
The MPI Message-passing Standard
Practical use and implementation (II)

SPD Course
23/02/2018

Massimo Coppola

MPI communication semantics

•  Message order is not guaranteed,
–  Only communications with same envelope are non-

overtaking
•  Different communicators do not allow message

exchange
–  Unless you consider termination by error and deadlocks

forms of communication
•  No fairness provided

–  You have to code priorities yourself
–  Implementations may be fair, but you can’t count on that

•  Resources are limited
–  E.g. Do not assume buffers are always available, allocate

them explicitly
–  E.g. You shall free structures and objects you are not going

to use again
–  The limits are often within the library implementation, hard

to discover in advance…

SPD - MPI Standard Use and Implementation (2) 2

Point to point and communication
buffers

•  All communication primitives in MPI assume
to work with communication buffers
–  How the buffer is used is implementation

dependent, but you can specify many constraint

•  The structure of the buffer
–  depends on your data structures
–  depends on your MPI implementation
–  depends on your machine hardware and on

related optimizazions
–  shall never depend on your programming

language

•  The MPI Datatype abstractions aims at that

SPD - MPI Standard Use and Implementation (2) 3

Primitive Data types (C bindings)

MPI_CHAR char
 (treated as printable character)

MPI_SHORT signed short int
MPI_INT signed int
MPI_LONG signed long int
MPI_LONG_LONG_INT

 signed long long int
MPI_LONG_LONG (as a synonym)

 signed long long int
MPI_SIGNED_CHAR signed char

 (treated as integral value)
MPI_UNSIGNED_CHAR unsigned char

 (treated as integral value)
MPI_UNSIGNED_SHORT

 unsigned short int
MPI_UNSIGNED unsigned int
MPI_UNSIGNED_LONG

 unsigned long int
MPI_UNSIGNED_LONG_LONG

 unsigned long long int
MPI_FLOAT float
MPI_DOUBLE double

MPI_LONG_DOUBLE long double
MPI_WCHAR wchar_t

 (ISO C standard, see <stddef.h>)
 (treated as printable character)

MPI_C_BOOL _Bool

 Many special bit-sized types
MPI_INT8_T int8_t
MPI_INT16_T int16_t
MPI_INT32_T int32_t
MPI_INT64_T int64_t
MPI_UINT8_T uint8_t
MPI_UINT16_T uint16_t
MPI_UINT32_T uint32_t
MPI_UINT64_T uint64_t

MPI_C_COMPLEX float _Complex
MPI_C_FLOAT_COMPLEX

(as a synonym) float _Complex
MPI_C_DOUBLE_COMPLEX

 double _Complex
MPI_C_LONG_DOUBLE_COMPLEX

 long double _Complex
MPI_BYTE
MPI_PACKED

SPD - MPI Standard Use and Implementation (2) 4

Datatype role in MPI

•  Datatype
–  a descriptor used by the MPI implementation
–  holds information concerning a given kind of data

structure

•  Datatypes are opaque objects
–  Some are constant (PRIMITIVE datatypes)
–  More are user-defined (DERIVED datatypes)

•  to be explicitly defined before use, and destroyed after

•  Defining/using a datatype does not allocate
the data structure itself:
–  Allocation done by the host languages
–  Datatypes provide explicit memory layout information

to MPI, more than the host language

SPD - MPI Standard Use and Implementation (2) 5

Conversion and packing

•  Data type information is essential to allow
packing and unpacking of data within/from
communication buffers

•  MPI is a linked library à MPI datatypes
provide type information to the runtime

•  Data types known to MPI can be converted
during communication

•  For derived datatypes, more complex issues
related to memory layout

SPD - MPI Standard Use and Implementation (2) 6

MPI_SEND

MPI_SEND(buf, count, datatype, dest, tag, comm)

•  IN buf initial address of send buffer
•  IN count number of elements in send buffer

 (non-negative integer, in datatypes)
•  IN datatype datatype of each send buffer element

