
© Copyright Khronos Group, 2010 - Page 1

Introduction and Overview

June 2010

© Copyright Khronos Group, 2010 - Page 2

Board of Promoters

Over 100 companies creating
visual computing standards

Apple

http://global.mitsubishielectric.com/
http://ogl-es.sourceforge.net/
http://www.analog.com/processors
http://www.aplix.co.jp/en/
http://www.nds.com/
http://www.codeplay.com/
http://www.s3graphics.com/
http://www.st.com/
http://www.arcsoft.com/
http://www.antixlabs.com/
http://www.altsoftware.com/
http://www.sasken.com/
http://www.toshiba.com/
http://www.vivantecorp.com/
http://www.yumetech.com/
http://www.amd.com/
http://www.dell.com/content/default.aspx?c=us&l=en&s=gen
http://wwwipr.ira.uka.de/
http://www.digia.com/C2256FEF0043E9C1/fwhome?readform
http://www.hantro.com/
http://www.futuremark.com/
http://www.google.com/
http://www.hu1.com/
http://www.hookedwireless.com/
http://www.fujitsu.com/
http://www.marvell.com/index.jsp
http://www.umu.se/umu/index_eng.html
http://www.gshark.com/

© Copyright Khronos Group, 2010 - Page 3

Processor Parallelism

CPUs
Multiple cores driving
performance increases

GPUs
Increasingly general
purpose data-parallel

computing

Graphics
APIs and
Shading

Languages

Multi-
processor

programming
– e.g. OpenMP

Emerging
Intersection

Heterogeneous
Computing

OpenCL is a programming framework for heterogeneous compute resources

© Copyright Khronos Group, 2010 - Page 4

OpenCL Working Group

• Diverse industry participation

- Processor vendors, system OEMs, middleware vendors, application developers

• Many industry-leading experts involved in OpenCL’s design

- A healthy diversity of industry perspectives

• Apple made initial proposal and is very active in the working group

- Serving as specification editor

http://www.codeplay.com/
http://www.amd.com/
http://www.gshark.com/
http://www.st.com/
http://www.fujitsu.com/
http://www.toshiba.com/

© Copyright Khronos Group, 2010 - Page 5

OpenCL Timeline

• Six months from proposal to released OpenCL 1.0 specification

- Due to a strong initial proposal and a shared commercial incentive

• Multiple conformant implementations shipping

- Apple’s Mac OS X Snow Leopard now ships with OpenCL

• 18 month cadence between OpenCL 1.0 and OpenCL 1.1

- Backwards compatibility protect software investment

Apple proposes OpenCL
working group and
contributes draft specification
to Khronos

Khronos publicly
releases OpenCL 1.0 as
royalty-free
specification

Khronos releases OpenCL
1.0 conformance tests to
ensure high-quality
implementations

Jun08

Dec08

May09

2H09

Multiple conformant
implementations ship
across diverse OS
and platforms

Jun10

OpenCL 1.1
Specification released and
first implementations ship

© Copyright Khronos Group, 2010 - Page 6

OpenCL 1.1

• General uplift in functionality for enhanced performance/programmability

- Including feedback from developer community

• New functionality - fully backwards compatible with OpenCL 1.0

- New data types
- Including 3-component vectors and additional image formats

- Handling commands from multiple hosts
- Processing buffers across multiple devices

- Operations on regions of a buffer
- Including read, write and copy of 1D, 2D or 3D rectangular regions

- Enhanced use of events
- To drive and control command execution

- Additional OpenCL C built-in functions
- Such as integer clamp, shuffle and asynchronous strided copies

- Improved OpenGL interoperability
- Efficient sharing of images and buffers by linking OpenCL and OpenGL events

© Copyright Khronos Group, 2010 - Page 7

Mobile Visual Computing
Compute, graphics and AV APIs

interoperate through EGL

OpenGL-based Ecosystem

Desktop Visual Computing
OpenGL and OpenCL have direct

interoperability. OpenCL objects can be
created from OpenGL Textures, Buffer

Objects and Renderbuffers

Roadmap Convergence
OpenGL 4.0 and OpenGL ES 2.0

are both streamlined, programmable
pipelines. GL and ES working groups
are working on convergence. WebGL
is a positive pressure for portable 3D

content on all platforms

© Copyright Khronos Group, 2010 - Page 8

OpenCL Overview

© Copyright Khronos Group, 2010 - Page 9

It’s a Heterogeneous World

• A modern platform Includes:

– One or more CPUs

– One or more GPUs

– DSP processors

– … other?

GMCH = graphics memory control hub

ICH = Input/output control hub

OpenCL lets Programmers write a
single portable program that uses

ALL resources in the
heterogeneous platform

GMCHGPU

ICH

CPU

DRAM

CPU

© Copyright Khronos Group, 2010 - Page 10

The BIG Idea behind OpenCL

• OpenCL execution model …

execute a kernel at each point in a problem domain

- E.g., process a 1024 x 1024 image with one kernel invocation per pixel

or 1024 x 1024 = 1,048,576 kernel executions

void

trad_mul(int n,

const float *a,

const float *b,

float *c)

{

int i;

for (i=0; i<n; i++)

c[i] = a[i] * b[i]; }

Traditional loops
kernel void

dp_mul(global const float *a,

global const float *b,

global float *c)

{

int id = get_global_id(0);

c[id] = a[id] * b[id];

