
OpenCL 1.0 to 2.2 : a quick survey

Massimo Coppola
09/05/2018

Source material taken from Khronos group

https://www.khronos.org/
 Original presentations were held at several

events during 2013—2017
1 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

2013�

2

© Copyright Khronos Group 2013 - Page 1

OpenCL Introduction
Neil Trevett

Vice President NVIDIA, President Khronos
OpenCL Working Group Chair

© Copyright Khronos Group 2013 - Page 20

Give us YOUR Feedback!
• Full OpenCL 2.0 Documentation available
- Final Specification
- Header files
- Reference Card
- Online Reference pages

•OpenCL Registry contains all specifications
- www.khronos.org/registry/cl/

•Open Resources Area
- Community submitted resources
- http://www.khronos.org/opencl/resources

• Public Forum and Bugzilla is open for comments
- All feedback welcome!

http://www.khronos.org/registry/cl/
http://www.khronos.org/opencl/resources

© Copyright Khronos Group 2013 - Page 21

OpenCL Presentations in This Session
•OpenCL 2.0 Overview
- Allen Hux, Intel

•Accelerated Science – use of OpenCL in Land Down Under
- Tomasz Bednarz, CSIRO
- Sydney Khronos Chapter Leader

© Copyright Khronos Group 2013 - Page 1

OpenCL 2.0 Overview
Allen Hux

Intel Corporation

© Copyright Khronos Group 2013 - Page 2

Goals
• Enable New Programming Patterns
• Performance Improvements
• Well-defined Execution & Memory Model
• Improve CL / GL sharing

© Copyright Khronos Group 2013 - Page 3

Shared Virtual Memory
• In OpenCL 1.2 buffer objects can only be passed as kernel arguments
• Buffer object described as pointer to type in kernel
• Restrictions
- Pass a pointer + offset as argument value
- Store pointers in buffer object(s)

• Why?
- Host and OpenCL device may not share the same virtual address space
- No guarantee that the same virtual address will be used for a kernel argument

across multiple enqueues

© Copyright Khronos Group 2013 - Page 4

Shared Virtual Memory
• clSVMAlloc – allocates a shared virtual memory buffer
- Specify size in bytes
- Specify usage information
- Optional alignment value

• SVM pointer can be shared by the host and OpenCL device
• Examples

• Free SVM buffers
- clEnqueueSVMFree, clSVMFree

clSVMAlloc(ctx, CL_MEM_READ_WRITE, 1024 * 1024, 0)

clSVMAlloc(ctx, CL_MEM_READ_ONLY, 1024 * 1024, sizeof(cl_float4))

© Copyright Khronos Group 2013 - Page 5

Shared Virtual Memory
• clSetKernelArgSVMPointer
- SVM pointers as kernel arguments
- A SVM pointer
- A SVM pointer + offset

kernel void
vec_add(float *src, float *dst)
{
 size_t id = get_global_id(0);
 dst[id] += src[id];
}

// allocating SVM pointers
cl_float *src = (cl_float *)clSVMAlloc(ctx, CL_MEM_READ_ONLY, size, 0);
cl_float *dst = (cl_float *)clSVMAlloc(ctx, CL_MEM_READ_WRITE, size, 0);

// Passing SVM pointers as arguments
clSetKernelArgSVMPointer(vec_add_kernel, 0, src);
clSetKernelArgSVMPointer(vec_add_kernel, 1, dst);

// Passing SVM pointer + offset as arguments
clSetKernelArgSVMPointer(vec_add_kernel, 0, src + offset);
clSetKernelArgSVMPointer(vec_add_kernel, 1, dst + offset);

© Copyright Khronos Group 2013 - Page 6

typedef struct {
 …
 float *pB;
 …
} my_info_t;

kernel void
my_kernel(global my_info_t *pA, …)
{
 …
 do_stuff(pA->pB, …);
 …
}

// allocating SVM pointers
my_info_t *pA = (my_info_t *)clSVMAlloc(ctx,
 CL_MEM_READ_ONLY, sizeof(my_info_t), 0);
pA->pB = (cl_float *)clSVMAlloc(ctx,
 CL_MEM_READ_WRITE, size, 0);

// Passing SVM pointers
clSetKernelArgSVMPointer(my_kernel, 0, pA);

clSetKernelExecInfo(my_kernel,
 CL_KERNEL_EXEC_INFO_SVM_PTRS,
 1 * sizeof(void *), &pA->pB);

Shared Virtual Memory
• clSetKernelExecInfo
- Passing SVM pointers in other SVM pointers or buffer objects