 (handle)
•  IN dest rank of destination
•  IN tag message tag
•  IN comm communicator (handle)

•  The amount of transferred data is not fixed

SPD - MPI Standard Use and Implementation (2) 7

MPI_RECV

MPI_RECV (buf, count, datatype, source, tag, comm, status)

•  OUT buf initial address of receive buffer
•  IN count number of elements in receive buffer

 (non-negative integer, in datatypes)
•  IN datatype datatype of each receive buffer

 element (handle)
•  IN source rank of source or MPI_ANY_SOURCE
•  IN tag message tag or MPI_ANY_TAG
•  IN comm communicator (handle)
•  OUT status status object (Status)

•  The amount of received data is not fixed and can
exceed the receiver’s buffer size

SPD - MPI Standard Use and Implementation (2) 8

Return status

•  MPI_Status
structure filled in by many operations
–  not an opaque object, an ordinary C struct
–  special value MPI_IGNORE_STATUS (beware!!)
–  known fields: MPI_SOURCE, MPI_TAG, useful for

wildcard Recv, as well as MPI_ERROR
–  additional fields are allowed, but are not defined by

the standard or made openly accessible
–  Example: the actual count of received objects

•  MPI_Get_count(MPI_Status *status,
 MPI_Datatype datatype, int *count)
–  MPI primitive used to retrieve the number of elements

actually received

SPD - MPI Standard Use and Implementation (3) 9

The NULL process

•  MPI_PROC_NULL
–  Rank of a fictional process
–  Valid in every communicator and point-to-point
–  Communication will always succeed
–  A receive will always receive no data and not

modify its buffer

SPD - MPI Standard Use and Implementation (3) 10

Derived datatypes

•  Abstract definition
–  Type map and type signature

•  Program Definition
–  MPI constructors

•  Local nature
–  They are not shared
–  In communications, type signatures and type

maps for the data type used are checked
–  Need to be consolidated before use in

communication primitives (MPI_Commit)

SPD - MPI Standard Use and Implementation (2) 11

MPI TYPE CONSTRUCTORS

•  Typemap & typesignatures
•  Rules for matching Datatypes
•  Size and extent
•  Contiguous
•  Vector

–  Count, blocklen, stride example
–  Row, column, diagonals (exercises)
–  Multiple rows
–  Stride<blocklen, negative strides

•  Examples: composing datatypes
•  Hvector
•  Indexed
•  Hindexed
•  Standard send and recv: any_tag, any_source
•  Send has modes, recv can be asymmetric, both can be

incomplete

SPD - MPI Standard Use and Implementation (2) 12

Typemaps and type signatures

•  A datatype is defined by its memory layout
–  as a list of basic types and displacements

•  Typemap
TM = {(type0 , disp0), ..., (typen−1 , dispn−1)}

•  Type signature
TS = {(type0), ..., (typen−1)}

–  Each typei is a basic type with a known size

•  Size = the sum of sizes of all typei
•  Extent = the distance between the earliest

and the latest byte occupied by a datatype
•  Rules for matching Datatypes

SPD - MPI Standard Use and Implementation (2) 13

Typemaps and type signatures

SPD - MPI Standard Use and Implementation (2) 14

•  Type map

TM = {(byte , 0), (int, 1), (double , 5)}

•  Type signature
TS = {(byte), (int), (double)}

•  Size = 1+4+8 = 13
–  Note that we are assuming a 32 bit architecture here!

