

OpenCL lab time

SPD course 2013-14 Massimo Coppola 27/05/2014

MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

- Start up your environment
- Write down a simple program computing the square root of all elements in an array
 - Insert proper includes and code for compilation
 - Detect your device type
 - Allocate an array
 - smaller than your GPUs memory! Say, 1M-32M floats?
 - Write a Kernel that squares the elements
 - Use the command queue
 - Transfer the array to the device
 - Fire the kernel repeatedly (parameter)
 - Transfer back the results
 - Measure performance
 - Play with the parameters: workgroup size / local work size, number of repeats

- Compute K-means with OpenCL
 - Start up from the sequential version of the code used with MPI
 - Add init code and device initialization
 - Check that the array of data will fit on you GPU
 - Is the type of the array supported? Can you reuse sequential code as it is?
 - You may need to reorganize the data, change the types
 - Choose the core function of K-means and turn it into a kernel
 - You will need to transfer the data to the GPU
 - Are all transfers needed? Can you devise a way to reduce the number of transfers host – device and back?

Example 2 – continued

- First step will likely have reduced performance
- Choose the set of functions to turn into kernels
 - Operations which are executed often
- Optimizations for OpenCL
 - Reduce data transfers
 - Parallelization with MPI moves very little data, can you better with OpenCL?
 - Rearrange data structures
 - Exploit native types for faster operations
 - Separate arrays of structures into distinct arrays of simpler types
 - Move most of the computation to the GPU side
 - Host will need to check for continuation... or not?
 - Loop unrolling: Can you imagine to apply something similar?
 - Reduce the number of separate kernels
 - Merge kernels to reduce operations
 - What are the tradeoffs ?

