
Linköping Studies in Science and Technology

Thesis No. 1504

Skeleton Programming for
Heterogeneous GPU-based Systems

by

Usman Dastgeer

Submitted to Linköping Institute of Technology at Linköping University in partial
fulfilment of the requirements for degree of Licentiate of Engineering

Department of Computer and Information Science
Linköping universitet

SE-581 83 Linköping, Sweden

Linköping 2011

Copyright c� 2011 Usman Dastgeer [except Chapter 4]

Copyright notice for Chapter 4: c� ACM, 2011. This is a minor revision of the work
published in Proceedings of the Fourth International Workshop on Multicore Software
Engineering (IWMSE’11), Honolulu, Hawaii, USA , 2011, http://doi.acm.org/10.1145/
1984693.1984697. ACM COPYRIGHT NOTICE. Copyright c� 2011 by the Association
for Computing Machinery, Inc. Permission to make digital or hard copies of part or all
of this work for personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Publications Dept., ACM,
Inc., fax +1 (212) 869-0481, or permissions@acm.org.

ISBN 978-91-7393-066-6
ISSN 0280–7971

Printed by LiU Tryck 2011

URL: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-70234

Skeleton Programming for Heterogeneous
GPU-based Systems

by

Usman Dastgeer

October 2011
ISBN 978-91-7393-066-6

Linköping Studies in Science and Technology
Thesis No. 1504
ISSN 0280–7971

LiU–Tek–Lic–2011:43

ABSTRACT

In this thesis, we address issues associated with programming modern heterogeneous sys-
tems while focusing on a special kind of heterogeneous systems that include multicore
CPUs and one or more GPUs, called GPU-based systems. We leverage the skeleton pro-
gramming approach to achieve high level abstraction for efficient and portable program-
ming of these GPU-based systems and present our work on SkePU which is a skeleton
library for these systems.

We first extend the existing SkePU library with a two-dimensional (2D) data type and
accordingly generalized skeleton operations, and implement several new applications that
utilize these new features. Furthermore, we consider the algorithmic choice present in
SkePU and implement support to specify and automatically optimize the algorithmic
choice for a skeleton call, on a given platform.

To show how to achieve high performance, we provide a case-study on an optimized
GPU-based skeleton implementation for 2D convolution computations and introduce two
metrics to maximize resource utilization on a GPU. By devising a mechanism to au-
tomatically calculate these two metrics, performance can be retained while porting an
application from one GPU architecture to another.

Another contribution of this thesis is the implementation of runtime support for task par-
allelism in SkePU. This is achieved by integration with the StarPU runtime system. By
this integration, support for dynamic scheduling and load balancing for SkePU skeleton
programs is achieved. Furthermore, a capability to do hybrid execution by parallel exe-
cution on all available CPUs and GPUs in a system, even for a single skeleton invocation,
is developed.

SkePU initially supported only data-parallel skeletons. The first task-parallel skeleton
(farm) in SkePU is implemented with support for performance-aware scheduling and
hierarchical parallel execution by enabling all data parallel skeletons to be usable as tasks
inside the farm construct.

Experimental evaluations are carried out and presented for algorithmic selection, perfor-
mance portability, dynamic scheduling and hybrid execution aspects of our work.

This work has been supported by EU FP7 project PEPPHER and by SeRC.

Department of Computer and Information Science
Linköping universitet

SE-581 83 Linköping, Sweden

Acknowledgements

First, I would like to express my deep gratitude to my main supervisor
Christoph Kessler for always keeping the door open for discussions. Without
your kind support and guidance, this thesis would not have been possible.
Thanks so much for your endless patience and always being there when I
needed.

Special thanks to my co-supervisor Kristian Sandahl for his help and
guidance in all matters and for showing trust in me. Thanks also to Johan
Enmyren, who, together with Christoph Kessler, started the work on the
SkePU skeleton framework that I have based much of my work on.

This work has been financially supported by the EU FP7 project PEP-
PHER, grant #248481 (www.peppher.eu), and Swedish e-Science Research
Center (SeRC). I would very much like to thank all the members of the
PEPPHER project, for interesting discussions in the project meetings that
I have attended. I have learned a lot from these discussions and many ideas
to this research are influenced by our discussions in the project meetings.

Thanks also to all the past and present members of the PELAB and my
colleagues at the department of computer and information science, for cre-
ating an enjoyable atmosphere. A big thanks to Bodil Mattsson Kihlström,
Åsa Kärrman and Anne Moe who took care of any problems that I have run
into. Thanks to Daniel Cederman and Philippas Tsigas for running some
experiments on their CUDA machines.

I would also like to thank my friends and family for their continuous
support and encouragement. Especially, I am grateful to my parents and
family members for their love and support.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Skeleton programming . 3
1.3 Problem formulation . 4
1.4 Contributions . 5
1.5 List of publications . 5
1.6 Thesis outline . 6

2 Background 7
2.1 Programming NVIDIA GPUs 7

2.1.1 CUDA . 8
2.1.2 OpenCL . 9

3 SkePU 10
3.1 SkePU library . 10

3.1.1 User functions . 10
3.1.2 Containers . 11
3.1.3 Skeletons . 12
3.1.4 Lazy memory copying 23
3.1.5 Multi-GPU support 23
3.1.6 Dependencies . 24