© Copyright Khronos Group 2013 - Page 7

Shared Virtual Memory
• Three types of sharing
- Coarse-grained buffer sharing
- Fine-grained buffer sharing
- System sharing

© Copyright Khronos Group 2013 - Page 8

Shared Virtual Memory – Coarse & Fine Grained
• SVM buffers allocated using clSVMAlloc
• Coarse grained sharing
- Memory consistency only guaranteed at synchronization points
- Host still needs to use synchronization APIs to update data
- clEnqueueSVMMap / clEnqueueSVMUnmap or event callbacks
- Memory consistency is at a buffer level

- Allows sharing of pointers between host and OpenCL device

• Fine grained sharing
- No synchronization needed between host and OpenCL device
- Host and device can update data in buffer concurrently
- Memory consistency using C11 atomics and synchronization operations

- Optional Feature

© Copyright Khronos Group 2013 - Page 9

Shared Virtual Memory – System Sharing
• Can directly use any pointer allocated on the host
- No OpenCL APIs needed to allocate SVM buffers

• Both host and OpenCL device can update data using C11 atomics and
synchronization functions

• Optional Feature

© Copyright Khronos Group 2013 - Page 10

Nested Parallelism
• In OpenCL 1.2 only the host can enqueue kernels
• Iterative algorithm example
- kernel A queues kernel B
- kernel B decides to queue kernel A again

• Requires host - device interaction and for the
host to wait for kernels to finish execution
- Can use callbacks to avoid waiting for kernels to

finish but still overhead

• A very simple but extremely common nested
parallelism example

Kernel A

Kernel B

done

Example

© Copyright Khronos Group 2013 - Page 11

Nested Parallelism
• Allow a device to queue kernels to itself
- Allow a work-item(s) to queue kernels

• Use similar approach to how host queues commands
- Queues and Events
- Functions that queue kernels and other commands
- Event and Profiling functions

© Copyright Khronos Group 2013 - Page 12

kernel void my_func(global int *a, global int *b)
{
 …
 void (^my_block_A)(void) =
 ^{
 size_t id = get_global_id(0);
 b[id] += a[id];
 };

 enqueue_kernel(get_default_queue(),
 CLK_ENQUEUE_FLAGS_WAIT_KERNEL,
 ndrange_1D(…),
 my_block_A);
}

• Use clang Blocks to describe kernel to queue

Nested Parallelism

© Copyright Khronos Group 2013 - Page 13

Nested Parallelism

int enqueue_kernel(queue_t queue,
 kernel_enqueue_flags_t flags,
 const ndrange_t ndrange,
 void (^block)())

int enqueue_kernel(queue_t queue,
 kernel_enqueue_flags_t flags,
 const ndrange_t ndrange,
 uint num_events_in_wait_list,
 const clk_event_t *event_wait_list,
 clk_event_t *event_ret,
 void (^block)())

© Copyright Khronos Group 2013 - Page 14

Nested Parallelism

int enqueue_kernel(queue_t queue,
 kernel_enqueue_flags_t flags,
 const ndrange_t ndrange,
 void (^block)(local void *, …), uint size0, …)

int enqueue_kernel(queue_t queue,
 kernel_enqueue_flags_t flags,
 const ndrange_t ndrange,
 uint num_events_in_wait_list,
 const clk_event_t *event_wait_list,
 clk_event_t *event_ret,
 void (^block)(local void *, …), uint size0, …)

• Queuing kernels with pointers to local address space as arguments

© Copyright Khronos Group 2013 - Page 15

Nested Parallelism
• Example showing queuing kernels with local address space arguments

void my_func_local_arg (global int *a, local int *lptr, …) { … }

kernel void my_func(global int *a, …)
{
 …
 uint local_mem_size = compute_local_mem_size(…);

 enqueue_kernel(get_default_queue(),
 CLK_ENQUEUE_FLAGS_WAIT_KERNEL,
 ndrange_1D(…),
 ^(local int *p){my_func_local_arg(a, p, …);},
 local_mem_size);
}

© Copyright Khronos Group 2013 - Page 16

Nested Parallelism
• Specify when a child kernel can begin execution (pick one)
- Don’t wait on parent
- Wait for kernel to finish execution
- Wait for work-group to finish execution

• A kernel’s execution status is complete
- when it has finished execution
- and all its child kernels have finished execution

