
The MPI Message-passing Standard
Practical use and implementation (VI)

SPD Course
21/03/2019

Massimo Coppola

REFINING DERIVED DATATYPES
LAYOUT FOR COMPOSITION

Datatypes

SPD - MPI Standard Use and Implementation (5) 2

Derived D.type Extent and composition

•  For complex derived datatypes, extent plays
an important role
–  Plain definition : distance between the first

(smallest address) byte and last (largest address)
byte used in memory

–  Actual use : the offset between two items of the
given datatype when they are stored
consecutively in memory
•  E.g. whenever a contiguous datatype is created or a

communication buffer with more instances is used

•  Setting extent manually (MPI1, MPI2>)
•  Querying extent
•  Examples with derived datatypes

SPD - MPI Standard Use and Implementation (5) 3

Get extent

Int MPI_Type_get_extent_x (MPI_Datatype datatype,
MPI_Count *lb, MPI_Count *extent)

•  Get the lower bound and extent of a
datatype
–  By default, lower bound = lowest-address

location of a datatype
–  Extent = distance from lower bound to highest

address location used by the datatype

SPD - MPI Standard Use and Implementation (5) 4

Modify extent

int MPI_Type_create_resized(MPI_Datatype oldtype,  
MPI_Aint lb, MPI_Aint extent,
MPI_Datatype *newtype)

•  Modify the lower bound and extent of a
datatype

•  Reset lower bound and extent of the
datatype to new arbitrary values, for the
sake of data structures composition

SPD - MPI Standard Use and Implementation (5) 5

Retrieve original extent

int MPI_Type_get_true_extent(MPI_Datatype datatype,
MPI_Aint *true_lb, MPI_Aint *true_extent)

•  Retrieve the true lower bound and extent
values from a datatype

•  MPI always keeps the information as it is
needed for the actual packing and
unpacking operations

SPD - MPI Standard Use and Implementation (5) 6

COLLECTIVE PRIMITIVES WITH
COMMUNICATION AND
COMPUTATION

Intracommunicators

SPD - MPI Standard Use and Implementation (5) 7

Reduce

•  int MPI_Reduce( 
const void* sendbuf, void* recvbuf, int count,  
MPI_Datatype datatype,  
MPI_Op op, int root, MPI_Comm comm)

•  reduce operation across all processes of a Communicator
–  Reduces the elements in the same position of each process’ buffer,

leaving results in root’s buffer
•  count, datatype, op, root, comm arguments must match

–  If count == 1 we have a classical element-wise reduction
–  If count>1 we have several reductions at the same time

•  As with any collective, the communication pattern is
implementation dependent (but is op commutative ?)

•  MPI provides most basic operators
–  Operators are associative
–  Operators may be commutative à potential optimizations
–  Note that: floating point op.s may be seen as non-commutative
–  Datatype must be compatible with op

SPD - MPI Standard Use and Implementation (5) 8

MPI Scan/Reduce operators

•  Arithmetic operations
–  MPI_MAX, MPI_MIN, MPI_SUM, MPI_PROD

•  Generally allowed on MPI integral and floating point
types (including complex)

•  Logic (L) and bit wise (B) operations
–  MPI_LAND, MPI_LOR, MPI_LXOR

•  Generally allowed on C integers and on logical types

–  MPI_BAND, MPI_BOR, MPI_BXOR
•  Generally allowed on C/Fortran integers

SPD - MPI Standard Use and Implementation (5) 9

MPI_MINLOC and MAXLOC

•  Operators defined on couples (value, index)
–  MPI_MAXLOC, MPI_MINLOC
–  Value is any integral or floating point type
–  Index is an integral type
–  chars used as integers require special attention

•  e.g. explicitly using MPI_SIGNED _CHAR / UNSIGNED_CHAR

•  MINLOC : compute the global minimum of v and
the index attached to it

•  MAXLOC : compute the global maximum of v and
the index attached to it

•  Lexicographic order
–  when more values hit the minimum (maximum) the lower

one is chosen
•  Example application

–  pass (value, rank) to detect the rank of the process with
the minimum/maximum value

