
Intel Thread Building Blocks, Part II

SPD course 2018-19
Massimo Coppola

15/04/2019

1 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

TBB Recap

•  Portable environment
–  Based on C++11 standard compilers
–  Extensive use of templates

•  No vectorization support (portability)
–  use vector support from your specific compiler

•  Full environment: compile time + runtime
•  Runtime includes

–  memory allocation
–  synchronization
–  task management

•  TBB supports patterns as well as other features
–  algorithms, containers, mutexes, tasks...
–  mix of high and low level mechanisms
–  programmer must choose wisely

2 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Splittable Concept

•  A type is splittable if it has a so-called split
constructor that allows splitting an instance in
two parts
–  X::X(X& x, split)

Split X into X and newly constructed object
–  First argument is a reference to the original object
–  Second argument is a dummy placeholder

•  Split concept is used to express
–  Range concepts, to allow recursive decomposition
–  Forking a body (a function object) to allow

concurrent execution (see the reduce algorithm)

•  The binary split is usually in almost equal halves
–  Range classes can have a further split method that

also specifies the split proportion

3 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

TBB Range classes

•  Range classes express intervals of parameter
values and their decomposability
–  recursively splitting intervals to produce parallel

work for many patterns (e.g. for, reduce, scan…)

•  The Range concept relies on five mandatory
and two optional methods
–  copy constructor
–  destructor
–  is_divisible() true if range is not too small
–  empty() true if range empty
–  split() split the range in two parts
–  two more methods allow proportional split

4 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

The Range concept

Class R implementing the concept of range must
define:

 R::R(const R&);
 R::~R();
 bool R::is_divisible() const;
 bool R::empty() const;
 R::R(R& r, split);

Split range R into two subranges.

One is returned via the parameter, the other
one is the range itself, accordingly reduced

5 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Blocked Range

•  TBB 4 has implementations of the range
concept as templates for 1D, 2D and 3D
blocked ranges
–  3 nested parallel for are functionally equivalent

to a simple parallel for over a 3D range
–  the 2D and 3D range will likely exploit the caches

better, due to the explicit 2D/3D tiling

tbb::blocked_range< Value > Class
tbb::blocked_range2d< RowValue, ColValue > Class
tbb::blocked_range3d< PageValue,
 RowValue, ColValue > Class

6 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Proportional split

•  Class defining methods that allow control over
the size of two split halves

•  Passed as argument to methods performing a
proportional split
–  proportional_split(size_t _left = 1,  

 size_t _right = 1)
define a split object using the coefficients to
compute the split ratio

–  size_t left() const  
size_t right() const
return the size of the two halves

–  operator split() const
backward compatibility with simpler split (allows
implicit conversion)

7 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Range with proportional split

•  Optional methods allowing proportional
splits
–  R::R(R& r, proportional_split proportion)

optional costructor using a proportional split
object to define the split ratio

–  static const bool R::is_splittable_in_proportion
true iff the range implementation has a
constructor allowing the proportional split

8 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

TBB 4 Algorithms (1)

Over time, the distinction between parallel patterns
and algorithms may become blurred
TBB calls all of them just “algorithms”

•  parallel_for_each

–  iteration via simple iterator, no partitioner choice
•  parallel_for

–  iteration over a range, can choose partitioner
•  parallel_do

–  iteration over a set, may add items
•  parallel_reduce

–  reduction over a range, can choose partitioner, has
deterministic variant

•  parallel_scan
–  parallel prefix over a range, can choose partitioner

9 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

TBB 4 Algorithms (2)

•  parallel_while (deprecated, see parallel_do)
–  iteration over a stream, may add items

•  parallel_sort
–  sort over a set (via a RandomAccessIterator and

compare function)

•  pipeline and filter
–  runs a pipeline of filter stages, tasks in = tasks out

•  parallel_invoke
–  execute a group of tasks in parallel

•  thread_bound_filter
–  a filter explicitly bound to a serving thread

10 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Parallel For each

void tbb::parallel_for_each (InputIterator first,
 InputIterator last, const Function &f)

•  simple case, employs iterators
•  drop-in replacement for std for_each with

parallel execution
–  Easy-case parallelization of existing C++ code

•  it was a special case of for in previous TBB
•  Serially equivalent to:

 for (auto i=first; i<last; ++i) f(i);

