
The MPI Message-passing Standard 
Practical use and implementation (III) 

SPD Course 
01/03/2017 

Massimo Coppola 



POINT-TO-POINT 
COMMUNICATION MODES 

SPD - MPI Standard Use and Implementation (3) 2 



Buffered Send 
MPI_BSEND (buf, count, datatype, dest, tag, comm) 
 
MPI_Bsend(void* buf, int count, MPI_Datatype datatype, int 

dest, int tag, MPI_Comm comm)
  
•  Same parameters as the standard send 
•  Explicitly relies on buffering 

–  Can complete regardless of the matching receive = local 
completion 

–  Triggers an error if no buffer space is available, unlike a 
standard Send 

•  Programmer has to allocate enough buffers for the 
process needs, and pass them to the MPI 
implementation 

int MPI_Buffer_attach(void* buffer, int size)
int MPI_Buffer_detach(void* buffer_addr, int* size)   

SPD - MPI Standard Use and Implementation (3) 3 



Synchronous Send 

MPI_SSEND (buf, count, datatype, dest, tag, comm) 
 
MPI_Ssend(void* buf, int count, MPI_Datatype 

datatype, int dest, int tag, MPI_Comm comm)

  

•  Same parameters as the standard send 
•  Enforces synchronous send operation 
–  A program is safe if all its sends are Synchronous 

SPD - MPI Standard Use and Implementation (3) 4 



Ready Send 

MPI_RSEND (buf, count, datatype, dest, tag, comm) 
•  Again same parameters 
•  Optimizes implementation assuming a 

matching receive has been already posted 
–  Used with permanent requests 
–  When program semantics ensures the 

precondition 
–  Together With SendRecv primitives 
–  Note that:  

•  Permanent requests and SendRecv are used solely as 
example cases 
SendRec a single primitive for send and receive 
combined 

SPD - MPI Standard Use and Implementation (3) 5 



Ready Send and SendRecv 

// Process A 
while (true) { 

recv ( … B …) 
do_compute() 
Rsend ( …B… ) 

} 

//Process B 
while (true) { 

do_compute() 
sendRecv( …A…) 

} 
 

SPD - MPI Standard Use and Implementation (3) 6 



BLOCKING AND NON-BLOCKING 
POINT-TO-POINT 

SPD - MPI Standard Use and Implementation (3) 7 



Incomplete operations 

•  Separate communication start from its 
completion 

•  Available for both send and receive 
•  Primitive calls can return before completion 
•  Resources are NOT free 
•  Separate primitives for checking 

communication completion/status 

•  Useful if actual communication is offloaded 
to DMA, coprocessors etc. 

SPD - MPI Standard Use and Implementation (3) 8 



Incomplete Send / Recv 
MPI_ISEND(buf, count, datatype, dest, tag, comm, request) 

MPI_IRECV (buf, count, datatype, source, tag, comm, request) 
  

int MPI_Isend(void* buf, int count,  
MPI_Datatype datatype, int dest, int tag, MPI_Comm 
comm, MPI_Request *request)

 
int MPI_Irecv(void* buf, int count,  

MPI_Datatype datatype, int source, 
int tag, MPI_Comm comm, MPI_Request *request)

  

•  MPI_ISEND Also combines with all modes 
•  MPI_IBSEND  
•  MPI_ISSEND 
•  MPI_IRSEND 

SPD - MPI Standard Use and Implementation (3) 9 



Request objects 

•  Opaque objects 
•  Fully identify the communication operation 

–  One to one match with communications 
–  Requests are allocated by MPI when they become 

active (communication started, but not completed) 
–  Requests are active until completion is not checked 

•  Can provide status and completion information 
•  The MPI_request type is the object handle 

–  Uninitialized/inactive handle value: 
MPI_REQUEST_NULL 

–  MPI does this whenever a request object is no longer 
needed (it becomes inactive) and it is freed  

SPD - MPI Standard Use and Implementation (3) 10 



Waiting and Testing 

MPI_WAIT(request, status)  
–  INOUT request request (handle)  
–  OUT status status ob ject (Status) 

•  Waits until the operation is complete 
–  Returns the operations status 
–  Clears the request handle 

MPI_TEST(request, flag, status) 
•  Returns immediately 

–  flag=true if the operation is complete 
–  In this case, behaves as a completed WAIT 

•  Wait is a non-local operation, Test is a local one 
•  MPI_REQUEST_NULL handles are silently ignored 