© Copyright Khronos Group 2013 - Page 17

Nested Parallelism
• Other Commands
- Queue a marker

• Query Functions
- Get workgroup size for a block

• Event Functions
- Retain & Release events
- Create user event
- Set user event status
- Capture event profiling info

• Helper Functions
- Get default queue
- Return a 1D, 2D or 3D ND-range descriptor

© Copyright Khronos Group 2013 - Page 18

Generic Address Space
• In OpenCL 1.2, function arguments that are a pointer to a type

must declare the address space of the memory region pointed to
• Many examples where developers want to use the same code but

with pointers to different address spaces

• Above example is not supported in OpenCL 1.2
• Results in developers having to duplicate code

void
my_func (global int *ptr, …)
{
 …
 foo(ptr, …);
 …
}

void
my_func (local int *ptr, …)
{
 …
 foo(ptr, …);
 …
}

© Copyright Khronos Group 2013 - Page 19

Generic Address Space
• OpenCL 2.0 no longer requires an

address space qualifier for
arguments to a function that are a
pointer to a type
- Except for kernel functions

• Generic address space assumed if no
address space is specified

• Makes it really easy to write
functions without having to worry
about which address space
arguments point to

void
my_func (int *ptr, …)

{

 …

}

kernel void

foo(global int *g_ptr, local int *l_ptr, …)

{
 …

 my_func(g_ptr, …);

 my_func(l_ptr, …);
}

© Copyright Khronos Group 2013 - Page 20

Generic Address Space – Casting Rules
• Implicit casts allowed from named to generic address space
• Explicit casts allowed from generic to named address space
• Cannot cast between constant and generic address spaces

kernel void foo()
{
 int *ptr;
 local int *lptr;
 global int *gptr;
 local int val = 55;

 ptr = gptr; // legal
 lptr = ptr; // illegal
 lptr = gptr; // illegal
 ptr = &val; // legal
 lptr = (local int *)ptr; // legal
}

© Copyright Khronos Group 2013 - Page 21

Generic Address Space – Built-in Functions
• global gentype* to_global(const gentype*)

local gentype* to_local(const gentype *)
private gentype* to_private(const gentype *)
- Returns NULL if cannot cast

• cl_mem_fence_flags get_fence(const void *ptr)
- Returns the memory fence flag value
- Needed by work_group_barrier and mem_fence functions

© Copyright Khronos Group 2013 - Page 22

C11 Atomics
• Implements a subset of the C11 atomic and synchronization operations
- Enable assignments in one work-item to be visible to others

• Atomic operations
- loads & stores
- exchange, compare & exchange
- fetch and modify (add, sub, or, xor, and, min, max)
- test and set, clear

• Fence operation
• Atomic and Fence operations take
- Memory order
- Memory scope

• Operations are supported for global and local memory

© Copyright Khronos Group 2013 - Page 23

C11 Atomics
• memory_order_relaxed
- Atomic operations with this memory order are not synchronization operations
- Only guarantee atomicity

• memory_order_acquire, memory_order_release, memory_order_acq_rel
- Atomic store in work-item A for variable M is tagged with memory_order_release
- Atomic load in work-item B for same variable M is tagged with

memory_order_acquire
- Once the atomic load is completed work-item B is guaranteed to see everything

work-item A wrote to memory before atomic store
- Synchronization is only guaranteed between work-items releasing and acquiring

the same atomic variable

• memory_order_seq_cst
- Same as memory_order_acq_rel, and
- A single total order exists in which all work-items observe all modifications

© Copyright Khronos Group 2013 - Page 24

C11 Atomics
• Memory scope - specifies scope of memory ordering constraints
- Work-items in a work-group
- Work-items of a kernel executing on a device
- Work-items of a kernel & host threads executing across devices and host
- For shared virtual memory

© Copyright Khronos Group 2013 - Page 25

C11 Atomics
• Supported Atomic Types
- atomic_int, atomic_uint
- atomic_long, atomic_ulong
- atomic_float
- atomic_double
- atomic_intptr_t, atomic_uintptr_t, atomic_ptrdiff_t
- atomic_size_t
- atomic_flag

• Atomic types have the same size & representation as the non-atomic types
except for atomic_flag

• Atomic functions must be lock-free

© Copyright Khronos Group 2013 - Page 26

Images
• 2D image from buffer
- GPUs have dedicated and fast hardware for texture addressing & filtering
- Accessing a buffer as a 2D image allows us to use this hardware
- Both buffer and 2D image use the same data storage

• Reading & writing to an image in a kernel
- Declare images with the read_write qualifier
- Use barrier between writes and reads by work-items to the image
- work_group_barrier(CLK_IMAGE_MEM_FENCE)

