
Intel Thread Building Blocks, Part II

SPD course 2013-14
Massimo Coppola
25/03, 16/05/2014

1 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

TBB Recap

•  Portable environment
–  Based on C++11 standard compilers
–  Extensive use of templates

•  No vectorization support (portability)
–  use vector support from your specific compiler

•  Full environment: compile time + runtime
•  Runtime includes

–  memory allocation
–  synchronization
–  task management

•  TBB supports patterns as well as other features
–  algorithms, containers, mutexes, tasks...
–  mix of high and low level mechanisms
–  programmer must choose wisely

2 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

TBB “layers”

•  All TBB architectural elements are present in
the user API, except the actual threads

3 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Parallel algorithms
generic and scalable: for, reduce,

work pile, scan, pipeline, flow graph ...

Concurrent Containers
vectors, hash tables, queues

Tasks
Scheduler, work stealing,

groups, over/under
subscription

Synchronization
atomic ops, mutexes,

condition variables

Memory
Scalable mem. allocation,
false-sharing avoidance,

thread-local storage

Threads

Utility
cross-thread timers

Threads and composability

•  Composing parallel patterns
–  a pipeline of farms of maps of farms
–  a parallel for nested in a parallel loop within a pipeline
–  each construct can express more potential parallelism
–  deep nesting ! too many threads ! overhead

•  Potential parallelism should be expressed
–  difficult or impossible to extract for the compiler

•  Actual parallelism should be flexibly tuned
–  messy to define and optimize for the programmer,

performance hardly portable

•  TBB solution
–  Potential parallelism = tasks
–  Actual parallelism = threads
–  Mapping tasks over threads is largely automated and

performed at run-time

4 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Tasks vs threads

•  Task is a unit of computation in TBB
–  can be executed in parallel with other tasks
–  the computation is carried on by a thread
–  task mapping onto threads is a choice of the

runtime
•  the TBB user can provide hints on mapping

•  Effects
–  Allow Hierarchical Pattern Composability
–  raise the level of abstraction

•  avoid dealing with different thread semantics

–  increase run-time portability across different
architectures
•  adapt to different number of cores/threads per core

5 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

TBB 4 Algorithms (1)

Over time, the distinction between parallel patterns
and algorithms may become blurred
TBB calls all of them just “algorithms”

•  parallel_for

–  iteration over a range, can choose partitioner
•  parallel_for_each

–  iteration via simple iterator, no partitioner choice
•  parallel_do

–  iteration over a set, may add items
•  parallel_reduce

–  reduction over a range, can choose partitioner, has
deterministic variant

•  parallel_scan
–  parallel prefix over a range, can choose partitioner

6 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

TBB 4 Algorithms (2)

•  parallel_scan
–  parallel prefix over a range, can choose partitioner

•  parallel_while (deprecated, see parallel_do)
–  iteration over a stream, may add items

•  parallel_sort
–  sort over a set (via a RandomAccessIterator and

compare function)

•  pipeline and filter
–  runs a pipeline of filter stages, tasks in = tasks out

•  parallel_invoke
–  execute a group of tasks in parallel

•  thread_bound_filter
–  a filter explicitly bound to a serving thread

7 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Parallel For each

void tbb::parallel_for_each (InputIterator first,
 InputIterator last, const Function &f)

•  simple case, employs iterators
•  drop-in replacement for std for_each with

parallel execution
–  Easy-case parallelization of existing C++ code

•  it was a special case of for in previous TBB
•  Serially equivalent to:

 for (auto i=first; i<last; ++i) f(i);

•  There is also the variant specifying the context
(task group) in which the tasks are run

8 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Passing args to parallel patterns

•  Beside the range of values we need to
compute over, we nee to specify the inner
code of C++ templates implementing parallel
patterns

•  Most patterns have two separate forms
–  Args are a function reference (computation to

perform to perform) and a series of parameters (to
the parallel pattern)

–  Args contain a user-define class “Body” to specify the
pattern body,
•  Body is a concrete class instantiating a virtual class

specified by TBB as a model for that pattern
•  TBB docs calls “requirements” the methods that the Body

class provides and will be called by the pattern
implementation

•  Example: for_each uses the first method

9 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Passing args to parallel patterns

•  Advantages and disadvantages
•  Using functions (TBB documentation calls it

the “functional form”…)
–  Easier to use lambda functions
–  We are passing around function references
–  Static (compilation-time) type checking is in some

cases limited as the template needs to be general
enough

•  Using Body classes (TBB calls it “imperative”)
–  Slightly more lengthy code
–  Better static type-checking
–  Body classes can more easily contain data/

references – they can have state that simplifies some
optimization (ex. see the parallel_reduce pattern)

10 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Optional args to parallel patterns

