

SPD 2013–14 Course Introduction

Strumenti di programmazione per sistemi paralleli e distribuiti (SPD)

Programming Tools for Distributed and Parallel Systems

M. Coppola <u>massimo.coppola@isti.cnr.it</u>

Course structure

- Programming Tools for Parallel and Distributed Systems (SPD)
 - 2nd term (Feb. 2014- May. 2014)
 - **6** credits
 - Note: old SPD, 9 credits, can still be taken if you have it on your study plan
 - 48hours : ~36 lessons, ~12 laboratory
 - Final test: lab project + oral examination
 - Includes discussing the project
 - New Course pages not yet active
 - Old Course wiki :

www.cli.di.unipi.it/doku/magistraleinformaticanetworking/spd

Overview

Description and Analysis of parallel and distributed programming platforms and models, to tackle problems of daunting size, scale and performance requirements Parallelism at different levels of scale

- Theoretical foundations
- Standards for platforms and programming systems
- State-of-the-art solutions
- Practical use
- Applications

Course topics

- Parallel programming tools & platforms for HPC
 - HPC and also large scalable systems: Clouds
- Many different parallelism levels
 - Many-core systems
 - Multiprocessor systems
 - Clusters
 - Clouds (& Grids)

- MPI Message Passing Interface
 - message passing standard
 - Cluster and Cloud computing
 - linked library
 - Support for several languages
 - C, C++, Fortran + several more from 3rd parties
- TBB Intel-Thread Building Blocks library
 - C++ template library
 - shared memory
 - multiple threads
 - aims at multi-core CPUs

High-Level Parallel Prog. Frameworks

- ASSIST and other Structured Parallel
 Programming approaches
 - High-Level SPP language for Clusters/Clouds
 - dynamic and autonomic management
 - BSP based approaches
- GPGPU
 - General Purpose GPU programming
 - Exploit Many-core on-chip parallelism targeted at graphics for general purpose programs
 - High-level approaches tied to GPU implementors : CUDA and Brooks+
 - High-level approaches: OpenCL
 - APU development: soon to merge with standard programming?

- Ordinary multicore CPUs
- Large compact multicore CPUs (Intel Phi)
- General purpose computing enabled GPUs
- Clouds, Clusters, multi / many-core systems

 Contrail
 - Federation of Clouds
- Specific Cloud platforms:
 - OpenNebula
 - Open Source European Platform
 - Implementation and APIs
 - OpenStack

Links to other courses

- SPA is a prerequisite
 - High-performance Computing Systems and Enabling Platforms
- **SPM** Distributed systems: paradigms and models
 - SPM theoretical foundations, surveys of systems
 - SPD focuses on few programming systems + lab time
- CPA Complements of Distributed Enabling Platforms
 - CPA focuses on Cloud/Grid platforms, related programming tools
- LPD Laboratory of Distributed Software Engineering
 - Tools and methodology for distributed software design and development
- ALP Parallel & Distributed Algorithms
 - ALP provides basics of parallel algorithmic cost models

QoS an SLA in {networking, virtualization, services}

- SRT Real time systems
 - Real-time theory has applications to SLA
- P2P Peer to Peer Systems
- Network Optimization Methods
 - QoS Routing and Scheduling

- On SPD topics
 - Research oriented [R], implementation [I], or both [IR}

QoS control in Federated Clouds: Service Level Agreement, Quality of Protection, Hypervisor enhancement for QoS in the <u>Contrail</u> project	R
Algorithms and heuristics resource management in Cloud Federations in the <u>Contrail</u> project	R I
Software Virtual Machines integration in Cloud platforms	IR
Distributed JIT compilation for multicore CPUs	IR
Automatic Data Extraction and Analysis from distributed Medical Administrative Databases	R I

• Other joint proposals may pop out in collaboration with P2P (Prof. Laura Ricci) and other courses related to SPD

- 4 hours per week (standard)
 - Starting on 24/02/2014
 - Some lessons will be skipped due to work constraints in March (e.g. March 13)
- We will need to set up at least 4 extra lessons, possibly in May
- We need to get
 - non conflicting time slot for all WIN students, as well as
 - slots which do not clash with fundamental courses of the other two C.S. curricula.

- First exercises with laptops
- Ok for development with most of the programming tools (MPI, TBB, GPGPU, etc...)
- For testing, options are
 - Labs of the C.S. Dept. used as a cluster
 - Labs in scuola S.Anna
 - Intel PHI boards at the C.S. Dept.
 - Other devices on a case-by-case

- Coding an individual project
 - Agree topic with the teacher, write 2-page summary
 - Project will use at least one of the frameworks and tools presented
 - E.g. MPI, or TBB+MPI, or OpenCL + TBB ...
 - Submit project proposal (before) and a written report (after) about the project
 - explaining problem, approach,
 - explain work done, code results, analyze test results
 - Discuss project
 - may be in seminar form with the class, if so agreed
- Plus oral test
 - About any topic in the course program

Timetable proposal

- Initial timetable (week of 24/02/2014)
 - Mon 14-16 (N1)
 - Thu 14-16 (N1)
- Confirmed new timetable (starting the week of 3/3/2014)
 - Tue 11-13 (L1)
 - Wed 16-18 (N1)
- Candidate time slot if needed
 - Fri 14-16 (either at Polo Fibonacci or CNR/S.Anna buildings, if teaching rooms unavailable)
- Question time
 - Thu 16-18 at CNR buildings, Room C33 (entrance 19)

