
Intel Thread Building Blocks, Part V

SPD course 2017-18
Massimo Coppola

23/04/2018

1 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

So
m

e
 im

a
g

e
s/

ta
b

le
s

a
re

 t
a

ke
n

 fr
o

m
 T

BB
 d

o
c

u
m

e
n

ta
tio

n
, w

h
ic

h
 is

 c
o

p
yr

ig
h

t

b
y

In
te

l a
n

d
 is

 s
u

b
je

c
t

to
 c

h
a

n
g

e
 w

/o
 n

o
tic

e
�

The Flow Graph

•  Allow fast & efficient implementation of
dataflow, dependency graph algorithms
–  Introduced in TBB 4
–  Evolution of the pipeline idea

•  Computation represented as
–  A graph object
–  A set of nodes : computation units

•  one or more inputs and outputs

–  A set of edges : comm. channel AND dependencies

•  loops? Yes, but examples are mostly DAGS
•  Node execution = TBB task instantiation
•  Namespace tbb::flow

2 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

The graph object�
•  Dynamically created by program code, using node and edge

constructor methods
–  Can be run multiple times
–  Owns all tasks created during the flow graph execution
–  Executes its tasks either in a specified task_group_context, or in a

newly created context

•  Feeding the graph is done via enqueueing data
–  However, a less than trivial protocol is used to let the node

communicate with each other with low overhead

•  Interactions
–  Waiting for the graph to finish its computation
–  Registering interactions with the graph

•  Will actually cause tasks to be run within the graph

•  Most examples are DAGS, but this is not mandatory
–  Generic looping graphs are much harder to design & debug

3 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Types of messages �
•  continue_msg

–  Empty class used for dependency messages

•  flow::tuple
–  Used to manage messages built of many parts
–  Supports a subset of the methods of the std::tuple

•  class tagged_msg
–  Template to add a tag to a multipart message
–  A specified TagType is used to inform the receiver on

the content of the message, which may be only
known at runtime

–  template<typename TagType, typename T0,
typename T1...typename TN>
class tagged_msg;

4 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

TBB Flow Graph Nodes �

•  Several types of nodes
–  Functional
–  Buffering, filtering of messages
–  Aggregation/deaggregation (broadcast, order)
–  Utility

5 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

TBB Flow Graph Nodes �
•  Several types of nodes

–  Functional
–  Buffering, filtering of messages
–  Aggregation/deaggregation (broadcast, order)
–  Utility

•  Node input and output types are defined at
creation via template parameters
–  Multiple inputs are managed via tuples an read with

get<0>, get<1> …
•  Node invoke user-provided functions

–  Executed as tasks, so choose wisely their grain
•  Can also be created in inactive state and be

activated later on
–  Pay attention to the creation order (e.g. use reverse

dependency order), or risk losing messages

6 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Class node abstract templates �
•  templates helping define different types of nodes

–  abstract classes with default implementation of some
methods

–  you may have to redefine some virtual methods
–  register and remove methods are for TBB internal use!

•  Graph_node base template class
•  Sender template class

–  Nodes that act as data/message sender

•  Receiver template class
•  Continue_receiver

–  Receives multiple continue_msg, computes when the
number of messages hits the set threshold

•  execute() is Triggered by predecessors’ calling
try_put()

7 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

“Functional” nodes �
•  These nodes compute a function

–  of the predecessor(s) input(s) if any are connected
–  send the results (data or empty message) to the successor(s)

•  Continue_node
–  Awaits one or mode dependency messages in input
–  Performs a computation and brodcasts a data/dep message to its

successors
•  Function_node
•  Source_node

–  Strictly serial node, no predecessors, user function will generate
messages that are broadcast to successors

•  Multifunction_node
–  One input, multiple output broadcast to successors
–  can be assigned a concurrency limit

•  Asnc_node
–  One input, one output, obeys concurrency limit
–  Forward messages outside TBB for external processing
–  Provides a gateway tpe to return back results

8 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Buffering nodes �
•  Overwrite_node

–  Single item buffer, can overwrite
•  Write_once

–  Single item buffer, no overwrite unless clear() is called
•  Buffer_node

–  Unbounded buffer (arbitrary order) toward a single successor *
–  Accepts a reservation