•  There is also the variant specifying the context
(task group) in which the tasks are run

11 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Passing args to parallel patterns

•  Beside the range of values we need to
compute over, we need to specify the inner
code of C++ templates implementing parallel
patterns

•  Most patterns have two separate forms
–  Args are a function reference (computation to

perform to perform) and a series of parameters (to
the parallel pattern)

–  Args contain a user-define class “Body” to specify the
pattern body,
•  Body is a concrete class instantiating a virtual class

specified by TBB as a model for that pattern
•  TBB docs calls “requirements” the methods that the Body

class provides and will be called by the pattern
implementation

•  Example: for_each uses the first method

12 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Passing args to parallel patterns

•  Advantages and disadvantages
•  Using functions (TBB documentation calls it

the “functional form”…)
–  Easier to use lambda functions
–  We are passing around function references
–  Static (compilation-time) type checking is in some

cases limited as the template needs to be general
enough

•  Using Body classes (TBB calls it “imperative”)
–  Slightly more lengthy code
–  Better static type-checking
–  Body classes can more easily contain data/

references – they can have state that simplifies some
optimization (ex. see the parallel_reduce pattern)

13 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Optional args to parallel patterns

•  A partitioner
–  A user-chosen partitioner used to split the range

to provide parallelism
–  see later on the properties of

auto_partitioner, (default in any recent TBB)
simple_partitioner,
affinity_partitioner

•  task_group_context
–  Allows the user to control in which task group the

pattern is executed
–  By default a new, separate task group is created

for each pattern

14 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Parallel For

 parallel_for (
tbb::blocked_range<size_t> (begin, end,
GRAIN_SIZE), tbb_parallel_task());

•  Loops over integral tipes, positive step, no wrap-
around

•  one way of specifying it, where tbb_parallel_task is
a Body user-defined class

•  uses a class for parallel loop implementations.
–  The actual loop "chunks" are performed using the ()

operator of the class
–  the computing function (operator ()) will receive a range

as parameter
–  data are passed via the class and the range

•  The computing function can also be defined in-
place via lambda expressions

15 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Parallel For

 parallel_for (
tbb::blocked_range<size_t> (begin, end,
GRAIN_SIZE), tbb_parallel_task(), partitioner);

•  Extended version
•  the partitioner is one of those specified by

TBB (simple, auto, affinity)
•  no real choice usually, just allocate a const

partitioner and pass it to the parallel loops:
tbb::affinity_partitioner ap;

–  (unless you want to define your own partitioner)

16 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Parallel_for, 1D alternate syntax

•  template<typename Index, typename Func>
Func parallel_for(Index first, Index_type last,
 const Func& f
 [, partitioner
 [, task_group_context& group]]);

•  template<typename Index, typename Func>
Func parallel_for(Index first, Index_type last,
 Index step, const Func& f
 [, partitioner
 [, task_group_context& group]]);

•  Implicit 1D range definition, employs a function
reference (e.g. lambda function) to specify the
body

17 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

partitioners

•  simple
–  generate tasks by dividing the range as much as

possible (remember about the grain size!)

•  auto
–  divide into large chunks, divide further if more

tasks are required

•  affinity
–  carries state inside, will assign the tasks according

to range locality to better exploit caches

18 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Combining the elements

•  Apply a range template to your elementary
data type

•  Define a class computing the proper for-
body over elements of a range

•  Call the parallel_for passing at least the
range and the function

•  specify a partitioner and/or a grain size to
tune task creation for load balancing

19 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Example (with lambda)

void relax(double *a, double *b,
 size_t n, int iterations)

{
 tbb::affinity_partitioner ap;
 for (size_t t=0; t<iterations; ++t) {
 tbb::parallel_for(
 tbb::blocked_range<size_t>(1,n-1),
 [=](tbb::blocked_range<size_t> r) {
 size_t e = r.end();
 for (size_t i=r.begin(), i<e; ++i)
 /*do work on a[i], b[i] */;
 },
 ap);
 std:swap(a,b); // always read from a, write to b
 }

}

20 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Temporary slides - to be revised