SPD - MPI Standard Use and Implementation (5) 10

MPI couple types

•  These couple types are supported by the
MPI_MINLOC and MPI_MAXLOC operators

•  MPI_FLOAT_INT - struct { float, int }
•  MPI_LONG_INT - struct { long, int }
•  MPI_DOUBLE_INT - struct { double, int }
•  MPI_SHORT_INT - struct { short, int }
•  MPI_2INT - struct { int, int }
•  MPI_LONG_DOUBLE_INT

 - struct { long double, int }
–  this is an OPTIONAL type

SPD - MPI Standard Use and Implementation (5) 11

Operators semantics

•  Operators are called within the reduction
collective by the instances of the MPI library of
the processes of the program

•  Each operators receives two local buffers and
performs a reduction step on their contents
–  The buffers are possibly allocated by the library

implementation as temporaries
–  Many operators are polymorphic, so they have to

detect the type of data in the buffer
–  Datatype is a parameter passed from the collective

down to the operator, but remember it is a handle
•  Easy case: MPI basic datatypes are globally known to MPI

runtime and to the program
•  Besides, MPI standard operators are easy

SPD - MPI Standard Use and Implementation (5) 12

MPI operators and
computing-collective primitives

•  MPI operators (including user-defined ones)
are used by all MPI collectives performing
distributed computation
–  MPI_REDUCE, MPI_ALLREDUCE,

MPI_REDUCE_SCATTER_BLOCK,
MPI_REDUCE_SCATTER,
MPI_SCAN, MPI_EXSCAN

–  All the non blocking version of those collectives
(since MPI-3)

–  MPI_REDUCE_LOCAL (special case actually
designed for MPI implementers)

SPD - MPI Standard Use and Implementation (5) 13

User-defined operators

•  MPI allows you to define your own operators
–  They can apply to basic and user-defined datatypes

•  What do you need to do
–  (Possibly) provide relevant datatype definitions
–  Provide MPI with a definition of the operator

•  a compiled function with a specific signature
•  the operator definition this is local to each process

–  Detect and recognize the MPI_Datatype within the
operator code
•  To detect errors
•  If the operator needs to be polymorphic

–  Combine each couple of elements in the same
position of the two input buffers

•  Operator code can call no MPI communication
primitives; only MPI_ABORT() in case of error

SPD - MPI Standard Use and Implementation (5) 14

MPI_Op_create

•  int MPI_Op_create(MPI_User_function* user_fn,  
 int commute, MPI_Op* op)

•  MPI primitive for defining operators
•  Takes a user function pointer as first

argument
•  Can specify non-commuting operators
•  Returns the operator handle

•  MPI_Op_free allows to free operators

SPD - MPI Standard Use and Implementation (5) 15

Operator signature

•  typedef void MPI_User_function( 
void* invec,  
void* inoutvec,  
int *len,  
MPI_Datatype *datatype);

•  row-wise combines data from two buffers
–  results are placed in the second buffer

•  The datatype handle comes from the
collective call (e.g. reduction) and may be
unknown at compile time
–  For user-defined datatypes, polymorphic

operators need to access a table of datatypes
handles that are defined by the program

SPD - MPI Standard Use and Implementation (5) 16

Example : rewriting MPI_SUM
/* this follows the MPI_User_function typedef */
void my_sum_op(void * b_in, void * b_inout,  

int * count, MPI_Datatype * d) {
if (d == MPI_INT) {

 for (i=0; i<count; i++) {
((int*)b_inout)[i]+=((int *)b_in)[i]; }

} else if (d == MPI_FLOAT) {
 for (i=0; i<count; i++) {

((float*)b_inout)[i]+=((float *)b_in)[i];}
} else MPI_Abort (MPI_COMM_WORLD, -12345);

}

... ...

