
Introduction to FastFlow programming

Massimo Torquati <torquati@di.unipi.it>

Computer Science Department, University of Pisa - Italy

SPM lecture, November 2016



  2

Objectives 

● Have a good idea of the FastFlow framework

– how it works and its main features

– also, weakness and strength points

● To be able to write simple (but not-trivial) parallel FastFlow programs



  3

What is FastFlow

● FastFlow is a parallel programming framework written in C/C++ 
promoting pattern based parallel programming

● It is a joint research work between Computer Science Department of 
University of Pisa and Torino

● It aims to be usable, efficient and flexible enough for programming 
heterogeneous multi/many-cores platforms

– multi-core + GPGPUs + Xeon PHI + FPGA ….. 

● FastFlow has also a distributed run-time for targeting cluster of 
workstations



  4

Downloading and installing FastFlow

● Supports for Linux, Mac OS, Windows (Visual Studio)

– The most stable version is the Linux one
● we are going to use the Linux (x86_64) version in this course

● To get the latest svn version from Sourceforge

– creates a fastflow dir with everything inside (tests, examples, tutorial, ….)

● To get the latest updates just cd into the fastflow main dir and type:

● The run-time (i.e. all you need for compiling your programs) is in the ff 
folder (i.e. fastflow/ff )

– NOTE: FastFlow is a class library not a plain library

● You need: make, g++ (with C++11 support, i.e. version >= 4.7) 

svn co https://svn.code.sf.net/p/mc-fastflow/code/  fastflow

svn update

https://svn.code.sf.net/p/mc-fastflow/code/


  5

The FastFlow tutorial

● The FastFlow tutorial is available as pdf file on the FastFlow home page under 
“Tutorial” 

– http://mc-fastflow.sourceforge.net (aka  calvados.di.unipi.it ) 

– “FastFlow tutorial”   (“PDF File”)

● All tests and examples described in the tutorial are available as a separate 
tarball file: fftutorial_source_code.tgz 

– can be downloaded from the FastFlow home  (“Tests and examples – source code tarball”)

● In the tutorial source code there are a number of very simple examples 
covering almost all aspects of using pipeline, farm, ParallelFor, map, mdf.

– Many features of the FastFlow framework are not covered in the tutorial yet

● There are also a number of small (“more complex“) applications, for example: 
image filtering, block-based matrix multiplication, mandelbrot set 
computation, dot-product, etc...



  6

The FastFlow layers

● C++ class library

● Promotes (high-level) structured parallel 
programming

● Streaming natively supported

● It aims to be flexible and efficient enough to target 
multi-core, many-core and distributed  
heterogeneous systems.

● Layered design:

– Building blocks minimal set of mechanisms: 
channels, code wrappers, combinators.

– Core patterns streaming patterns (pipeline and task-
farm) plus the feedback pattern modifier

– High-level patterns aim to provide flexible reusable 
parametric patterns for solving specific parallel 
problemshttp://mc-fastflow.sourceforge.net

http://calvados.di.unipi.it/fastflow

 



  7

The FastFlow concurrency model

● Data-Flow programming model implemented via shared-memory

– Nodes are parallel activities. Edges are true data dependencies

– Producer-Consumer synchronizations

– More complex synchronizations are embedded into the patter behaviour

– Data is not moved/copied if not really needed

● Full user's control of message routing

● Non-determinism management



  8

What FastFlow provides

● FastFlow provides patterns and skeletons 

– Pattern and algorithmic skeleton represent the same concept but at different 
abstraction level

● Stream-based parallel patterns (pipe, farm) plus a pattern modifier 
(feedback)

● Data-parallel patterns (map, stencil-reduce) 

● Task-parallel pattern (async function execution, macro-data-flow, 
D&C)

● FastFlow does not provide implicit memory management of data 
structures

– In almost all patterns, memory management is left to the user

– Memory management is a very critical point for performance



  9

Building blocks

● Minimal set of efficient mechanisms and functionalities

● Nodes are concurrent entities (i.e. POSIX threads)

● Arrows are channels implemented as SPSC lock-free queue

– bounded or unbounded in size



  10

Stream concept  (recap)

● Sequence of values (possibly infinite), coming from a source, having the 
same data type

– Stream of images, stream of network packets, stream of matrices, stream of 
files, …..

● A streaming application can be seen as a work-flow graph whose nodes are 
computing nodes (sequential or parallel) and arcs are channels bringing 
streams of data.

● Streams may be either “primitive“ (i.e. coming from HW sensors, network 
interfaces, ….) or can be generated internally by the application (“fake 
stream”)

● Typically in a stream based computation the first stage receives  (or reads) 
data from a source and produces tasks for next stages.



