The MPI Message-passing Standard
Practical use and implementation (I)

IIIIIIIIIIIIIIIIIIIIIIIIIIII
DELL'INFORMAZIONE “A. FAEDO”

What is MPI

* MPI: Message Passing Interface

— a standard defining a communication library that allows
message passing applications, languages and fools fo be
written in a portable way

« MPI 1.0released in 1994

« Standard by the MPI Forum
— aims at wide adoption

e Goals

— Portability of programes, flexibility, portability and efficiency of
the MPI library implementation

— Enable portable exploitation of shortcuts and hardware
acceleration

« Approach
— Implemented as a library, static linking

* Intended use of the implemented standard

— Support Parallel Programming Languages and Application-
specific Libraries, not only parallel programs
I“I

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”

Standard history

1994 - 1.0 core MPI

— 40 organizations aim at a widely used standard
1995 - 1.1 corrections & clarifications
1997 -1.2

— small changes to 1.1 allow extensions to MPI 2.0

1997 -2.0

— large additions: process creation/management, one-
sided communications, extended collective
communications, external interfaces, parallel /O

e 2008 - 1.3 combines MPI 1.1 and 1.2 + errata
« 2008 - 2.1 merges 1.3 and 2.0 + errata
e 2009 - 2.2 few extensions 1o 2.1 + errata

IIIIIIIIIIIIIIIIIIIIIIIIIIII
DELL'INFORMAZIONE “A. FAEDO”

What do we mean with
message passing?

* A program is composed of multiple
processes with
separate memory spaces & environments

» Processes are possibly on separate
computing resources

* Inferaction happens via
explicit message exchanges

» Support code provides primitives for
communication and synchronization

* The M.P.l., i.e. the kind of primitives and the
overall communication structure they
provide, constrain the kind of applications
that can be expressed

* Different implementation levels will be
involved in managing the MPI support

™

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”

N —
/ IS\
- .:H
\ /

N — -

i On the meaning of Portability

* Preserve software functional behaviour across
systems :

— (recompiled) programs return correct results

« Preserve non-functional behaviour :
— You expect also performance, efficiency, robustness
and other features to be preserved
In the “parallel world”, the big issue is to safekeep
parallel performance and scalabllity

« Performance Tuning

— Fiddling with program and deployment parameters to enhance performance

« Performance Debugging

— Correct results, but awful performance: what happened?
— Mismatched assumptions among SW/HW layers

™

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”

Application

thi' dO we dO Wi'l'h App code App-specific Libraries
MPI1?

MPI is a tool to develop:

» Applications Programn..ng language

. P.rogrgmmlng Languages Run-fime support

e Libraries

Much more than the

typical usage patterns you Execution Platform
can find around on the

S , Cluster: local ti
webl Grids: middleware layer Cloud: Cloud API us ermggﬁoggrcrgun ing

Interoperation of

Programming languages
(Fortran, C, C++ ...)

Heterogeneous resources

Big/little endianness
FP formats

Operating System

(Virtualization)

Hardware

I ;II SPD - MPI Standard Use and Implementation 6

ISTITUTO DI SCIENZA E TECNOLOGIE
DELLINFORMAZIONE “A. FAEDO”

i MPI functionalities

 MPI lets processes in a distributed/parallel
execution environment coordinate and
communicate
— Possibly processes on different machines

— We won't care about threads

« MPlimplementations can be compatible with threads, but
you program the threads using some other shared-memory

mechanism: pthreads, OpenMP ...

