
The MPI Message-passing Standard
Practical use and implementation (V)

SPD Course
6/03/2019

Massimo Coppola

COLLECTIVE
COMMUNICATIONS

Intracommunicators

SPD - MPI Standard Use and Implementation (5) 2

Collectives’ Characteristics

•  Collective operations are called by ALL
processes of a communicator
–  Still happen within a communicator like p-to-p
–  Use Datatypes to define message structure
–  Implement complex communication patterns

•  Distinct semantics from point-to-point
–  No modes
–  Always blocking (* MPI 3 changes this *)
–  No unmatched variable-size data
–  No status parameters (would require many…)
–  Limited concurrency

•  Still a lot of freedom left to implementers
–  E.g. actual pattern choice, low-level operations
–  Semantics carefully defined for this aim

SPD - MPI Standard Use and Implementation (5) 3

Collective & Communicators

•  Independence among separate communicators
•  Independence with any p-to-point in same comm.

–  Although collectives may be implemented on top of p-to-
point, e.g. by using a separate set of tags

•  Collectives are serialized over a communicator
–  Obvious consequence of the semantics
–  Collectives must share the same actual call order from every

process in the communicator
•  Serialization is not synchronization

–  Blocking behaviour = after the call, local completion is
granted and buffer / parameters are free to be reused

–  Globally, the collective may still be ongoing (and vice versa)
–  Example: broadcast on a binary support tree may complete

on root process long before it is done
–  p-to-point primitives are concurrent with collective op.s
–  Only MPI_Barrier is granted to synchronize

•  Serialization is a source of deadlocks

SPD - MPI Standard Use and Implementation (5) 4

Example of deadlocks and errors

•  Serialization is a source of deadlocks
–  3 overlapping comm.s with collectives in conflicting

order

SPD - MPI Standard Use and Implementation (5) 5

1

BAR

BRD

BAR

2

BRD

BAR

BAR

3

BAR

BAR

BAR

BAR BAR BAR

OK

Deadlock!

Collective Primitives – High-level view

•  Many of the primitives you already know
–  Synchronization:

 Barrier (also an all-to-all)
–  One-to-all: Bcast (broadcast), Scatter *
–  All-to-one: Gather *, Reduce
–  All-to-all: AllGather *, AllToAll *,

 AllReduce, ReduceScatter
–  Other (computational-communication patterns

and management primitives):
 Scan (parallel prefix), Exscan
 Communicator-building operations

•  More on this later on
SPD - MPI Standard Use and Implementation (5) 6

Collectives: Semantics

•  All processes send and/or receive data
–  If a structure is distributed, one piece is possibly sent/

received by the same process
–  This in general includes the root process, if one is present
–  Semantics are symmetric to simplify the case where the

root process dynamically changes at runtime
•  Agreement on parameters among all processes

–  Which process is the root, if a root role is needed
–  Specific roles in communicator building, operators in

computational collective
•  Agreement on data to be transferred

–  Buffers defined at each process must match in size and
type signature with what is required by the partner
sending/receiving that data
•  Even if the actual communication may happen differently!

–  In some cases the same buffer is used for reading AND
writing

SPD - MPI Standard Use and Implementation (5) 7

Collectives: Semantics

•  User-defined datatypes and type signatures
are allowed
–  However, more constraints than in the p-to-p

case
–  Type signatures should be compatible as always
–  Writing typemaps shall never be redundant

•  No ambiguity shall ever arise from typemap access
order, which is free choice of the MPI library

–  Generally speaking, collective primitives should
not read or write twice the same location
•  no location written twice by either the same or different

processes inside a collective
•  can imply that no location is either read twice
•  Not discussing all cases, refer to the standard

SPD - MPI Standard Use and Implementation (5) 8

Barrier & Broadcast

•  int MPI_Barrier(MPI_Comm comm)
–  can be applied to intercommunicators
–  the only collective whose synchronization effects

are guaranteed by the MPI standard

•  int MPI_Bcast(void* buffer, int count,
MPI_Datatype datatype, int root,
MPI_Comm comm)

–  semantics: the specified communication is sent
to all processes
•  equivalent descriptions always given in the standard

–  can use any underlying scheme (trivial, n-ary
tree, spanning tree...)

SPD - MPI Standard Use and Implementation (5) 9

Classifications of collectives

•  MPI-3 has plenty of distinct collective comm. calls
–  Distinct == a different API function name and signature
–  17 blocking and 17 non-blocking, + some more for

communicator management

1.  Classification by asymmetry
–  All to 1 many processes send to one
–  1 to All one process sends to many
–  All to All all processes send and receive

2.  by homogeneity of data exchange
–  “normal” = homogeneous communications
–  V “variable” = a count/size for each communication is

specified by the process

3.  By kind of pattern
–  Communication only
–  Communication and Computation (A-to-1, A-to-A)

SPD - MPI Standard Use and Implementation (5) 10

Gather

•  int MPI_Gather( 
const void* sbuf, int scount, MPI_Datatype sendtype,  
void* recvbuf, int recvcount, MPI_Datatype recvtype,  
int root, MPI_Comm comm)

–  All to 1
•  gather a distributed data structure at the root process

–  the send and recv type signatures must match
•  like a couple of point-to-point communication
•  all send specs must match the recv at the root

–  the actual recv buffer and data structure is N times bigger
than the recv specification
•  where N is the number of processes in comm

–  process rank i will write at position i of this buffer
•  exact address is recvbuf+i*count*mpi_size(recvtype)

–  the receive buffer count and type is significant only at the
root, an ignored on other processes
•  the root can use MPI_IN_PLACE for the send buffer