•  Queue_node
–  Unbounded FIFO queue toward a single successor *
–  Accepts a reservation, will stall the queue

•  Priority_queue_node
–  Uses a priority queue to a successor *, reservation will stall queue

•  Sequencer_node
–  Unbounded buffer toward a successor *
–  Sends message in strict 0..N sequence order
–  Will reject duplicate sequence numbers

•  A single successor:*
–  Sends messages to 1st registered successor, when one msg is refused, ignore

that successor, try next one (if any)

9 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Service nodes �
•  Join nodes

–  Create a tuple <T0 .. Tn> from messages received at its inputs,
broadcast the tuple to all its successors

•  Multifunction_node
–  Has input and a tuple of outputs
–  May spawn a new task at each input received
–  Up to a degree of concurrency if predefined

•  Split_node
–  Input is a tuple, and has a tuple of outputs
–  Each component of the input tuple is sent to teh corresponding

output
•  Indexer_node

–  Broadcast to all output each message received on any input
–  Message is tagged with the input index

•  Composite_node
–  Encapsulates a collection of (any nuber of) other nodes
–  Requires C++11
–  A tuple of inputs and a tuple of outputs forward messages in and out
–  Can also be specialized to only inputs or only outputs

10 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

TBB flow graph edges �
•  Created with the method
make_edge(srcnode, destnode)

•  Encode node dependencies
–  Use class continue_msg to activate successor

nodes

•  Express communications
–  A data message to a successor node activates it
–  Data sent is copied, so send references to large

data items whenever it is possible

•  dataflow-style activation, i.e.
–  when all inputs are present
–  independent nodes can run concurrently

11 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Message communication protocol�

•  Issue with push/pull protocol
–  Nodes will switch between push message

forwarding and pull forwarding to avoid the
need of retries

•  Potential message discard if no receiver
accepts
–  Some of the nodes do not buffer the message, so

if no successor accepts the message can be lost

12 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Node push/pull/buffer policies �
•  Two policies for forwarding message
–  broadcast-push

•  Push to all successors that accept

–  single-push
•  Push to the 1st successors that accept

•  Two policies when no successors accept
–  Buffering
–  Discarding

•  Two policies for accepting messages
–  Accept

•  Accept all pushed messages

–  Switch
•  Do not accept, and switch to pull mechanisms �

13 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

14 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Node Reception Policy try_get() try_reserve() Forwarding

Functional Nodes

source_node -- yes yes broadcast-push

function_node<rejecting> accept/switch no no broadcast-push

function_node<queueing> accept no no broadcast-push

continue_node accept no no broadcast-push

multifunction_node<rejecting> accept/switch no no broadcast-push

multifunction_node<queueing> accept no no broadcast-push

Buffering Nodes

buffer_node accept yes yes single-push

priority_queue_node accept yes yes single-push

queue_node accept yes yes single-push

sequencer_node accept yes yes single-push

overwrite_node accept yes no broadcast-push

write_once_node accept once yes no broadcast-push

Split/Join Nodes

join_node<queueing> accept yes no broadcast-push

join_node<reserving> switch yes no broadcast-push

join_node<tag_matching> accept yes no broadcast-push

split_node accept no no broadcast-push

indexer_node accept no no broadcast-push

Other Nodes

broadcast_node accept no no broadcast-push

limiter_node accept/switch no no broadcast-push

Examples of edge creation�

15 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Examples of node creation�

•  Creation of dependence nodes
•  Creation of typed input/output nodes
•  Examples of the different types of nodes

•  Che differenza tra nodi broadcast e nodi
con più dipendenze in uscita?

•  L’esistenza della coda in input è implicita?�

16 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

•  aaaa �

17 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

OpenCL nodes �

18 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Scheduler initialization

•  Task_scheduler_init provides means for the
user to customize the scheduler
–  When the scheduler is constructed/destroyed
–  How many worker threads the scheduler uses
–  The stack size of worker threads

•  Either activated immediately on
construction, or subsequently
–  Via ::deferred and and initialize()

•  A task scheduler init affects all subsequently
created schedulers
–  Also wrt floating point settings

19 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