- Only sampler-less reads are supported

© Copyright Khronos Group 2013 - Page 27

Images
• Writes to 3D images is now a core feature
• New image formats
- sRGB
- Depth

• Extended list of required image formats
• Improvements to CL / GL sharing
- Multi-sampled GL textures
- Mip-mapped GL textures

© Copyright Khronos Group 2013 - Page 28

Pipes
• Memory objects that store data organized as a FIFO
• Kernels can read from or write to a pipe object
• Host can only create pipe objects

© Copyright Khronos Group 2013 - Page 29

Pipes
• Why introduce a pipe object?
- Allow vendors to implement dedicated hardware to support pipes
- Read from and write to a pipe without requiring atomic operations to global

memory
- Enable producer – consumer relationships between kernels

© Copyright Khronos Group 2013 - Page 30

Pipes – Read & Write Functions
• Work-item read pipe functions
- Read a packet from a pipe
- Read with reservation
- Reserve n packets for reading
- Read individual packets (identified by reservation ID and packet index)
- Confirm that the reserved packets have been read

• Work-item write pipe functions
- Write a packet to a pipe
- Write with reservation

• Work-group pipe functions
- Reserve and commit packets for reading / writing

© Copyright Khronos Group 2013 - Page 31

Other 2.0 Features
• Program scope variables
• Flexible work-groups
• New work-item functions
- get_global_linear_id, get_local_linear_id

• Work-group functions
- broadcast, reduction, vote (any & all), prefix sum

• Sub-groups
• Sharing with EGL images and events

2015-2016�

3

© Copyright Khronos Group 2015 - Page 1

OpenCL 2.1 and
SPIR-V 1.0 Launch

November 2015

© Copyright Khronos Group 2016 - Page 1

OpenCL
A State of the Union

Neil Trevett | Khronos President
NVIDIA Vice President Developer Ecosystem

OpenCL Working Group Chair
ntrevett@nvidia.com | @neilt3d

Vienna, April 2016

mailto:ntrevett@nvidia.com

© Copyright Khronos Group 2016 - Page 4

OpenCL 2.2
• Provisional - seeking industry feedback before finalization at SIGGRAPH or SC16
• OpenCL C++ kernel language into core
• SPIR-V 1.1 adds OpenCL C++ support
• SYCL 2.2 fully leverages OpenCL 2.2 from a single source file
• Runs on any OpenCL 2.0-capable hardware

OpenCL 1.0
Specification

Dec08 Jun10
OpenCL 1.1

Specification

Nov11
OpenCL 1.2

Specification
OpenCL 2.0

Specification

Nov13

Device partitioning
Separate compilation and linking

Enhanced image support
Built-in kernels / custom devices
Enhanced DX and OpenGL Interop

Shared Virtual Memory
On-device dispatch

Generic Address Space
Enhanced Image Support

C11 Atomics
Pipes

Android ICD

3-component vectors
Additional image formats

Multiple hosts and devices
Buffer region operations

Enhanced event-driven execution
Additional OpenCL C built-ins

Improved OpenGL data/event interop

18 months 18 months 24 months

OpenCL 2.1
Specification

Nov15 24 months

SPIR-V in Core
Subgroups into core

Subgroup query operations
clCloneKernel

Low-latency device
timer queries

OpenCL C++ Kernel Language
SPIR-V 1.1 with C++ support

SYCL 2.2 for single source C++

OpenCL 2.2
PROVISIONAL

May16 7months

© Copyright Khronos Group 2016 - Page 5

OpenCL C++ Kernel Language
• The OpenCL C++ kernel language is a static subset of C++14
- Frees developers from low-level coding details without sacrificing performance

• C++14 features removed from OpenCL C++ for parallel programming
- Exceptions, Allocate/Release memory, Virtual functions and abstract classes Function

pointers, Recursion and goto

• Classes, lambda functions, templates, operator overloading etc..
- Fast and elegant sharable code - reusable device libraries and containers
- Templates enable meta-programming for highly adaptive software
- Lambdas used to implement nested/dynamic parallelism

• Enhanced support for authoring libraries
- Increased safety, reduced undefined behavior while accessing atomics, iterators, images,

samplers, pipes, device queue built-in types and address spaces

Safer, more adaptable, more reusable parallel software

© Copyright Khronos Group 2015 - Page 14

SYCL – Single Source Heterogeneous C++
• Pronounced ‘sickle’
- To go with ‘spear’ (SPIR)