MPI_Op * op_sum;
MPI_Create_op (* my_sum_op, MPI_FALSE, op_sum)

•  Very limited example: it only accepts INT and FLOAT types
•  Can call specialized functions in each case (code reuse,

hardware acceleration)

SPD - MPI Standard Use and Implementation (5) 17

Datatypes and polymorphic operators

•  Check the datatype
–  Compare the received datatype handle to a list

of allowed handles, execute proper code
–  Simple if/else error if only one type is allowed

•  Check and switch for polymorphic op.s
–  Operators that can handle several datatypes

should employ data structures that avoid any
excessive comparison overhead
•  E.g. an hash-map (perfect hash?) associating handles

with code (function pointers) implementing each case
of use of the operator

–  The overhead is usually negligible with respect to
the communication overhead of a reduction or
scan

SPD - MPI Standard Use and Implementation (5) 18

Example : rewriting MPI_SUM (II)

/* this follows the MPI_User_function typedef */
void my_sum_op(void * b_in, void * b_inout,  

int * count, MPI_Datatype * d) {
int my_type = my_hashtable_get(d);
case (SUMOP_INT_T) : // MPI_INT

sumintarrays((int *)b_in, (int*) b_inout, count);
break;

case (SUMOP_FLOAT_T) : // MPI_FLOAT
 sumfloatarrays((float *) b_in, (float *) b_inout, count);

break;
case (SUMOP_4BY4_FLOAT_T) : // user type example, 4*4 matrix

sumfloatarrays((float *)b_in, (float*)b_inout, count*16);
break;

default : MPI_Abort (MPI_COMM_WORLD, -12345);
}

•  In the example we assume that

–  a hashtable is filled with custom values for each recognized datatype
–  if the type is not in the hashtable, the default value returned (unknown

datatype) triggers the default case

SPD - MPI Standard Use and Implementation (5) 19

Scan
•  int MPI_Scan(const void* sendbuf, void* recvbuf,

int count,  
MPI_Datatype datatype, MPI_Op op,  
MPI_Comm comm)

•  Applies a scan (parallel prefix) to the elements in
corresponding position of the send buffers of the
processes

•  The scan works according to process rank
–  Process i receives the result of the combination of data

from processes { 0, .. i }
–  Scan is the identity for process with rank 0

•  If count>1 we have multiple scans within the same
communication pattern

•  With MPI_INPLACE in sendbuf, only the receive
buffer is used

SPD - MPI Standard Use and Implementation (5) 20

ExScan
•  int MPI_Exscan(const void* sendbuf, void* recvbuf,

int count,  
MPI_Datatype datatype, MPI_Op op,  
MPI_Comm comm)

•  Same as MPI_Scan, but results are
accumulated on the following process
–  Process with rank i gets the parallel prefix result of

data contributed from processes 0.. i-1
–  Mnemonics: think of it as a “scan and shift”
–  Process 0 receives no data, and its receive buffer

is not used by MPI_Exscan
–  MPI_IN_PLACE can be used in sendbuf

SPD - MPI Standard Use and Implementation (5) 21

Other reduce collective operations

•  MPI_Allreduce
–  Semantically equivalent to a reduce followed by a

broadcast
–  May be implemented more efficiently, of course

•  MPI_Reduce_scatter_block
–  Performs a reduction, then scatters the result buffer across

the processes
–  Requires n*recvcount elements by each process, scatters

the n blocks of recvcount elements of the result
–  Parameter recvcount is the number of elements received

per process after the scatter
•  the overall reduction is computed on recvcount*N elements,

where N is the communicator size.

•  MPI_Reduce_scatter
–  Generalizes the scatter_block to a variable scatter (each

process can receive a block of different size)
–  The recvcount is now an array of block sizes (the array is

the same size as the communicator, see MPI_Scatterv)

SPD - MPI Standard Use and Implementation (5) 22

References

•  With respect to MPI-3 standard
–  Section 5.9 (Global reduction operators)
–  You can skip reduce_local

SPD - MPI Standard Use and Implementation (5) 23

