& 1345 L)
UNIVERSITA DI PISA

Intfro to GPGPU
General Purpose GPU programming

Massimo Coppola
30/04/2014

I;II MCSN - M. Coppola - Strumenti di programmazione per sistemi paralleli e distribuiti 1 ,,HPC

ISTITUTO DI SCIENZA ETECNOLOGIE A B erate
DELL'INFORMAZIONE “A. FAEDO”

GPU Computing

* The need for efficient specialized processing
of 3D meshes promoted the adoption of the
SIMD programming model

¢ How the model evolved

« What are GPUs good ate

— Large data sets

— Arithmetic intensity = High compute/IO ratio
— Minimal conftrol flow or recursion

— High locality

™ : .1IHPC

IIIIIIIIIIIIIIIIIIIIIIIIIIII

« The graphics pipeline
— General methodology to produce graphic
output on raster devices like computer displays

— Start from elementary data (vertexes) and
transform them info pixels

— State of the art evolved over the years, to
possibly very complex structures
« Cfr. OpenGL 1.1 state machine

— We only survey the basic principles

« Graphics pipeline, or its stages, can have
both SW and HW implementation

« Tradeoff between flexibility and
performance

IIIIIIIIIIIIIIIIIIIIIIIIIIII
DELL'INFORMAZIONE “A. FAEDO”

The birth of Graphic Processing Units .5

latorato

The objects

UNIVERSITA DI PISA

* Vertex : a pointin a coordinate system

« Primitive : graphic object comprising one or more
vertexes, possibly other parameters

* Pixel : image element in a raster display

« Coordinate systems for Vertexes, Primitive, Pixel usually
do not coincide

« They have typically different dimensionality
— E.g.render 3D space on a 2D display

« Widespread use of homogeneous coordinates

— Represent points in 2D spaces with 3 coordinates, and points
in 3D spaces with 4-dimension coordinates

— Allow representing linear affine fransformations and
projections as linear operators - implemented as matrix
multiplication

— Common, very efficient execution of graphic transformations

L[] HPC

ISTITUTO DI SCIENZA E TECNOLOGIE Taboraltoc ot ¥
DELL'INFORMAZIONE “A. FAEDO”

Elementary Graphics Pipeline

1. Vertex generation

2. Vertex processing

3. Primitive generation
4. Primifive processing
5. Pixel generation (Rasterization)
6. Pixel Processing
/. Pixel writing

« Some steps are more deeply customizable
« Some steps are efficiently realized in HW

g .11HPC
NE “A

Example

1. Vertex generation
— retrieve/generate coordinates, apply geometric transformation

2. Vertex processing

— Apply/attach visualization parameters to vertexes, apply per-object
transformations

3. Primitive generation

— Group connected vertexes and turn them into squares, spheres, surfaces,
lines ...

4. Primifive processing

— Apply shading models, colors, textures custom transformation to primitives
5. Pixel generation (Rasterization)

- Slice primitives according to the output device resolution and features

— Compute/interpolate texture pixels from texture memory matching with
primitive coordinates, to define each pixel characteristics in the slices

6. Pixel Processing

— Process pixels accordind to lighting models, (anti) aliasing and other
postprocessing techniques

/. Pixel writing
— Framebuffer operation, appropriate memory format (e.g. alpha channel)

1)) ¢ .1.IHPC

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”

Evolution and franformation of GPUS &

 From 1985 f(Commodore Amiga) to 1990 (S3
chips and followers) and beyond, 2D and then
3D accelerated units spread in the personal
computer market
— Driven mainly by the game market

— Less by Windowing systems, professional graphic use

* More and more specific stages in the pipeline
iénpl.emen’red IN HW on a chip of the graphic
evice

* |In the end, all stages of a 3D pipeline
implemented in HW

* Load balancing among the stages and
flexibility become issues for all-HW
implementation

IIIIIIIIIIIIIIIIIIIIIIIIIIII
DELL'INFORMAZIONE “A. FAEDO”

Load balance in the pipeline

* More pixel than
raster elements
(slices of primitives)

* More raster
elements than
vertexes

« Expected primitive
distribution, surface
hiding and other
masking effects
can affect this
balance

)

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”