• C++11 code for multiple OpenCL devices
- Construct complex reusable algorithm

templates using OpenCL for acceleration

• C++ templates contain host & device code
- e.g. parallel_sort<MyType> (myData);

• Cross-toolchain as well as cross-platform
- No language extensions – so standard C++

compilers can process SYCL source

• Device compilers enable SYCL on devices
- Can have multiple device compilers linking

into final executable

#include <CL/sycl.hpp>

int main ()
{

// Device buffers
// Device buffers

buffer<float, 1 > buf_a(array_a, range<1>(count));
buffer<float, 1 > buf_b(array_b, range<1>(count));
buffer<float, 1 > buf_c(array_c, range<1>(count));
buffer<float, 1 > buf_r(array_r, range<1>(count));
queue myQueue;
myQueue.submit([&](handler& cgh)

{
// Data accessors
auto a = buf_a.get_access<access::read>();
auto b = buf_b.get_access<access::read>();
auto c = buf_c.get_access<access::read>();
auto r = buf_r.get_access<access::write>();
// Kernel
cgh.parallel_for<class three_way_add>(count, [=](id<> i)

{
r[i] = a[i] + b[i] + c[i];

})
);

});}

Standard CPU Compiler
(e.g. gcc, Intel C/C++,

Visual C/C++)

Device
Compiler

Linker

LLVM

CPU
Executable

GPU
Executable

SPIR to Binary
Convertor

Single Standard C++
Source File

© Copyright Khronos Group 2015 - Page 15

SYCL Status and Benefits
• SYCL 1.2 Final spec released
- At IWOCL in May 2014

• Multiple implementations
- Including open source triSYCL from AMD
- https://github.com/amd/triSYCL

• Developers can move quickly into writing SYCL code
- Provides methods for dealing with targets that do not have OpenCL(yet!)

• A fallback CPU implementation is debuggable!
- Using normal C++ debuggers
- Profiling tools also work on CPU device

• Huge bonus for productivity and adoption
- Cost of entry to use SYCL very low

SYCL is a practical, open, royalty-free standard to deliver
high performance software on today’s highly-parallel systems

https://github.com/amd/triSYCL

© Copyright Khronos Group 2016 - Page 6

The Choice of SYCL 2.2 or OpenCL C++

C++ Kernel Language
Low Level Control

‘GPGPU’-style separation
of device-side kernel

source code and host code

Single-source C++
Programmer Familiarity

Approach also taken by
C++ AMP, OpenMP and the

C++ 17 Parallel STL

Developer Choice
The development of the two

specifications are aligned so code
can be easily shared between the

two approaches

SYCL is an important initiative to
represent the OpenCL perspective as
the industry as a whole figures out

parallel programming from C++

© Copyright Khronos Group 2016 - Page 7

More OpenCL 2.2 – with help from SPIR-V 1.1
• SPIR-V 1.1 adds full support for OpenCL C++
- Initializer/finalizer function execution modes to support constructors/destructors
- Enhances the expressiveness of kernel programs by supporting named barriers,

subgroup execution, and program scope pipes

• SPIR-V specialization constants - previously available in Vulkan shaders
- SPIR-V module can express a family of parameterized OpenCL kernel programs
- Embedded compile-time settings can be specialized at runtime
- Eliminates the need to ship or recompile multiple variants of a kernel

• Pipe storage device-side type - useful for FPGA implementations
- Makes connectivity size and type known at compile time
- Enables efficient device-scope communication between kernels

• Enhanced optimization of generated code
- Query non-trivial constructors/destructors of program scope global objects
- User callbacks can be set at program release time

© Copyright Khronos Group 2015 - Page 10

SPIR-V Transforms the Language Ecosystem
• First multi-API, intermediate language for parallel compute and graphics
- Native representation for Vulkan shader and OpenCL kernel source languages
- https://www.khronos.org/registry/spir-v/papers/WhitePaper.pdf

• Cross vendor intermediate representation
- Language front-ends can easily access multiple hardware run-times
- Acceleration hardware can leverage multiple language front-ends
- Encourages tools for program analysis and optimization in SPIR form

Diverse Languages
and Frameworks

Hardware
runtimes on

multiple architectures

Tools for
analysis and
optimization

Standard
Portable
Intermediate
Representation

Multiple Developer Advantages
Same front-end compiler for multiple platforms

Reduces runtime kernel compilation time
Don’t have to ship shader/kernel source code