SPD - MPI Standard Use and Implementation (3) 11 



Multiple Wait / Test 

•  MPI_WAITANY (count, array_of _requests, index, status) 
–  Wait for one request from an array to complete (nondeterministic 

behaviour, no fairness) 
–  index=MPI_UNDEFINED if no request is active 

•  MPI_WAITALL (count, array_of _requests, array_of _statuses) 
–  Wait for all requests to complete 

•  MPI_WAITSOME(incount, array_of _requests, 
     outcount, array_of _indices, array_of _statuses) 
–  Wait for at least one request to complete, possibly several ones  
–  You can implement your own preferred nondeterministic behaviour 
–  outcount=MPI_UNDEFINED if no request is active 

•  MPI_TESTANY(count, array_of _requests, index, flag, status) 
•  MPI_TESTALL(count, array_of _requests, flag, array_of _statuses) 
•  MPI_TESTSOME(incount, array_of _requests, 

    outcount, array_of _indices, array_of _statuses) 

SPD - MPI Standard Use and Implementation (3) 12 



TEST/WAIT comments 

•  It is safe to call again and again the same 
primitive: eventually, all requests become 
inactive 

•  MPI_requests are handles 
–  can be copied 
–  it’s programmer’s responsibility not to use more 

than one copy (better invalidate them!) 

•  Null handle is not the same as inactive 
–  MPI_REQUEST_NULL is also inactive ofc   

SPD - MPI Standard Use and Implementation (3) 13 



MPI_Cancel 

MPI_Cancel(request) 
 

•  Allows to cancel a nonblocking operation that 
is still pending == active request 
–  i.e. can’t cancel it after a successful WAIT or TEST 

•  Necessary to free up resources acquired by the 
active request 

•  Returns immediately   (see MPI_Test_cancelled) 
–  Intended as a low-overhead operation, MPI_Cancel 

has local completion, and may return before the 
operation is actually canceled 

–  Doesn’t wait for any auxiliary communication/
interrupt to complete   

–  If successful, cancel makes the request inactive à 
TEST and WAIT calls on it become safe local op.s 

SPD - MPI Standard Use and Implementation (3) 14 



MPI_Cancel 

•  However, cancel may fail 
–  Example: an MPI_IBSend may have already copied 

the data to MPI-owned buffers à can’t both cancel 
the operation and respect IBSend semantics 

–  either the cancel succeeds (and frees all buffers) or 
the communication “completes” (may stall buffer!) 

•  Information about the cancel operation will be 
returned via the status of the nonblocking call 

•  It depends on program’s semantics and code 
structure if MPI_cancel is needed at all 

•  MPI_cancel can cancel permanent comm. 
requests, but that’s trickier 

SPD - MPI Standard Use and Implementation (3) 15 



MPI_Test_cancelled 

MPI_Test_cancelled(status, &flag) 
 

•  Allows to check (flag==true) whether a non-
blocking operation was actually canceled 
–  Reads the status from a TEST or WAIT 
–  If an operation may be cancelled, it’s mandatory to 

check for cancellation BEFORE using the status any 
other way 

–  Depending on the send optimization, testing 
cancellation may require communications 

–  Can be an expensive operation : contrary to 
MPI_Cancel, here we wait for any implementation-
level communication to complete 

–  Testing cancellation in general has non local 
completion 

SPD - MPI Standard Use and Implementation (3) 16 



Cancel, Test_cancelled and Finalize 

•  MPI_Finalize tells MPI that the program is about 
to end 
–  all support can be shut down and implicitly allocated 

memory is freed (including most opaque bjects) 
–  Does not free stuff explicitly allocated via MPI 

primitives (but process usually exits right away) 

•  Processes must complete all communications 
they are involved with before calling Finalize 
–  This may require canceling and testing cancellation 

of non-blocking calls 
–  Canceling some operations (e.g. IBSend) may be 

impossible à the other party may need to complete 
them before finalizing 

SPD - MPI Standard Use and Implementation (3) 17 



Reference Texts 

 
•  MPI standard (w.r.t. standard rev 2.2) 

Relevant Material for 3rd lesson 
–  Chapter 3:  

sec. 3.5, 3.6 (3.6.1 can be skipped), 3.7, 3.8(skip 
the PROBE variants), 3.11 
persistent comm.s and sendRecv are 3.9, 3.10 

–  Chapter 4: 
sec. 4.1 – to 4.1.2, (skip 4.1.3, 4.1.4), 4.1.9 – 4.1.11 

SPD - MPI Standard Use and Implementation (3) 18 