  11

Real and Fake streams

● “real streams“

– In these cases it is really important to satisfy minimum processing requirements 
(bandwidth, latency, etc...) in order to not lose data coming from the source

● “fake streams”: streams produced by unrolling loops

– You don't have an “infinite“ source of data

– The source is a software module

– Typically less stringent constraints
   for(i=start; i<stop; i+=step)
      allocate data for a task
      create a task
      send out the task
      



  12

Stream Parallel Patterns in FastFlow 
(“core” patterns)

ff_Pipe<myTask> pipe(S1,S2,...,Sn);
pipe.run_and_wait_end();

std::vector<std::unique_ptr<ff_node> >  Warray;

ff_Farm<myTask> farm(std::move(Warray),E, C);
farm.run_and_wait_end();

pipeline

task-farm ff_node

Emitter: 
schedules input data items

Collector: 
gathers results



  13

Stream Parallel Patterns (“core” 
patterns)

pipeline

task-farm

Specializations

Patterns



  14

Core patterns composition



  15

High-Level Patterns

● Address application programmers' needs

● All of them are implemented on top of “core” patterns 

– Stream Parallelism: Pipe, Farm

– Data Parallelism: Map, IterativeStencilReduce

– Task Parallelism: PoolEvolution, MDF, TaskF, D&C

– Loop Parallelism: ParallelFor, ParallelForReduce



  16

Core patterns: sequential ff_node

struct myNode: ff_node_t<TIN,TOUT> {
  int svc_init() { // optional
    // called once for initialization purposes
    return 0;  // <0 means error 
  }
  TOUT *svc(TIN * task) {
    // do something on the input task
    // called each time a task is available 
    return task; // also EOS, GO_ON, ….
  }; 
  void svc_end() {
    // called once for termination purposes
    // called if EOS is either received in input 
    // or it is generated by the node
  }
};

● A sequential ff_node is an active object 
(thread)

● Input/Output tasks (stream elements) are 
memory pointers

● The user is responsible for memory 
allocation/deallocation of data items 

– FF provides a memory allocator (not 
introduced here)

● Special return values:

– EOS means End-Of-Stream

– GO_ON means “I have no more tasks to 
send out, give me another input task (if 
any)“

code wrapper pattern



  17

ff_node: generating and absorbing 
tasks

struct myNode1: ff_node_t<Task> {
  Task *svc(Task *) {
      // generates N tasks and then EOS
      for(long i=0;i<N; ++i) {
         ff_send_out(new Task);
       }
      return EOS;
  }; 
};

code wrapper pattern

struct myNode2: ff_node_t<Task> {
  Task *svc(Task * task) {
      // do something with the task
      do_Work(task);
      delete task;
      return GO_ON; // it does not send out task
  }; 
};

● Typically myNode1 is the first stage of a pipeline, it produces tasks by using the 
ff_send_out method or simply returning task from the svc method

● Typically myNode2 is the last stage of a pipeline computation, it gets in input tasks 
without producing any outputs



  18

Core patterns: ff_Pipe

struct myNode1: ff_node_t<myTask> {
  myTask *svc(myTask *) {
        for(long i=0;i<10;++i)
            ff_send_out(new myTask(i));
        return EOS;
}};
struct myNode2: ff_node_t<myTask> {
  myTask *svc(myTask *task) {
        return task;
}};
struct myNode3: ff_node_t<myTask> {
  myTask *svc(myTask* task) {
        f3(task);
        return GO_ON;
}}; 
myNode1 _1;
myNode2 _2;
myNode3 _3; 
ff_Pipe<> pipe(_1,_2,_3);
pipe.run_and_wait_end();

● pipeline stages are ff_node(s)

● A pipeline itself is an ff_node

– It is easy to build pipe of pipe

● ff_send_out can be used to generate a stream 
of tasks

● Here, the first stage generates 10 tasks and 
then EOS

● The second stage just produces in output the 
received task

● Finally, the third stage applies the function f3 
to each stream element and does not return any 
tasks

pipeline pattern



  19

Simple ff_Pipe example

● Let's take a look at a simple test in the FastFlow tutorial:

– hello_pipe.cpp 

● How to compile:

– Suppose we define the env var FF_HOME as (bash shell):

● export FF_HOME=$HOME/fastflow

– g++ -std=c++11 -Wall -O3 -I $FF_HOME  hello_pipe.cpp -o 
hello_pipe -pthread

– On the Xeon PHI:

● g++ -std=c++11 -Wall -DNO_DEFAULT_MAPPING -O3 -I 
$FF_HOME  hello_pipe.cpp -o hello_pipe -pthread


	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19