•  Extent = 13

Typemaps and type signatures

SPD - MPI Standard Use and Implementation (2) 15

•  Your compiler will likely add aligning constraints to basic
types: let’s assume ints are word aligned, and doubles
are double-word aligned

•  Type map
TM = {(byte , 0), (int, 4), (double , 8)}

•  Type signature
TS = {(byte), (int), (double)}

•  Size = 1+4+8 = 13
•  Extent = 16
•  You need the padding for code execution, but you want

to leave padding out of communication buffers
–  E.g. when sending large arrays of structures
–  Data packing and unpacking is automated in MPI

Matching rules for datatypes

•  Typemaps are essential for packing into the
communication buffer, and unpacking

•  datatype in a send / recv couple must
match
–  Datatypes are local to the process
–  Datatype descriptors (typemaps) can be passed

among process (but not mandatory)
–  What really counts is the type signature

•  Do not “break” primitive types
•  “holes” in the data are dealt with by pack /unpack

•  Datatype typemaps can have repeats
–  Disallowed on the receiver side!

SPD - MPI Standard Use and Implementation (2) 16

Datatypes: shake before use!

•  Before looking at the the core primitive for
defining new derived datatypes, remember

•  MPI_TYPE_COMMIT(datatype)
–  Mandatory before every actual use of a datatype!
–  Consolidates the datatype definition, making it

permanent
–  Enables the new datatype for use in all non-datatype

defining MPI primitives
•  e.g. commit before a point to point or a collective

–  May compile internal information needed to the MPI
library runtime
•  e.g. : optimized routines for data packing & unpacking

•  MPI_TYPE_FREE(datatype)
–  Free library memory used by a datatype that is no

longer needed
–  Be sure that the datatype is not currently in use!

SPD - MPI Standard Use and Implementation (2) 17

Contiguous Datatype

int MPI_Type_contiguous(int count,
MPI_Datatype oldtype,
 MPI_Datatype *newtype)

•  Create a plain array of identical elements
•  No extra space between elements
•  Overall size is count* number of elements

SPD - MPI Standard Use and Implementation (2) 18

Contiguous Datatype

SPD - MPI Standard Use and Implementation (2) 19

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

MPI_Datatype mytype;
MPI_Type_contiguous(4, MPI_INT, &mytype);
MPI_Type_commit(mytype)

•  Type map

TM = {(int, 0), (int, 4), (int, 8), (int, 12),}

•  Type signature
TS = { (int), (int), (int), (int)}

•  Size = 16
•  Extent = 16

Vector Datatype

int MPI_Type_vector(int count, int blocklength,
int stride, MPI_Datatype oldtype,
MPI_Datatype *newtype)

•  Create a spaced array (a series of
contiguous blocks with space in between)

•  Count = number of blocks
•  Blocklength = number of items in each block
•  Stride = distance between the start of each

block
•  The size unit is the size of the inner datatype

SPD - MPI Standard Use and Implementation (2) 20

Vector Datatype

SPD - MPI Standard Use and Implementation (2) 21

1 2 3 4 5 6 7 8

MPI_Datatype mytype;
MPI_Type_vector(4, 2, 4, MPI_BYTE, &mytype);
MPI_Type_commit(mytype)

•  Type map

TM = {(byte, 0), (byte, 1), (byte, 4), (byte, 5),
(byte, 8), (byte, 9), (byte, 12), (byte, 13)}

•  Type signature
TS = { (byte), (byte), (byte), (byte), (byte), (byte), (byte), (byte)}

•  Size = 8
•  Extent = 13

Vector Datatype

•  What if stride is less than the blocklength?
•  What if the stride is zero?

SPD - MPI Standard Use and Implementation (2) 22

Hvector datatype

int MPI_Type_create_hvector(

int count, int blocklength, MPI_Aint stride,

MPI_Datatype oldtype, MPI_Datatype
*newtype)

•  Create a vector of block with arbitrary
alignment

•  Same as the vector but:
–  The stride is an offset in bytes between each block

starts
•  Many other datatypes have an “H version”

where some parameters are in byte units

SPD - MPI Standard Use and Implementation (2) 23

HVector Datatype

SPD - MPI Standard Use and Implementation (2) 24

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4

MPI_Datatype mytype;
MPI_Type_hvector(3, 2, 9, MPI_INT, &mytype);
MPI_Type_commit(mytype)