} // execute over “n” work-items

Data Parallel OpenCL

© Copyright Khronos Group, 2010 - Page 11

An N-dimension domain of work-items

• Define the “best” N-dimensioned index space for your algorithm

- Global Dimensions: 1024 x 1024 (whole problem space)

- Local Dimensions: 128 x 128 (work group … executes together)

1024

1
0

2
4

Synchronization between work-items

possible only within workgroups:

barriers and memory fences

Cannot synchronize outside

of a workgroup

© Copyright Khronos Group, 2010 - Page 12

To use OpenCL, you must

• Define the platform

• Execute code on the platform

• Move data around in memory

• Write (and build) programs

© Copyright Khronos Group, 2010 - Page 13

OpenCL Platform Model

• One Host + one or more Compute Devices

- Each Compute Device is composed of one or more Compute Units
- Each Compute Unit is further divided into one or more Processing Elements

© Copyright Khronos Group, 2010 - Page 14

OpenCL Execution Model

• An OpenCL application runs on a host which

submits work to the compute devices

- Work item: the basic unit of work on an

OpenCL device

- Kernel: the code for a work item.

Basically a C function

- Program: Collection of kernels and other

functions (Analogous to a dynamic library)

- Context: The environment within which work-

items executes … includes devices and their

memories and command queues

• Applications queue kernel execution instances

- Queued in-order … one queue to a device

- Executed in-order or out-of-order

Queue Queue

Context

GPU CPU

© Copyright Khronos Group, 2010 - Page 15

OpenCL Memory Model

Memory management is Explicit
You must move data from host -> global -> local … and back

• Private Memory

–Per work-item

• Local Memory

–Shared within a workgroup

• Global/Constant Memory

–Visible to all workgroups

• Host Memory

–On the CPU

Workgroup

Work-Item

Compute Device

Work-Item

Workgroup

Host

Private
Memory

Private
Memory

Local MemoryLocal Memory

Global/Constant Memory

Host Memory

Work-ItemWork-Item

Private
Memory

Private
Memory

© Copyright Khronos Group, 2010 - Page 16

Programming kernels: OpenCL C Language

• A subset of ISO C99

- But without some C99 features such as standard C99 headers,

function pointers, recursion, variable length arrays, and bit fields

• A superset of ISO C99 with additions for:

- Work-items and workgroups

- Vector types

- Synchronization

- Address space qualifiers

• Also includes a large set of built-in functions

- Image manipulation

- Work-item manipulation,

- Specialized math routines, etc.

© Copyright Khronos Group, 2010 - Page 17

Programming Kernels: Data Types

• Scalar data types

- char , uchar, short, ushort, int, uint, long, ulong, float

- bool, intptr_t, ptrdiff_t, size_t, uintptr_t, void, half (storage)

• Image types

- image2d_t, image3d_t, sampler_t

• Vector data types

- Vector lengths 2, 4, 8, & 16 (char2, ushort4, int8, float16, double2, …)

- Endian safe

- Aligned at vector length

- Vector operations

- Built-in functions

2 3 -7 -7

-7 -7 -7 -7int4 vi0 = (int4) -7;

0 1 2 3int4 vi1 = (int4)(0, 1, 2, 3);

vi0.lo = vi1.hi;

int8 v8 = (int8)(vi0, vi1.s01, vi1.odd); 2 3 -7 -7 0 1 1 3

Double is an optional
type in OpenCL 1.0

© Copyright Khronos Group, 2010 - Page 18

Building Program Objects

• The program object encapsulates:

- A context

- The program source/binary

- List of target devices and build options

• The Build process … to create a program object

- clCreateProgramWithSource()

- clCreateProgramWithBinary()

kernel void

horizontal_reflect(read_only image2d_t src,

write_only image2d_t dst)

{

int x = get_global_id(0); // x-coord

int y = get_global_id(1); // y-coord

int width = get_image_width(src);

float4 src_val = read_imagef(src, sampler,

(int2)(width-1-x, y));

write_imagef(dst, (int2)(x, y), src_val);

}

Compile for

GPU

Compile for

CPU

GPU
code

CPU
code

Kernel Code

Program

© Copyright Khronos Group, 2010 - Page 19

OpenCL Synch: Queues & Events

• Events can be used to synchronize kernel executions between queues

• Example: 2 queues with 2 devices

GPU

CPU

E
n

q
u

e
u

e
 K

e
rn

e
l
1

Kernel 1

E
n

q
u

e
u

e
 K

e
rn

e
l
2

Time

GPU

CPU

E
n

q
u

e
u

e
 K

e
rn

e
l
1

Kernel 1

E
n

q
u

e
u

e
 K

e
rn

e
l
2

Kernel 2

Time

Kernel 2

Kernel 2 waits for an event from
Kernel 1 and does not start until

the results are ready

Kernel 2 starts before
the results from Kernel 1

are ready

© Copyright Khronos Group, 2010 - Page 20

OpenCL Summary

Third party names are the property of their owners.

arg [0]

value

arg [1]

value

arg [2]

value

arg [0]

value

arg [1]

value

arg [2]

value

In

Order

Queue

Out of

Order

Queue

GPU

Context

__kernel void

dp_mul(global const float *a,

global const float *b,

global float *c)

{

int id = get_global_id(0);

c[id] = a[id] * b[id];

}

dp_mul

CPU program binary

dp_mul

GPU program binary

Programs Kernels

arg[0] value

arg[1] value

arg[2] value

Images Buffers

In

Order

Queue

Out of

Order

Queue

Compute Device

GPUCPU

dp_mul

Programs Kernels Memory Objects Command Queues