« Same MPI library instance can be called by
multiple high-level languages
— Interoperability, multiple language bindings
— Impact on standard definition and its implementation

— The MPI Library is eventually linked to the program, ifs
support libraries and its language runtime

— Some functionalities essential for programming
language development
L

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”

Key MPI Concepts

Communicators

Point to point communication

Collective Communication

« Data Types

™

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”

‘—“{)!"/;:—\L
B

&
H R
AN
AR

~ B

Key MPI Concepts: Communicators

T

« Communicators
— Process groups + communication state
— Infer-communicators vs Infra-communicators
— Rank of a process

Point to point communication

Collective Communication

 Data Types
D[

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”

Communicators

« Specify the communication context

— Each communicator is a separate “universe’”, no
message inferaction between different
communicators

« A group of processes AND a global
communication state

— Forming a communicator implies some
agreement among the communication support
of the composing processes

— A few essential communicators are created by
the MPI initialization routine
(e.g. MPI_COMM_WORLD)

— More communicator features later in the course

™

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”

Types of communicators

e Infracommunicator

— Formed by a single group of processes

— Allows message passing interaction among the
processes within the communicator

* Intercommunicators
— Formed by two groups A, B of processes

— Allows message passing between pairs of
processes of the two different groups
(X,y) can communicate if-and-only-if

X belongs to group A and vy belongs to B

ISTITUTO DI SCIENZA E TECNOLOGIE
DELLINFORMAZI “A. FAEDO”

Communicators and Ranks

« No absolute process identifiers in MP|

 The Rank of a process is always relative 1o a
specific communicator

* |[n a group or communicator with N
processes, ranks are consecutive integers
0...N-1

« No process is guaranteed to have the same

rank in different communicators,
« unless the communicator is specially built by the user

IIIIIIIIIIIIIIIIIIIIIIIIIIII
DELL'INFORMAZIONE “A. FAEDO”

s/ PSS =)
<<EEe=e
<P 5)
N e
N\ L=<
L=\ s

Key MPI Concepts : point to point

)

Communicators

Point to point communication

— Envelope

— Local vs global completion

— Blocking vs non-blocking communication
— Communication modes

Collective Communication

« Data Types
D[]

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”

Envelopes

Envelope =

(source, destination, TAG, communicator)

« Qualifies all point to point communications
« Source and dest are related 1o the communicator

« Two point-to-point operations (send+receive)
match if their envelopes match exactly

« TAG meaning is user-defined - play with tags to
assign semantics to a communication

— TAG provide communication insulation within @
communicator, for semantic purposes

— Allow any two processes to establish mulfiple
communication “Channels” (in a non-tfechnical meaning)

™

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”

Envelopes and comunication semantics

« Messages with the
same envelope M T M M
never overtake O O

each other

« No guarantee on M| MMM
messages with O > O

different envelope! .

« E.g.: different tags

IIIIIIIIIIIIIIIIIIIIIIIIIIII
DELL'INFORMAZIONE “A. FAEDO”

Local and global completion

* Local completion : a primitive does nof
need o inferact with other processes to
complete
— Forming a group of processes
— Asynchronous send of a message while ignoring

the communication status

+ Global completion : inferaction with other
processes Is needed to complete the
primitive
— Turning a group iNnto a communicator

— Synchronous send/receive : semantics mandates
that parties interact before communication
happens

IIIIIIIIIIIIIIIIIIIIIIIIIIII
DELL'INFORMAZIONE “A. FAEDO”

Blocking vs non-blocking operations

« Blocking operation
— The call returns only once the operation is complete
— No special treatment is needed, only error checking

* non blocking operation
— The call returns as soon as possible
— Operation may be in progress or haven't started yet

— Resources required by the operation cannot be
reused (e.g. message buffer is not to be modified)

— User need to subsequently check the operation
completion and its results

« Tricky question: do we mean local or global
completion?

IIIIIIIIIIIIIIIIIIIIIIIIIIII
DELL'INFORMAZIONE “A. FAEDO”

Communication MODES

Synchronous

— Follows the common definition of synchronous
communication, first process waits for the second one to
reach the matching send/receive

Buffered

— Communication happens through a buffer, operation
completes as soon as the data is in the buffer

— Buffer allocation is onto the user AND the MPI
implementation
Ready

— Assumes that the other side is already waiting (can be used
if we know the communication party already issued @
matching send/receive)

Standard

— The most common, and less informative

— MPl implementation is free to use any available mode, i.e.
almost always Synchronous or Buffered
I“I

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”

Example: portability and modes

« Standard sends are implementer's choice
— Choice is never said to remain constant...