—\f a0

Plos

1 3 5 7 9 M3 1517 1921 23 2527 20 31 33 35 37 20 41 43 45 47 &9 31

Figure 14. Characteristic pixel and vertex shader workload

variation over time

Image from NVIDIA GeForce 8800
architecture documentation, 2006

8, .II”PC

Push toward unification

* Fixed number of vertex units and pixel units
leads to poor resource use on different
workloads

« Fixed, HW-cabled functionalities are easily
reproduced in SW (no general CPUs)

« Special units replaced by unified units alike
to stream processors, with limited
programming capabillities

« Allocation of code to stream units inifially
done by specialized SW = graphic drivers

IIIIIIIIIIIIIIIIIIIIIIIIIIII
DELL'INFORMAZIONE “A. FAEDO”

latorato

™

First “programmable” GPUS

Replace the
graphic pipeline in
the HW

Maintain some
special purpose
units in HW

— e.g. texture caching
and sampling
Architecture
optimized for
streaming
— Custom RAM bus

— No read/write
conflicts

— Small caches

— High on-chip
ALU/memory ratio

— Single precision, non
|IEEE floating point

ISTITUTO DI SCIENZA E TECNOLOGIE
DELLINFORMAZIONE “A.

FAEDO”

UNIVERSITA DI PISA

GeForce 8800 replaces the pipeline model

« The future of GPUs is programmable processing
« So - build the architecture around the processor

VEX Thread lasue

L T S EE
M- m-m- m-m- m-

ek S

Pixel Thread 13w

Example from GeForce 8800 docs

Thread Processor

HPC

GPGPU

« General Purpose Graphic Unit Programming

* More and more graphic cores, and increasing core
computing power

« People started to tap into the graphic unit via
OpenGL primitives
— Exploit the computational semantics of specific graphic
operation to achieve access to the HW
— Tasks fit for stream processing : physics, image
manipulation, large data with few dependencies
« GPGPU research area was born
— Physical simulation coupled with rendering
— Textures and vertexes (read-only) are input streams

— Need to write results |
« Copy framebuffer (write-only) to texture after computation

« Skip last pipeline stages and save results to texture memory
(stream oufput in DirectX10)

L[] HPC

ISTITUTO DI SCIENZA E TECNOLOGIE Taboraltoc ot ¥
DELL'INFORMAZIONE “A. FAEDO”

New GPUs

 GPU producers understood the market value
— GPU became more programmable
— General programming issues accounted for
« Double precision IEEE f.p. arithmetic
« More efficient branches in GPU code
« Architecture is still optimized for sfreaming
— The model exposed is very much SIMD like
— No support for reading/writing the same memory ared

— No or limited support for communication among code
Instances

« to avoid synchronization and pipeline stall detection logic

« GPUs are optimized for long computation run with
reduced dependencies

- CPUs for general access patterns and concurrency

L[] HPC

ISTITUTO DI SCIENZA E TECNOLOGIE Taboraltoc ot ¥
DELL'INFORMAZIONE “A. FAEDO”

GPU optimizations

* Very large RAM bus
« Multiple trasfer per cycle
— rising/falling clock edge
« Low latency for sequential access
« High ALU density
— Many ALU controlled by the same conftrol unit

« Grouped as thread processors

— All the core in a same thread block share same SIMD
model Code

— Share code and program flow, cores can just skip

— Sometimes available: shared set of registers and
caches

» Different threads blocks are fruly independent

ISTITUTO DI SCIENZA E TECNOLOGIE laboratory
DELL'INFORMAZIONE “A. FAEDO”

Hardware Model

UNIVERSITA DI PISA

L

ATl “Cypress” RV870

-

/anh‘m(wne l)
1 1 1
bt vk o -4
Instruction Cache
Constant Cache

e ® e =
®
Q =
(]
D H AL pe OC| <
o A » ¢ ctio] =
b4-b 0 DD pe 0 e . é-' 3
04-b P AD per clo O AU E g
4-b or ADD pe 0 aadeaa § g
o z
a -~

o

£

Q

=

{ PREere .."':_{.1‘ S

128kB L2

(ommnioae] (it) (et] (semmone) (|

N O O O I o

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”

- 03uiBuz QWIS -

2Jeys ejeq [ed07 gYZE

128kB L2

- T aulduz anis -
24eys ejeq |20 gAzZE

Fef

tch

)