•  A partitioner
–  A user-chosen partitioner used to split the range

to provide parallelism
–  see later on the properties of

auto_partitioner, (default in any recent TBB)
simple_partitioner,
affinity_partitioner

•  task_group_context
–  Allows the user to control in which task group the

pattern is executed
–  By default a new, separate task group is created

for each pattern

11 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Parallel For

 parallel_for (
tbb::blocked_range<size_t> (begin, end,
GRAIN_SIZE), tbb_parallel_task());

•  Loops over integral tipes, positive step, no wrap-
around

•  one way of specifying it, where tbb_parallel_task is
a Body user-defined class

•  uses a class for parallel loop implementations.
–  The actual loop "chunks" are performed using the ()

operator of the class
–  the computing function (operator ()) will receive a range

as parameter
–  data are passed via the class and the range

•  The computing function can also be defined in-
place via lambda expressions

12 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Parallel For

 parallel_for (
tbb::blocked_range<size_t> (begin, end,
GRAIN_SIZE), tbb_parallel_task(), partitioner);

•  Extended version
•  the partitioner is one of those specified by

TBB (simple, auto, affinity)
•  no real choice usually, just allocate a const

partitioner and pass it to the parallel loops:
tbb::affinity_partitioner ap;

–  (unless you want to define your own partitioner)

13 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Parallel_for, 1D alternate syntax

•  template<typename Index, typename Func>
Func parallel_for(Index first, Index_type last,
 const Func& f
 [, partitioner
 [, task_group_context& group]]);

•  template<typename Index, typename Func>
Func parallel_for(Index first, Index_type last,
 Index step, const Func& f
 [, partitioner
 [, task_group_context& group]]);

•  Implicit 1D range definition, employs a function
reference (e.g. lambda function) to specify the
body

14 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

TBB Range classes

•  Range classes express intervals of parameter
values and their decomposability
–  recursively splitting intervals to produce parallel

work for many patterns (e.g. for, reduce, scan…)

•  The Range concept relies on five methods
–  copy constructor
–  destructor
–  is_divisible() true if range is not too small
–  empty() true if range empty
–  split() split the range in two parts

15 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

The Range concept

Class R implementing the concept of range must
define:

 R::R(const R&);
 R::~R();
 bool R::is_divisible() const;
 bool R::empty() const;
 R::R(R& r, split);

Split range R into two subranges.

One is returned via the parameter, the other
one is the range itself, accordingly reduced

16 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Blocked Range

•  TBB 4 has implementations of the range
concept as templates for 1D, 2D and 3D
blocked ranges
–  3 nested parallel for are functionally equivalent

to a simple parallel for over a 3D range
–  the 2D and 3D range will likely exploit the caches

better, due to the explicit 2D/3D tiling

tbb::blocked_range< Value > Class
tbb::blocked_range2d< RowValue, ColValue > Class
tbb::blocked_range3d< PageValue,
 RowValue, ColValue > Class

17 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

partitioners

•  simple
–  generate tasks by dividing the range as much as

possible (remember about the grain size!)

•  auto
–  divide into large chunks, divide further if more

tasks are required

•  affinity
–  carries state inside, will assign the tasks according

to range locality to better exploit caches

18 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Combining the elements

•  Apply a range template to your elementary
data type

•  Define a class computing the proper for-
body over elements of a range

•  Call the parallel_for passing at least the
range and the function

•  specify a partitioner and/or a grain size to
tune task creation for load balancing

19 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Example (with lambda)

void relax(double *a, double *b,
 size_t n, int iterations)

{
 tbb::affinity_partitioner ap;
 for (size_t t=0; t<iterations; ++t) {
 tbb::parallel_for(
 tbb::blocked_range<size_t>(1,n-1),
 [=](tbb::blocked_range<size_t> r) {
 size_t e = r.end();
 for (size_t i=r.begin(), i<e; ++i)
 /*do work on a[i], b[i] */;
 },
 ap);
 std:swap(a,b); // always read from a, write to b
 }

}

20 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

Updated References

•  Download docs and code from
http://threadingbuildingblocks.org/

•  Since TBB 4
–  many of the accompanying PDF (tutorial, reference) are

no longer made available on the web site. Either
–  ask the teacher for TBB 3.0 copies
–  resort to books

•  TBB Accompanying docs
–  download the full TBB source archive, it contains

•  an example directory with TBB examples and their description
•  a doc directory with full html reference docs

–  Getting started – install and compile examples ! TRY IT
•  Quick summary to lamba expressions in C++

–  http://www.nacad.ufrj.br/online/intel/Documentation/en_US/
compiler_c/main_cls/cref_cls/common/cppref_lambda_desc.htm!

21 MCSN – M. Coppola – Strumenti di programmazione per sistemi paralleli e distribuiti