21 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

reduce

•  Reduce has also two forms
–  “Functional” from, nice with lambda function definitions
–  “Imperative” form, minimizes data copying
–  Please remember this is just TBB terminology

template<typename Range, typename Value, typename

 Func, typename Reduction>

Value parallel_reduce(const Range& range,

 const Value& identity, const Func& func,
 const Reduction& reduction,
 [, partitioner[, task_group_context& group]]);

template<typename Range, typename Body>

void parallel_reduce(const Range& range,

 const Body& body
 [, partitioner[, task_group_context& group]]);

22 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

“Functional” form

•  Beside the function, several other objects
have to be passed to the reduce

•  Value Identity
–  left identity for the operator

•  Value Func::operator()(const Range& range,
 const Value& x)
–  must accumulate a whole subrange of values

starting from x (“sequential reduction”)

•  Value Reduction::operator()(const Value& x,
 const Value& y);
–  Combines two values (“parallel” reduction)

23 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Object-oriented form

•  Computes the reduction on its Body object
together with the associated Range
–  Data (reference) is held within the Body
–  The reduce can split() the body parameter, and

will split() the range accordingly
–  Can also split only the range, and compute over

a range that is smaller than the Body’s data
•  This may allow saving some data copy operation when

we exploit parallel slackness together with affinity

–  Results from each side will the be combined

•  Body object’s state contains the reduced
value
–  Final result is accumulated in initial Body object

24 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Reduce

•  Both the function-based form and the OO
one can specify a custom partitioner

•  Both forms can specify a task group that will
be used for the execution

25 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Reduce – deterministic variant

•  parallel_deterministic_reduce
•  Performs a deterministically chosen sets of

splits, joins and computations
•  Exploits the simple_partitioner à no

partitioner argument allowed
•  Computes the same regardless of the

number of threads in execution
–  no adaptive work assignment is ever performed
–  grain size must be carefully chosen in order to

achieve ideal parallelism

•  Has both the functional form and the OO
one

26 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

pipeline

•  Pipeline pattern
–  pipeline class not strongly typed
–  parallel_pipeline strongly typed interface

•  Implements the pipeline pattern
–  A series of filter applied to a stream

•  You need to subclass the abstract filter class

–  Each filter can work in one of three modes
•  Parallel
•  Serial in order
•  Serial out of order

27 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Pipeline class

•  Pipeline is dynamically constructed
–  pipeline() create an empty pipeline
–  ~pipeline() destructor
–  void add_filter(filter& f) add a filter
–  clear() remove all filters
–  void run(size_t max_number_of_live_tokens

 [, task_group_context& group])
•  Run until the first filter returns NULL
•  Actual parallelism depends on pipeline structure,

and on parameter
–  max_number_of_live_tokens

•  Pipelines can be reused, but NOT concurrently
•  Stages can be added in between runs
•  Can have all tasks belong in a specified optional

group, by default a new group is created

28 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

filter

•  Abstract class implementing filters for pipelines
•  Three modes, specified in the constructor

–  Parallel can process/produce any number of item
in any order (e.g. nested parallelism)

–  Serial out of order filter processes items one at a
time, and in no particular order

–  Serial in order filter processes items one at a time,
in the received order

•  Computation is specified by overriding the
operator ()
–  virtual void* operator()(void * item)
–  Process one item and return result, via pointers
–  First stage signals with NULL the end of the stream
–  Result of last stage is ignored

29 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Parallel_pipeline

•  void parallel_pipeline(
 size_t max_number_of_live_tokens,
 const filter_t<void,void>& filter_chain
 [, task_group_context& group]);

•  Strongly typed, can use lambdas
–  parallel_pipeline(max_number_of_live_tokens,

 make_filter<void,I1>(mode0,g0) &
 make_filter<I1,I2>(mode1,g1) & ...
 make_filter<In,void>(moden,gn));

•  Employ the make_filter template to build filters
on the spot from their operator() function

•  Types are checked at compilation time
–  First stage must invoke fc.stop() and return a dummy

value to terminate the stream

30 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

31 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Notes

•  Check that you compiler properly supports
lambdas

•  Installing TBB from sources and binary do not
result in the same configuration
–  environment variables (paths, options) affect

compilation
–  identify proper switches in compilation

•  tbbvars.sh can set proper variables for you
(but it is buggy in some TBB versions)

•  Makefiles to compile examples tend to work
reliably, but they rebuild their configuration
each time

32 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

