

From Grids to Clouds

SPD Course
16/05/2011 (updated on 17/05)
Massimo Coppola

What are Grids

- Ideas, aims and shortcomings
- Computational Grids as the equivalent of power Grids
 - Easy to access (standards)
 - Ubiquous
 - Multiple providers
- "Remote" execution of applications
 - Infrastructure for AAA Access, Author. & Account
 - Need to move app & data
 - Need to find machines properly configured
 - Standards implemented within GRID middleware

What are Grids

- Initial providers & adopters were academic
 - HPC oriented (MPI like) or client server (Web services)
 - Unclear business model due to adoption overhead
 - Change in paradigm (new API) and data migration
- Grid middlewares made up of
 - implementation layers (fabric, connection, data...), protocols and infrastructures (PKI)
- Full story within the CPA course

What are Clouds

- In a sense, the same idea
 - Ease of use of remote computing power, from multiple users, everywhere, with standard mechanisms
- What changed?
 - Virtualization
 - Push app-specific configuration toward the final user
 - Improve security and resource management
 - Large companies have lots of excess resources which CAN be provided (=sold) this way

What are Clouds

a 'cloud' is
an elastic execution environment of resources,
involving multiple stakeholders
and providing a metered service at multiple
granularities
for specified level of quality (of service)

What resources are provided as services?
 Multiple levels!

Infrastructure as a service laas

Platform as a service PaaS

Software as a service SaaS

What are Clouds

- Quality of Service (QoS) specified formally and agreed between the user and the platform as a Service Level Agreement (SLA)
- Standards and mechanisms are needed to define, agree and enforce SLAs onto virtualized resources.

Types of Cloud

- Public Clouds
- Private Clouds
- Community Clouds
- Hybrid Clouds
- Cloudbursting
- Nowadays, public Cloud providers have complete control over their infrastructure

- Virtualization as a tool used to build the Cloud Abstraction.
- The topic is covered in depth in other courses
- e.g. the CPA course for what concerns system virtualization

RECAP ON VIRTUALIZATION

Virtualization

In short: Virtualization means providing the abstraction of a computing machine in order to execute programs, allowing to decouple the applications from the implementation of the underlying SW/HW

- Two main concepts for any virtual machine (VM)
 - VM interfaces: kind of code/features provided
 - VM implementation: design and techniques employed
- Kind and complexity of the machine abstraction provided vary, as well as its interfaces
- Approaches used to execute code within the virtual machine include code interpretation, on-the-fly compilation, hardware emulation
- The level at which the VM is implemented and its purpose also affect the design of VM support

Virtualization Examples

- System virtualization
 - Emulate a whole HW system (CPU, interfaces and devices, including work and mass memory) using a (possibly) different kind of system
 - You need to install a full software stack to use the VM, possibly starting from the BIOS
 - Techniques range from dynamic interpretation, on-the-fly compilation to unprivileged execution on the CPU with hardware-assisted emulation of devices
- Language-oriented virtual machines
 - Provide a simplified machine abstraction used to ease programming and improve portability of applications
 - Java and .Net frameworks as examples
 - Can provide properties unavailable/unpractical in HW
 - Security, code signing and code verification, code reflection and onthe-fly code modification
 - Again, approaches for execution include full interpretation (traditional JAVA) full compilation (P-code) and dynamic compilation (e.g. Hotspot Java, .Net)

System virtualization

- The Hypervisor (HV) implements the virtual machine emulation to run a Guest OS
- Provides resources and functionalities to the Guest OS
- Typical settings: the VM emulation stacks with the Host and the Guest OS

- System-level VM emulation = emulate each HW transition, including ISA, CPU and device user & privileged state
 - Different ISA → full emulation
 - Guest ISA = Host ISA
 → a subset of the ISA can be executed

Different Kinds of Hypervisor

- In system virtualization, the Hypervisor is not necessarily run on top of a host O.S.
- Even with no Host O.S., the HV will still need a Control O.S.
 - Create, monitor and manage other VMs

Type 1 Hypervisor : bare-metal

- HV runs directly on the hardware
- Essential
 management
 functions: memory,
 CPU, system bus
- "Control" instance of the OS is special VM
 - Privileged link to the
 HV to steer other VMs
 - May provide device drivers to Guests

- Pros: complete knowledge of HW, can make HW-aware decisions
- Cons: manage full VM emulation, intercept all HW mechanisms

Type 2 hypervisor: Hosted HV

- HV runs within the Host OS
- Resources controlled and managed by the Host
- Need mechanisms to separate host and guests if same ISA

- Pros: less intrusive on Host OS
- Cons: low-level resource management done by host, HV has limited access to HW

Protection rings

- Current X86 architecture
- A generalization of the basic mechanism of the "supervisor" state
- Different classes of machine instructions (subsets of the ISA) are allowed in different levels
- Can be used as an OS containment mechanism
- In practice, most O.S. kernels use just one ring for OS (then it must be ring 0) and one for apps (ring 3)

Paravirtualization

- Hypervisor needs to to run in ring 0
- Host O.S. kernel is modified
 - it runs in ring 0 on top of the hypervisor.
- Guest VM kernel is also modified

Full virtualization, no HW assist

- The HOST O.S. kernel is modified to run in ring 1
 - Some host kernels are easily ported to ring 1
- Guests may be modified, or run on SW emulation
 - A subset of the ISA trapped and emulated by the HV

Full virtualization with HW assist

- Hypervisor is run in a special ring -1
- Intel and AMD provide HW support in recent CPUs
- Control O.S. kernel is run in ring 0

End of recap

- If you need references concerning Virtualization, please see
 - the CPA course page
 - The CPA/SPD 2009-2010 course page

References

 Ian Foster, Carl Kesselman, Steven Tuecke, "The Anatomy of the Grid: Enabling Scalable Virtual Organizations" -2003

http://onlinelibrary.wiley.com/doi/10.1002/0470867167.ch6/summary

- Craig Lee, "A perspective on scientific cloud computing" – proceedings of HPDC 2010
 - Beware that the definition of Cloud federation is not uniform in the scientific literature
- "The Future Of Cloud Computing" report of EU expert group, see

http://cordis.europa.eu/fp7/ict/ssai/docs/cloud-report-final.pdf

 Parts A and B summarize a great deal of basic concepts and definitions concerning Clouds