Unit

128KkB L2

9Jeys ejeq |e207] giZE

aJeys ejeq |1eqo|S P9
5191539y UONEzZIUOIYIUAS |EGO|D

Compuvutational Model

Stream Computing

— SIMD-like programming model Vistualized SIMD
— Multiple processing units .
Tox | T1a
* Non-determinism e mecwonvomn
— how data in streams gets processed by the o
cores is left to the board firmware | Toiy

=1~~~ Scheduler

« The computation of each core is driven by Kernel |

O progrgm, kerne’ InputStream SPo |.. S:k v | SP-1 ﬂt:tStream
Shader Processing Cores
« The GPU infrastructure is responsible for |

Global cache

assigning cores to kernels

— each running instance of a kernel is called
thread

— each thread has an associated set of output
locations in the GPU memory referred as the
domain of execution.

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”

Proprietary Programming Models

 Brook+ and CUDA

—Provide sound language
abstractions to define
computational kernels

—In a subset of standard sequential
languages

* each one assigned to one or more
thread processors

—Main issue Is To define in which
memory space each data/variable
IS actuadlly kept

ISTITUTO DI SCIENZA E TECNOLOGIE laboratory
DELL'INFORMAZIONE “A. FAEDO”

)

Each kernel is
mapped onto
one or more

thread blocks

Each Block can
execute several
sub-computations

Kernel instances
(threads) in @
thread block can
be interleaved or
parallel

ISTITUTO DI SCIENZA E TECNOLOGIE
DELLINFORMAZIONE “A.

FAEDO”

Grid 1
Kernel 1 ———p Block Block Block
(0,0) (1,0) (2,0)
Block Block Block
(©, 1y (1,1) (2 1)
Grid 2
Kernel 2 —’——l—’

The host issues a succession of kerned invocations to the device, Each kerned is executed as a batch -

of threads orgarized as a grid of thread blocks

[4

 The kernel instance
IN each core can
access several
spaces

« Language qualifiers
on functions and
variables

« Concurrency issues
- avoid
dependencies

)

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”

Block (0, 0)

Mol

Thread (0,0) Thread (1,0)

Thread (1, 0)

==

A thread has access to the device's DRAM and on-chip memory through a set of

memory spaces of Vanous Soopes.

aaaaaaaaa

More general Programming Madels
« OpenCL

— New APl more focused on computational
exploitation of GPU

— Will be part of this course
« RapidMind
— Language based approach which focues on
portability

— Same set of SIMD-like primifives could be
compiled to
« GPUs
« Cell Multicore
« X86 multicore CPUs

— Interesting idea - acquired (by Intel) in 2009

n HPC

IIIIIIIIIIIIIIIIIIIIIIIIIIII
DELL'INFORMAZIONE “A. FAEDO”

GPU and CPU interaction

* The main limit of conventional GPU approach

* |Interaction with the CPU bus is a bottleneck

— PClI bus is fast, but slower than memory interface of
the GPU

— Data exchange rate and overhead is influenced by
the driver/OS management and by the hardware
capability (is DMA controlled by both wayse)

» To scale you need an ALU intensive, regular
problem and infrequent interaction with the
CPU

« QOr efficient asynchronous interaction with the
CPU bus

ISTITUTO DI SCIENZA E TECNOLOGIE laboratory
DELL'INFORMAZIONE “A. FAEDO”

Hardware Model

UNIVERSITA DI PISA

ATl “Cypress” RV870

Stream Cores

4 32-bit FP MAD per clock
2 64-bit FP MUL or ADD per clock Special functions

1 64-bit FP MAD per clock 13 IR0
per clock

4 24-bit Int MUL or ADD per clock

Memory Controller

)

ISTITUTO DI SCIENZA E TECNOLOGIE
DELL'INFORMAZIONE “A. FAEDO”

Instruction Cache

Constant Cache

J24)ng podx3g Aloway

24eys ejeq |20 gAzZE

- 6T 3u1Bul AWIS
24eys ejeq |20 gAZE

l Fetch
i
Unit*

128kB L2

128kB L2

128KkB L2

128kB L2

aJeys ejeq |1eqo|S P9
51915183} UONBZIUOIYIUAS [BGO|D)

