(MPI) SPD Lab Time

M. Coppola
Last Revision May 10, 2011

This document will collect the exercises and problems that were discussed
in the Lab time for the SPD course 2010-2011. It cannot substitute attending
the lab time, but if you did not follow the course or missed a specific lesson,
here you will find a list of the examples discussed. Some of the exercises are
followed by a list of questions that you should try to answer, maybe achieving
a deeper understanding of the examples..

The document is a work-in-progress which will grow as more lab lessons
are given.

1 Exercise 1: 29/03/2011
2 Exercise 2 : 12 - 15/04/2011

Design and implement an MPI program with several stages, some of them
parallel. Our main aim is modularity and potential software reuse: how
would you reuse part of the program in different settings, or the whole pro-
gram as a parallel subroutine of a bigger one? The emphasis is on proper
use of communicators to implement parallel constructs within the program.
The program has three parameters in input:

n>2 denotes the size of the matrices
k>1 parallelism degree in stage FNR
c>0 overall stream length; ¢ is an even integer

|[RAN|— |[MUL| — |[NRM | — |OUT|

e The whole program is a pipeline of four stages, each stage sending a
stream of data to the following one. The type of the data which are sent
from one stage to the following one are fixed during program execution,
but are not known at compile time (i.e. they depend on the size of the
matrix, n?, which is only known at program launch).

1

2.1

Stage RAN is a sequential process generating random matrices of size
n with floating point elements (choose any precision you like). Each
Matrix M is defined as

M; ; = 60; ; + random(—0.5,0.5)

that is, each M is the identity matrix where each element is added a
different random number between —0.5 and 0.5 .

Stage MUL is a parallel map multiplying each two consecutive matrices
in its input stream. It computes ()M X (y4.1)M with the usual algorithm

Aij= Y BiyChy

ke[0,n]

The parallelism degree in MUL is n. You have to define a parallel
matrix multiplication which uses n processes.

Stage NRM is a farm computing the norm-2 of each matrix in its input.
The norm-2 of a matrix ,M is defined as

= >, (M)

i,j€[0,n]

The parallelism degree in FNR is &
Stage OUT is a sequential process which simply prints on stdoutall

the norm values it receives.

Questions about the Exercise

Discuss how many (minimum and maximum number) of communica-
tors that it makes sense to specify in this exercise.

Discuss the relationship between the number of processes in your im-
plementation (mpirun -n) and the n and ¢ parameters.

Do you use communicators to hide your code from the outside?

Does it make sense to isolate parallel code from the code it hosts (e.g.
the farm implementation from the worker code)?

Can we assume the code contained in a parallel pattern will always be
sequential?

e Can we support workers which are in fact parallel subprograms?
e How do we avoid specifying the stream length ¢ before execution?
e How do we propagate an end-of stream signal?

— Can we propagate and end-of stream signal using the TAG value?

— Can we propagate and end-of stream signal using the message
value?

— Can messages using a different TAG value overtake each other?

e What kind of MPI Datataype definitions are needed by the different
program stages? (compare the number you choose with the absolute
minimum number, in terms of ease of code maintenance).

3 Exercise 3: 10/05/2011

Implement the following parallel algorithm working on a 129x129 real-valued
matrix.

1. initialize each point in the matrix whose x,y coordinates are both mul-
tiple o 32 by generating random numbers between 0,1. These points
will never change their values; all the other cells will be initialized with
0 and will have their value computed by the algorithm;

2. distribute the matrix across a number of processes;

3. each cell in the matrix is computed as the weighed average of its pre-
vious value and that of its 8 neighbors; where the weight in the stencil
is 2 for the old cell value, and is proportional to the relative distance
(either 1 or v/2) for the neighbours, that is

1
mg; = m Z {Qmi,j> 41,55 T j+1, \/§mi71,j71> \/§mi+1,j+1a \/imiil,jqu}

each process will thus have to exchange the new values on the partition
borders with his neighboring processes;

assume that any cell needed by the stencil that is outside the matrix
border has the same value as the cell m; ; in the center of the stencil;

4. iterate the parallel computation as long as it is needed for each cell of
the matrix to stabilize (i.e. the value change is less than 107%).

3.1

Questions/comments about the Exercise

It may be simpler to analyze the problem on an one-dimensional array,
with a stencil composed of the cell to compute and the two direct
neighbours.

Pay attention to the immutable positions within the matrix. Do you
need to take them into account in the parallelization, or may you deal
with them only in the sequential part of the computation?

State your assumptions on the possible parallelism degree.
— Consider what is the fraction of data that needs to be exchanged

between different MPI processes.

— Devise a schema for exchanging only the needed part of data at
each global iteration.

— Can you avoid global synchronizations among all the processes in
order to exchange the partition borders?

How many copies of the matrix do you need to keep in each process’
memory”?

Is it possible to write all the processes according to a common schema,
regardless of the part of the matrix that they receive for computation?

Set up a maximal number of iteration after which the program will stop
with a warning.

Discuss the advantages of partitioning the matrix by rows, columns,
or blocks. What is the tradeoff between complexity and amount of
transferred data? Does it depend on the size of the matrix?

Are your data partitions always perfectly balanced?

Do your MPI datatypes depend on the position in the matrix of the
data your process is assigned?

How do you detect that all cells in the matrix have stabilized?

— Can you avoid a global synchronization to check for stabilization?
How often do you need to check?

What is the expected comparison among the cost of global synchro-
nization, of local synchronization, and the computations assigned to a
process?

e How this comparison is likely to affect a generic problem of size N x N
an parallelism p =4 x 57

