parameter of partitioners

11 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Parallel_for Example
#include "tbb/tbb.h”
using namespace tbb;
class ApplyFoo {

 float *const my_a;
public:

 void operator()(const blocked_range<size_t>& r)
 const {
 float *a = my_a;
 for(size_t i=r.begin(); i!=r.end(); ++i)
 Foo(a[i]);
 }
 ApplyFoo(float a[]) :
 my_a(a)
 {}

};

void ParallelApplyFoo(float a[], size_t n) {

 parallel_for(blocked_range<size_t>(0,n), ApplyFoo(a));
}

12 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Scheduling tasks to threads

•  The Partitioner creates multiple tasks
–  by decomposing a range until we get enough

parallelism OR we achieve the minimum task size

•  Task scheduler dispatches tasks to threads
–  Automatically created by the library
–  Customizable by program to suit user needs

•  Define scheduler creation/destruction time
•  Number of created threads
•  Stack size for threads

–  Customizable per construct
•  via construct parameters

•  Much more in the docs about the scheduler
–  Task scheduler deals with pipelines and workflows

13 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Partitioners and choosing grain size

•  As always, small grain size à high overhead
–  Intel suggests 100.000 clock cycles as grain size
–  Also suggests experimental procedure to set
–  You are expected to already know the issues, and take into

account the number of cores and load balancing details
in your algorithm

•  Cache affinity can impact performance
–  affinity partitioner tries to exploit it when scheduling tasks to

threads

14 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Type Use Conditions

simple Chunks given by grain size
(Default until TBB 2.2)

g/2 < chunk size <g

auto Automatic size
(heuristics, default nowadays)

g/2 < chunks size

affinity Automatic size
(heuristics to exploit affinity)

g/2 <chunksize

Lambda expression

•  Unnamed functions defined by the latest
C++ 0x standard (ISO/IEC 14882:2011)
–  Released September 2011

•  Use a stereotype for in-place defining an
unnamed free function (some support for
storing the def)
[variable_scope] type_def function_def;

•  Capture all variable references which are used
inside, but defined outside the function

•  Variable scope spec can dictate capturing by
reference, by value, or disallow use
–  In general, e.g. [] disallow [=] by value [&] ref.
–  For specific variable(s)

 [=,&z] all by value, with only z by reference

15 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Parallel reduce

•  Expresses the parallel reduction pattern
–  Basic form is analogous to the parallel for

parallel_reduce (iteration_space, function)
–  Iteration space defined as blocked_range
–  The function to apply has different C++ type

template w.r.t to parallel loop
•  Reduce operator does not have the same const-

requirements as the one used in a for

–  Also accepts an optional partitioner

16 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Container data Structures (I)

•  Data structures
–  which are very often used in programs,
–  whose thread-safe implementation is not trivial
–  or it does not match standard semantics

•  Special care taken to avoid decreasing
program performance

•  concurrent_hash_map
–  Constant or update access to elements
–  Access to elements can block other threads

17 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Container data Structures (II)

•  concurrent_vector
–  Random access by index, index of the first element is zero.
–  Growing the container does not invalidate existing iterators

or indices.
•  Multiple threads can grow the container and append new

elements concurrently
–  Destroying elements is not thread safe
–  Does not move its elements in memory when growing (and

no insert() or erase())
•  Growing by too small a size increases memory fragmentation

–  Operations on the whole vector are not thread-safe; can
move elements in memory (and reduce fragmentation)
•  notably reserve() and shrink_to_fit()

•  meets requirements for Container and Reversible
Container as specified in the ISO C++ standard

•  It does not meet the Sequence requirements due to
absence of methods insert() and erase()

18 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Container data Structures (III)

•  concurrent_queue
–  Simultaneous push/pop from concurrent threads
–  Ensure serialization and preserve object order

•  Bottleneck if improperly used

–  pop / push / try_push / size

19 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Mutexes

•  Classes to build lock objects
•  The new lock object will generally

–  Wait according to specific semantics for locking
–  Lock the object
–  Release lock when destroyed

•  Several characteristics of mutexes
–  Scalable
–  Fair
–  Recursive
–  Yield / Block

•  Check implementations in the docs:
–  mutex, recursive_mutex, spin_mutex, queueing_mutex,

spin_rw_mutex, queueing_rw_mutex, null_mutex,
null_rw_mutex

–  Specific reader/writer locks
–  Upgrade/downgrade operation to change r/w role

20 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

References

•  Download docs and code from
http://threadingbuildingblocks.org/

•  Check the accompanying docs
–  Getting started – install and first compilation example

ß TRY IT
–  Tutorial – tour of main functionalities with examples
–  Reference

•  Quick summaries to lamba expressions in C++
–  http://www.cprogramming.com/c++11/c++11-lambda-

closures.html
–  http://www.nacad.ufrj.br/online/intel/Documentation/

en_US/compiler_c/main_cls/cref_cls/common/
cppref_lambda_lambdacapt.htm#cppref_lambda_lambdacapt

21 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