Drivers are simpler and more reliable

https://www.khronos.org/registry/spir-v/papers/WhitePaper.pdf

© Copyright Khronos Group 2015 - Page 11

Evolution of SPIR Family
• SPIR–V is first fully specified Khronos-defined SPIR standard
- Does not use LLVM to isolate from LLVM roadmap changes
- Includes full flow control, graphics and parallel constructs beyond LLVM
- Khronos has open sourced SPIR-V <-> LLVM conversion tools to enable

construction of flexible toolchains that use both intermediate languages

SPIR 1.2 SPIR 2.0 SPIR-V 1.0

LLVM Interaction Uses LLVM 3.2 Uses LLVM 3.4 100% Khronos defined
Round-trip lossless conversion

Compute Constructs Metadata/Intrinsics Metadata/Intrinsics Native

Graphics Constructs No No Native

Supported Language
Feature Sets OpenCL C 1.2 OpenCL C 1.2

OpenCL C 2.0
OpenCL C 1.2 / 2.0

OpenCL C++ and GLSL

OpenCL Ingestion OpenCL 1.2
Extension

OpenCL 2.0
Extension

OpenCL 2.1 Core
OpenCL 1.2 / 2.0 Extensions

Vulkan Ingestion - - Vulkan 1.0 Core

© Copyright Khronos Group 2016 - Page 8

SPIR-V Ecosystem

LLVM

Third party kernel and
shader Languages

SPIR-V
• Khronos defined and controlled
cross-API intermediate language
• Native support for graphics

and parallel constructs
• 32-bit Word Stream

• Extensible and easily parsed
• Retains data object and control

flow information for effective
code generation and translation

OpenCL C++ OpenCL C

GLSL Khronos has open sourced
these tools and translators

IHV Driver
Runtimes

Other
Intermediate

Forms

SPIR-V Validator

SPIR-V Tools

SPIR-V (Dis)Assembler

LLVM to SPIR-V
Bi-directional

Translator

Khronos plans to open
source these tools soon

https://github.com/KhronosGroup/SPIR/tree/spirv-1.1
Open source C++ front-end released

https://github.com/KhronosGroup/SPIR/tree/spirv-1.1

© Copyright Khronos Group 2015 - Page 13

SPIR-V Open Source Community Activity
• Python byte code to SPIR-V Convertor

- Write shaders or kernels in Python, Encode and decode SPIR-V in Python
- Dis(Assembler) with high level human readable assembler syntax

• .NET IL to SPIR-V Convertor
- Write and debug shaders or kernels using C# , SPIR-V interpreter

• Shade SPIR-V virtual machine
- Test and debug SPIR-V binaries for binary correctness in human readable format

• Otherside SPIR-V virtual machine
- Academic software rasterizer project to produce C code from SPIR-V

• Rust (Dis)Assembler
- Encode and decode SPIR-V binaries in Rust

• Go (Dis)Assembler
- Encode and decode SPIR-V in Go, SPIR-V represented in Go data structures

• Haskell EDSL
- SPIR-V like language embedded in Haskell with significantly relaxed layout constraints

• Lisp SPIR-V Specification
- Lisp readable SPIR-V specification

• JSON SPIR-V specification
- Conversion of HTML SPIR-V specification to JSON format

• This is just the start….

© Copyright Khronos Group 2016 - Page 9

Support for Both SPIR-V and LLVM
• LLVM is an SDK, not a formally defined standard
- Khronos moved away from trying to use LLVM IR as a standard
- Issues with versioning, metadata, etc.

• But LLVM is a treasure chest of useful transforms
- SPIR-V tools can encapsulation and use LLVM to do useful SPIR-V transforms

• SPIR-V tools can all use different rules – and there will be lots of these
- May be lossy and only support SPIR-V subset
- Internal form is not standardized
- May hide LLVM version, metadata