« A user program exploit standard sends,
implicitly relying on buffered sends

— Implementation actually chooses them, so
program works

e What if

— Implementation has to momentarily switch to
synchronous sends due to insufficient buffer
spacee

— Program is recompiled on a ditferent MPI
Implementation, which does not use buffered
mode by default?

IIIIIIIIIIIIIIIIIIIIIIIIIIII
DELL'INFORMAZIONE “A. FAEDO”

o
o=

< 22%[&
@)

~ Key MPI Concepts : Collective op.s

5/)

Communicators

Point to point communication

Collective Communication
— A whole communicator is involved
— Always locally blocking

— No modes: collectives in a same communicator
are serialized

Data Types
D[

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”

Collective operations

 They act on a whole communicator

— All processes in the communicator must call the
collective operation

— With compatible parameters
— Locally the collectives are always blocking

« Collective operations are serialized within a
communicator
— No communication modes or non-blocking behaviour
apply to collective operations
 Still No guarantee that all processes are actually
within the collective at the same time

— Freedom of implementation algorithms for MPI
developers: collective may start or complete at
different moments for different processes

— MPI_Barrier is of course an exception

™

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”

. Key MPI Concepts : Datatypes

Communicators

Point to point communication

Collective Communication

« Data Types

— A particular kind of Opaque objects
— MPI primitive datatypes
— MPI derived datatypes

TTTTTTTTTTTT
DELL'INFORMAZIONE “A. FAEDO”

Opaque objects

 Data structures whose exact definition is
hidden

— Some fields are explicitly documented and
accessible to the MPI programmer

— Ofther fields are only accessed through
dedicated MPI primitives

— Internals depend on the MPl implementation

— Allocated and freed (directly or indirectly) only
by the MPI library code

 |If the useris required to do so, it has to call an MP|
function which is specific to the kind of opaque object

— Example:
communicators and datatypes are Op.Ob.

™

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”

Primitive Datatypes

 MPI Datatypes are needed to let the MP]
Implementation know how to handle data
— Data conversion

— Packing data into buffers for communication,
and unpacking afterwards

— Also used for MPI I/O functionalities

» Primitive datatypes

— Correspond to basic types of most programming
languages: integers, floats, chars...

— Have bindings for MPI supported languages
— Enough for simple communication

IIIIIIIIIIIIIIIIIIIIIIIIIIII
DELL'INFORMAZIONE “A. FAEDO”

MPI derived datatypes

« Derivate datatypes correspond to
composite types of modern programming
languages
— Set of MPI constructors corresponding to various

kinds of arrays, structures, unions

— Memory organization of the data is highly
relevant, and can be explicitly considered

— Derived datatypes can automate packing and
unpacking of complex data structures for
communications, and allow semantically correct
parallel operation on partitioned data structures

IIIIIIIIIIIIIIIIIIIIIIIIIIII
DELL'INFORMAZIONE “A. FAEDO”

o References

« MPI 2.2 standard (See h’r’rp://www.mpi—forum.org/)
— Only some parts

« Parallel Programming, B. Wilkinson & M.
Allen. Prentice-Hall (279 ed., 2005)

— Only some references, 15t edifion is ok foo.

« Relevant Material for 15t lesson, MPI standard

— Chapter 1: have a look at it.

— Chapter 2:
sec.2.3,2.4,2.5.1,2.5.4,2.5.6,2.6.3,2.6.4,2.7,2.8

— Chapter 3:
sec. 3.1,3.2.3, 3.4, 3.5, 3.7

TTTTTTTTTTTT
DELL'INFORMAZIONE “A. FAEDO”