•  Type map

TM = {(int, 0), (int, 4), (int, 9), (int, 13), (int, 18), (int, 22)}

•  Type signature
TS = { (int), (int), (int), (int), (int), (int)}

•  Size = 24
•  Extent = 26

4 5 5 5 5 6 6 6 6

Indexed datatype

int MPI_Type_indexed(
int count, int *array_of_blocklengths,
int *array_of_displacements,

MPI_Datatype oldtype,MPI_Datatype *newtype)

•  Blocks of different sizes
•  Count is a number of blocks
•  Length and position (w.r.t. structure start!) are

specified for each block
•  All in units of the inner datatype
•  Some uses for this datatype: triangular matrixes,

arrays of contiguous lists, reordering data structure
blocks (e.g. matrix rows) as we communicate

SPD - MPI Standard Use and Implementation (2) 25

Hindexed Datatype

int MPI_Type_create_hindexed(
int count, int array_of_blocklengths[],
MPI_Aint array_of_displacements[],

MPI_Datatype oldtype, MPI_Datatype
*newtype)

•  Same as Indexed, but block positions are
given in bytes

•  Enhanced flexibility in memory layout

SPD - MPI Standard Use and Implementation (2) 26

Struct Datatype

MPI_TYPE_CREATE_STRUCT (count,
 array_of _blocklengths, array_of _displacements,
 array_of _types, newtype)

IN count number of blocks (non-negative integer)

•  also number of entries in arrays array_of _types,
array_of _displacements and array_of _blocklengths

IN array_of _blocklength elements in each block
 (array of non-negative integer)

IN array_of _displacements byte displacement of
 each block (array of integer)

IN array_of _types type of elements in each block
 (array of handles to datatype objects)

OUT newtype new datatype (handle)

SPD - MPI Standard Use and Implementation (3) 27

Struct Datatype

SPD - MPI Standard Use and Implementation (2) 28

a a a a b b c c c c c c c c

typedef struct {
 int a; char b[2]; double c
 }

•  Assuming 32 bit words, double-word aligned

doubles etc…
•  Type map

TM = {(int, 0), (char, 5), (char, 6), (double, 8)}

•  Type signature
TS = { (int), (char), (char), (double)}

•  Size = 14
•  Extent = 16

MPI TYPE CONSTRUCTORS

•  Typemap & typesignatures
•  Rules for matching Datatypes
•  Size and extent
•  Contiguous
•  Vector

–  Count, blocklen, stride example
–  Row, column, diagonals (exercises)
–  Multiple rows
–  Stride<blocklen, e.g. negative offsets

•  Examples: composing datatypes
•  Hvector
•  Indexed
•  Hindexed
•  Struct
•  A simple tool to display MPI typemaps : MPIMap

http://computation.llnl.gov/casc/mpimap/

SPD - MPI Standard Use and Implementation (2) 29

Exercises

•  Start preparing for the lab sessions
–  Install a version of MPI which works on your O.S.

•  OpenMPI (active development)
•  LAM MPI (same team, only maintained)
•  MPICH (active development)

–  Check out details that have been skipped in the
lessons
•  How to run programs, how to specify the mapping of

processes on machines
•  Usually it is a file listing all available machines
•  How to check a process rank

–  Read the first chapters of the Wilkinson-Allen
•  Write at least a simple program that uses

MPI_Comm_World, has a small fixed number of processes
and communications and run it on your laptop

•  E.g. a trivial ping-pong program with 2 processes

SPD - MPI Standard Use and Implementation (2) 30

Reference Texts

•  MPI standard Relevant Material for 2nd lesson
–  Chapter 3:

•  section 3.2 (blocking send and recv with details)
•  section 3.3 (datatype matching rules and meaning of

conversion in MPI)

–  Chapter 4: sections with the specific datatype
constructors discussed

SPD - MPI Standard Use and Implementation (2) 31