SPIR-V

‘Rendezvous’ format
for interchange

Native expression of graphics
and parallel functionality for

Khronos APIs

Tool-encapsulated
LLVM

HLSL
GLSL OpenCL C

OpenCL C++

Transform
Tool

- Compression
- Optimization

- Stripping
- Linker/Merger

Driver

© Copyright Khronos Group 2016 - Page 10

OpenCL Implementations

OpenCL 1.0
Specification

Dec08 Jun10
OpenCL 1.1
Specification

Nov11
OpenCL 1.2
Specification

OpenCL 2.0
Specification

Nov13

1.0 | Jul13

1.0 | Aug09

1.0 | May09

1.0 | May10

1.0 | Feb11

1.0 | May09

1.0 | Jan10

1.1 | Aug10

1.1 | Jul11

1.2 | May12

1.2 | Jun12

1.1 | Feb11

1.1 |Mar11

1.1 | Jun10

1.1 | Aug12

1.1 | Nov12

1.1 | May13

1.1 | Apr12

1.2 | Apr14

1.2 | Sep13

1.2 | Dec12
Desktop

Mobile

FPGA

2.0 | Jul14

OpenCL 2.1
Specification

Nov15

1.2 | May15

2.0 | Dec14

1.0 | Dec14

1.2 | Dec14

1.2 | Sep14

Vendor timelines are
first implementation of
each spec generation

1.2 | May15

Embedded

1.2 | Aug15

1.2 | Mar16

2.0 | Nov15

© Copyright Khronos Group 2016 - Page 11

OpenCL at a Crossroads

Embedded
Use cases: Signal and Pixel Processing
Roadmap: arbitrary precision for power

efficiency, hard real-time scheduling,
asynch DMA

FPGAs
Use cases: Network and

Stream Processing
Roadmap: enhanced execution

model, self-synchronized and self-
scheduled graphs, fine-grained

synchronization between kernels,
DSL in C++

HPC, SciViz, Datacenter
Use case: Numerical Simulation,

Virtualization
Roadmap: enhanced streaming

processing, enhanced library support

Mobile
Use case: Photo and Vision Processing

Roadmap: arbitrary precision for
inference engine and pixel processing

efficiency, pre-emption and QoS
scheduling for power efficiency

Desktop
Use cases: Video and Image

Processing, Gaming Compute
Roadmap: Vulkan interop,

arbitrary precision for increased
performance, pre-emption,
Collective Programming and
improved execution model

CUDA, NVIDIA Shipping
1.2 Apple Metal

CUDA, NVIDIA Shipping 1.2,
Lack of libraries

RenderScript confusion
on Android, Apple Metal

Lack of Tools
‘Too complex to program’

Performance portability is hard

* Roadmap topics in discussion

© Copyright Khronos Group 2016 - Page 12

The Universal Struggle for Open Standards

Platforms
Idealized Universe =
Total content lock.

All commercially significant
apps run on your platform and

nowhere else

Independent
Hardware and

Software Vendors
Idealized Universe =

zero cost to monetize apps and
processors across all platforms

Proprietary
Solution Providers
Idealized Universe =

single viable solution.
All platforms and

applications use your
solution and nothing else

Effective Open Standard Strategies
1. Create joint investment in a solution that is too
expensive for any one company to develop themselves

2. Create enough momentum that companies gain more
content than they lose by supporting an open standard

© Copyright Khronos Group 2016 - Page 13

Vulkan Explicit GPU Control

GPU

High-level Driver
Abstraction

Context management
Memory allocation
Full GLSL compiler

Error detection
Layered GPU Control

Application
Single thread per context

GPU

Thin Driver
Explicit GPU Control

Application
Memory allocation

Thread management
Synchronization

Multi-threaded generation
of command buffers

Language Front-end
Compilers
Initially GLSL

Loadable debug and
validation layers

Vulkan 1.0 provides access to
OpenGL ES 3.1 / OpenGL 4.X-class GPU functionality

but with increased performance and flexibility

Loadable Layers
No error handling overhead in

production code

SPIR-V Pre-compiled Shaders:
No front-end compiler in driver

Future shading language flexibility

Simpler drivers:
Improved efficiency/performance

Reduced CPU bottlenecks
Lower latency

Increased portability

Graphics, compute and DMA queues:
Work dispatch flexibility

Command Buffers:
Command creation can be multi-threaded
Multiple CPU cores increase performance

Resource management in app code:
Less hitches and surprises

Vulkan Benefits

SPIR-V pre-compiled
shaders

© Copyright Khronos Group 2016 - Page 14

Vulkan Tools Architecture
• Layered design for cross-vendor tools innovation and flexibility
- IHVs plug into a common, extensible architecture for code validation, debugging

and profiling during development without impacting production performance

• Khronos Open Source Loader enables use of tools layers during debug
- Finds and loads drivers, dispatches API calls to correct driver and layers

Vulkan-based Title

IHV’s Installable Client
Driver

Vulkan’s Common Loader

Production Path
(Performance) Debug Layers can be

installed during Development

Validation Layers

Debug Layers

Interactive
Debugger

Debug information via
standardized API calls

© Copyright Khronos Group 2016 - Page 15

Vulkan Feature Sets
• Vulkan supports hardware with a wide range of hardware capabilities
- Mobile OpenGL ES 3.1 up to desktop OpenGL 4.5 and beyond