SPD - MPI Standard Use and Implementation (5) 11

in-place Communication

•  In collectives, all processes send or receive data,
including the designed root
–  much like a send or receive to MPI_PROC_SELF
–  this means extra work and extra buffers

•  MPI_IN_PLACE constant
–  to be specified as a buffer address
–  specifies that the input and output buffers at this process

for this collective are the same
–  to be used as the send or receive buffer, depending on the

collective
–  the associated count, datatype parameters are ignored

•  why?
–  explicitly avoid useless data movement
–  simplify usage of collectives in many common cases (less

parameters needed and less error prone)
–  avoid the limitation of languages that forbid aliasing of

parameters (e.g. Fortran)

SPD - MPI Standard Use and Implementation (5) 12

Scatter

•  int MPI_Scatter(const void* sendbuf,  
int sendcount, MPI_Datatype sendtype,  
void* recvbuf, int recvcount,  
MPI_Datatype recvtype,  
int root, MPI_Comm comm)  

–  1 to All
•  scatter a data structure from the root process onto the whole

comm
–  the send and recv type signatures must match

•  like a couple of point-to-point communication
•  all send specs must match the recv at the root

–  the actual send buffer and data structure is N times bigger
than the send specification
•  where N is the number of processes in comm

–  process rank i will read from at position i of this buffer
•  exact address is sendbuf+i*count*mpi_size(sendtype)

–  the send buffer count and type are significant only at the root,
and ignored on other processes
•  the root can use MPI_IN_PLACE for the recv buffer

SPD - MPI Standard Use and Implementation (5) 13

Gatherv = Gather Variable-length

•  int MPI_GatherV( 
const void* sbuf, int scount, MPI_Datatype sendtype,  
void* recvbuf, const int recvcounts[],  
const int displs[], MPI_Datatype recvtype,  
int root, MPI_Comm comm)  

–  like Gather, but the parts of the gathered structure are
allowed to be a different size each one
•  the receive count is now an array of integers
•  the send counts can vary, communications sizes are no longer

bound to be the same on all processes
•  some counts can be zero

–  also: place in memory for received parts is given
•  process of rank i will write at position

 displs[i]*mpi_extent (recvtype) of recvbuf
•  the order of the received parts can be arbitrarily changed

–  the send and recv type signatures must still match on each
couple of processes
•  more complex to check, but no real change

SPD - MPI Standard Use and Implementation (5) 14

Variable-length : Scatterv

•  int MPI_Scatterv(const void* sendbuf,  
const int sendcounts[], const int displs[],  
MPI_Datatype sendtype,  
void* recvbuf, int recvcount,  
MPI_Datatype recvtype,  
int root, MPI_Comm comm)

•  Analogous to the variable-length gather, but
performing a scatter

SPD - MPI Standard Use and Implementation (5) 15

Allgather

•  int MPI_Allgather(const void* sendbuf,
 int sendcount, MPI_Datatype sendtype,
 void* recvbuf, int recvcount,
 MPI_Datatype recvtype,
 MPI_Comm comm)

•  Same semantics of gather, but all processes
actually perform the gather operation and
get the result (no root process specification)

•  Semantics is the same as gather +
broadcast, but the communication pattern
may be optimized by MPI

•  Also has a V form, MPI_Allgatherv

SPD - MPI Standard Use and Implementation (5) 16

MPI_ALLTOALL

•  int MPI_Alltoall(const void* sendbuf,  
int sendcount, MPI_Datatype sendtype,  
void* recvbuf, int recvcount,  
MPI_Datatype recvtype,  

MPI_Comm comm)
•  Further generalized communication, each

process sends distinct data to all other
processes

•  All blocks of data have the same definition

SPD - MPI Standard Use and Implementation (5) 17

MPI_ALLTOALLV

•  int MPI_Alltoallv(const void* sendbuf,
 const int sendcounts[],
 const int sdispls[],
 MPI_Datatype sendtype,
 void* recvbuf, const,
 int recvcounts[], const int rdispls[],
 MPI_Datatype recvtype,
 MPI_Comm comm)

•  Further generalized communication, each
process sends distinct data in different
amount to all other processes

•  MPI_Alltoallw further generalizes the pattern,
also allowing distinct receive and send
datatypes for each distinct communication
portion among a couple of processes

SPD - MPI Standard Use and Implementation (5) 18

Changes! with MPI 3.0

•  MPI standard 3.0 released in September 2012
–  Collective Communications can be non-blocking
–  In this course we will stick to the MPI 2.2 definition

•  After studying the blocking version, it might
worth to know about non-blocking collectives
–  names gain an “I” e.g. MPI_BCAST à MPI_IBCAST
–  blocking and non-blocking collectives do not

match with each other
–  completion checked via all {WAIT * , TEST *} calls
–  multiple outstanding collectives allowed in same

communicator
–  non-blocking behavior can avoid collective-related

deadlock across communicators
•  interaction with collective serialization is significant

–  it is not allowed to cancel a non-bl. collective

SPD - MPI Standard Use and Implementation (5) 19

Reference Texts

•  MPI standard Relevant Material for 3rd lesson
–  Chapter 2:

sec.
–  Chapter 3:

sec. 3.2.5, 3.2.6, 3.6, 3.7, 3.11
–  Chapter 4:

sec. 4.1.2, (skip 4.1.3, 4.1.4) , 4.1.5 – 4.1.7, 4.1.11
–  Chapter 5:

sec.

SPD - MPI Standard Use and Implementation (5) 20

