
SPM (recovery course) 2017-18: Final project

Marco Danelutto

version 1.0

1 Introduction

This is the final project for the recovery course of SPM A.Y. 2017-18. The
project is assigned to individual students. The project has to be prepared and
sent to the teacher by one of the official dates published on the esami.unipi.it
web site. Students may pick up any of the projects listed below (either Ker-
nel pr Skeleton) but the choice should be agreed with the professor before
starting to work on the project, either via email or in person, during question
time.
When completed, the project sent to the professor via email must consist in:

1. a message with subject SPM 1718 project submission (please observe we
need exactly this subject. The messages will be filtered automatically
and if you don’t use the correct subject I’ll not receive your submission;

2. a PDF document, in attachment, with the project report, of max 10
pages (strict);

3. a tar.gz (or .zip) document, in attachment, with the project code, the
examples, the makefiles, and all whats necessary to recompile and run
the project.

Each one of the two attachments is described in detail later on in this
document. After receiving all the projects relative to the exam session, the
teachers will take about one week to mark them (a little bit more in case of
a huge number of projects submitted) and then they will publish a calendar
of oral exams for the students that submitted a project eventually ranked
sufficient or higher. The oral exam is made of two parts:

1

1. a short demo of the project run by the student using one or more
text terminals connected via SSH to the parallel machines where the
project has been developed. During the demo the student will be asked
to answer questions relative to the project structure, code, behaviour.

2. two/three questions relative to the topics presented and discussed in
the course and covered by the teaching material (project course notes
+ book chapters covering the last part of the course arguments).

At the end of the oral exam, the student will get the final exam mark
registered. In case, the student may submit the project at exam session i and
have the exam at session i+ k provided it is in the same period (e.g. submit
the project in June and have the oral exam in July, but not in September).

2 Kernels

2.1 Monte Carlo

The application computes the integral of a function using a Monte Carlo
method: given a function f(x) to be integrated in the interval [a, b] we choose
a number N of random points hx1, . . . , xN i : xi ∈ [a, b] and we compute the
integral as

1

N

N∑
i=1

(f(xi)(b− a))

Given a function f the integral is computed over a stream of intervals

〈〈a1, b1〉, . . . , 〈am, bm〉〉

2.2 Function approximation (genetic algorithm)

A random population of functions F = {f0, . . . , ff} is subject to evolution
to look for functions that approximate an unknown function f ′ implicitly
defined by a set of points with values

P = {〈x1, y1〉, . . . , 〈xm, ym〉} ∀i ∈ [1,m]yi = f ′(xi)

The functions in F are defined according to the following grammar:

2

<const> ::= 0 | 1 | 2 | ...

<var> ::= x | y | ...

<leaf> ::= <const> | <var>

<binop> ::= - | + | * | / | pow

<unop> ::= exp | sin | cos | log

<node> ::= <leaf> | <monop> <node> | <node> <binop> <node>

The application evaluates the approximation of function f ′ by minimizing
the fitness function (f ∈ F):

E(f, P) =

√√√√ m∑
i=1

(yi − f(xi))2

The functions having the better fitness value are selected for being mod-
ified by the crossover or the mutation operator. The crossover randomly
selects two subtrees belonging to two different trees respectively and ex-
changes them. The mutation substitutes a randomly selected subtree with a
new one of the same depth. In both cases, the new generated trees substitute
the modified ones in the population. Thus, generation after generation, the
functions exhibiting the better fitness.

2.3 Histogram Thresholding

This module performs histogram thresholding on an image. Given an integer
image I and a target percentage p, it constructs a binary image B such that
Bi,j is set if no more than p percent of the pixels in I are brighter than
Ii,j . The input data are therefore the matrix I and the percentage p. The
thresholding must be applied to a stream of input images.

2.4 Free choice kernel/application

Students are encourage to propose and discuss with the professor different
alternatives, possibly individuated because of personal interests, subjects
already tackled in other courses etc.

In order to be considered valid alternatives:

• either the alternative consist in parallelizing and existing and well
known application/kernel/algorithm by means of one of the structured
parallel programming frameworks discussed in the course

3

• or the alternative consist in implementing a new (alternative) pattern
using either the low level mechanisms discussed in the initial part of
the course or integrating the new pattern in one

of the existing frameworks.

3 Patterns

3.1 Pipeline with load balancing

The skeleton implements a pipeline, whose stages are sequential. It manages
to monitor the latencies experienced in pipeline stages and to merge Si with
Si+1 in a single sequential stage in case Li + Li+1 ≤ max{Lk}.

3.2 Micro-mdf (MDF)

Micro-mdf is a minimalist parallel programming framework supporting exe-
cution of macro data flow graphs. In particular, it must support the following
features:

• data flow instructions with instruction and graph id, pointer to the
function to be computed, input token and output destination place-
holders and a missing input token counter

• a graph repository, suitable to host several graphs of data flow instruc-
tions

• a streamer, generating a type stream of tokens directed to the first
instruction of some data flow graph, and instantiating in the graph
repository a new copy (with a new graph id) of a data flow graph with
the token properly assigned to the graph first instruction

• a drainer, processing each final token, i.e. each token produced while
executing the graph in the graph repository with special destination
output

• an interpreter looking for the fireable instruction in the graph repository
and processing them up to the point no other fireable instructions are
present and the streamer already terminated its operation.

4

4 Submit HOWTO

These are mandatory recommendations for the project submission:

• the project report should include only major design and implemen-
tation choices, performance plots, a synthetic usage manual, etc. It
should not include parts of these document nor description of the prob-
lem/skeleton parallelised/implemented

• all graphs in the report should be mandatory black and white

• the project code archive should host anything needed to run the code,
including makefiles (if any), input data sets, etc.

• submission has to be performed via email at the official professor email
address within the official exam dates. If at the official deadline you
still have to fix something (report or code), send a message as if it
where the submission of what you did so far and we’ll agree some days
of extension.

• Application/kernel projects should be implemented using FastFlow and
C++ threads and the two implementations should be compared in
terms of the achieved performances

• Skeleton projects should be implemented either using C++ with threads
or with the “core” FastFlow skeletons

• all communications or material supporting the project implementation
will be published on the didawiki web page

5