• One unified API framework for desktop, mobile, console, and embedded
- No "Vulkan ES" or "Vulkan Desktop"

• Vulkan precisely defines a set of "fine-grained features"
- Features are specifically enabled at device creation time (similar to extensions)

• Platform owners define a Feature Set for their platform
- Vulkan provides the mechanism but does not mandate policy
- Khronos will define Feature Sets for platforms where owner is not engaged

• Khronos will define feature sets for Windows and Linux
- After initial developer feedback

© Copyright Khronos Group 2016 - Page 16

Vulkan Genesis

Vulkan Working Group Participants

Significant proposals, IP contributions
and engineering effort from many

working group members

Khronos members from all
segments of the graphics industry

agree the need for new
generation cross-platform GPU API

Including an unprecedented level of
participation from game engine developers

Khronos’ first API
‘hard launch’

16Feb16

Specification, Conformance Tests, SDKs - all open source…
Reference Materials, Compiler front-ends, Samples…

Multiple Conformant Drivers on multiple OS

18 months

A high-energy
working group effort

http://www.amd.com/

© Copyright Khronos Group 2016 - Page 17

The Secret to Performance Portability

Applications
can use Vulkan

directly for
maximum

flexibility and
control Utility libraries

and layers

Application

Game Engines
fully optimized

over Vulkan

Application uses
utility libraries to

speed
development

Rich Area for Innovation
• Many utilities and layers will be in open source

• Layers to ease transition from OpenGL
• Domain specific flexibility

• Performance across diverse hardware

Applications using game engines
will automatically benefit from
Vulkan’s enhanced performance

Similar ecosystem dynamic as WebGL
A widely pervasive, powerful, flexible foundation layer enables diverse middleware tools and libraries

© Copyright Khronos Group 2016 - Page 18

Add Compute to Vulkan? In Discussion…

Embedded
Use cases: Signal and Pixel Processing
Roadmap: arbitrary precision for power
efficiency, hard real-time scheduling,

asynch DMA

FPGAs
Use cases: Network and

Stream Processing
Roadmap: enhanced execution model, self-

synchronized and self-scheduled graphs, fine-
grained synchronization between kernels,

DSL in C++

HPC, SciViz, Datacenter
Use case: Numerical Simulation, Virtualization

Roadmap: enhanced streaming processing,
enhanced library support

Vulkan Compute?
Gaming Compute, Pixel Processing, Inference

Fine grain graphics and compute (no interop needed)
SPIR-V for shading language flexibility – C/C++

Low-latency, fine grain run-time
Google Android adoption

Competes well with Metal (=C++/OpenCL 1.2)
Roadmap: arbitrary precision, SVM,

dynamic parallelism, pre-emption and QoS scheduling

Desktop
Use cases: Video and Image Processing, Gaming Compute

Roadmap: Vulkan interop, arbitrary precision for
increased performance, pre-emption, collective

programming and improved execution model

Mobile
Use case: Photo and Vision Processing

Roadmap: arbitrary precision for
inference engine and pixel processing efficiency, pre-

emption and QoS scheduling for power efficiency

Vulkan Lessons
1. Engine developer insights were essential during design

2. Engine prototyping during design was essential during design
3. Open sourcing tests, tools, specs drives deeper community engagement

4. Explicit API – supports strong middleware ecosystem
BUT its ‘just’ a GPU API – still need OpenCL!

© Copyright Khronos Group 2016 - Page 19

Possible OpenCL Evolution

Increasing parallel hardware flexibility
Execution and memory model enhancements

Pre-emption, virtual memory, on-device dispatch, synchronization

Increasing language expressiveness
Guaranteeing degrees of forward progress

Definitions of concurrency

Evolution of OpenCL …
… filling the gap between imprecise HLL and imperfect hardware

Should OpenCL evolve to focus on the things that ONLY OpenCL can do…
1. Enable low-level, explicit access to heterogeneous hardware – needed by languages and libraries

2. Provide efficient runtime coordination of tasks, resources, scheduling on target hardware
3. Leverage, synergize and co-exist with Vulkan compute – and learn from Vulkan …

4. Define feature sets so target hardware does not have to implement inappropriate functionality
5. Adopt layered tools architecture to drive tools momentum and decrease run-time overhead
6. Leave usability, portability and performance portability to higher levels in the ecosystem

Or what do YOU think?

2017�

4