3.2 Application examples . 24
3.2.1 Gaussian blur filter . 24
3.2.2 ODE solver . 25

4 Auto-tuning SkePU 29
4.1 Need for algorithmic selection 29

4.1.1 A motivating example 29
4.2 Execution plan . 30
4.3 Auto-tuning . 31

4.3.1 Prediction framework 32
4.3.2 Prediction accuracy 36

4.4 Evaluation . 38
4.4.1 Tuning . 38

iii

iv Contents

4.4.2 Performance portability 41

5 An optimization case-study 42
5.1 Background . 42
5.2 GPU optimizations . 43
5.3 Maximizing resource utilization 45
5.4 Evaluation . 46

6 SkePU StarPU integration 54
6.1 Need for runtime support . 54
6.2 StarPU . 55

6.2.1 StarPU task-model . 56
6.2.2 Data management . 56
6.2.3 Dynamic scheduling 56

6.3 Integration details . 57
6.3.1 Asynchronous execution 57
6.3.2 Abstraction gap . 57
6.3.3 Containers . 57
6.3.4 Mapping SkePU skeletons to StarPU tasks 58
6.3.5 Data Partitioning . 59
6.3.6 Scheduling support . 59

6.4 Implementation of the Farm skeleton 59
6.5 Evaluation . 62

6.5.1 Data Partitioning and locality on CPUs 64
6.5.2 Data-locality aware scheduling: 67
6.5.3 Performance-model based scheduling policies 67
6.5.4 Static scheduling . 68
6.5.5 Overhead . 68

7 Related Work 71
7.1 Skeleton programming . 71
7.2 Hybrid execution and dynamic scheduling 73
7.3 Algorithmic selection and Auto-tuning 74

8 Discussion and Future Work 76
8.1 SkePU extensions . 76
8.2 Algorithmic selection and PEPPHER 78

9 Conclusions 80

Chapter 1

Introduction

1.1 Motivation

For more than thirty years, chip manufacturers kept the Moore’s law going
by constantly increasing the number of transistors that could be squeezed
onto a single microprocessor chip. However in the last decade, the semicon-
ductor industry switched from making microprocessors run faster to putting
more of them on a chip [83]. This switch is mainly caused by physical con-
straints that strongly limit further increase in clock frequency of a single
microprocessor. Since 2003, we have seen dramatic changes in the main-
stream computing as the CPUs have gone from serial to parallel (called
multicore CPUs) and a new generation of powerful specialized co-processors
called accelerators has emerged.

The transition from serial to parallel execution on CPUs means that the
sequential programming interface cannot be used to efficiently program these
parallel architectures [83, 47, 12, 13, 60]. Unlike the sequential programming
paradigm, there exists no single unified parallel programming model to pro-
gram these new multicore architectures. The problem with programming
these architectures will inflate even further with introduction of hundreds of
cores in consumer level machines, by the end of this decade [28].

Beside multicore CPUs, we have seen a tremendous increase in the usage
of a special kind of accelerator called Graphics Processing Units (GPUs)
for General Purpose computing (GPGPU) over the last five years. This
mainly started with the introduction of Compute Unified Device Architecture
(CUDA) by NVIDIA in 2006 [67]; since then numerous applications are
ported to GPUs with speed-ups shown up to two order of magnitude over
the multicore CPUs execution. The massive floating point performance of
modern GPUs along with relatively low power consumption turn them into
a compelling platform for many compute-intensive applications. Also, the
modern GPUs are becoming increasingly programmable especially with the
introduction of L1 cache in the new NVIDIA Fermi GPUs.

1

2 Chapter 1. Introduction

The combination of multicore CPUs and accelerators is called a heteroge-
neous architecture. These architectures have promising prospects for future
mainstream computing. One popular example of a heterogeneous architec-
ture which we have focused in our work, is a system consisting of multicore
CPUs and one or more programmable GPUs, also called a GPU-based sys-
tem. Currently, there exist more than 250 million GPU-based systems [49],
world-wide. The CPUs are good in low-latency computations and control
instructions while GPUs have massive computational power, suited for high-
throughput computing. The combination of two offers opportunities for
power-efficient computing by exploiting the suitability of a computation to
the type of processing device.

Although providing power and cost-efficient computing, these GPU-based
systems expose a lot of problems on the software side. These problems can
be discussed with respect to three software-related properties:

• Programmability: There exists no unified programming model to
program such a GPU-based system. The OpenCL standard is an ef-
fort in this regard but it is quite low level and the standard is still
evolving. Furthermore, many existing parallel programming models
do not provide an adequate level of abstraction and they tend to ex-
pose concurrency issues to the programmer.

• Portability: The choice of programming model can restrict the porta-
bility in these systems as programming models are often associated
with a particular type of device (e.g. OpenMP for CPUs). Even with
a unified programming model such as OpenCL, portability is restricted
by device-specific optimizations.

• Performance: Getting performance from these systems is a daunting
task. The performance currently depends on device-specific optimiza-
tions, often hard-coded in the code which limits portability [63]. More-
over, the abundance and quick evolution of these systems can quickly
vanish the optimization effort while porting application from a system
with one architecture to another system with different architecture or
even to the next generation of the same system.

To make matters worse, apparently, there exist tradeoffs between these
properties: Optimizing performance often requires coding device-specific op-
timizations which are very low-level and can restrict the portability to other
systems, possibly with different architectural features. A high level of ab-
straction may yield better programmability support at the expense of perfor-
mance. Skeleton programming can help to manage these apparent tradeoffs,
at least to a certain extent.

1.2. Skeleton programming 3

1.2 Skeleton programming

A typical structured parallel program consists of both a computation and
a coordination part [52]. The computation part expresses the calculation
describing application logic, control and data flow in a procedural man-
ner. The coordination part consists of managing concurrency issues such as
thread management, deadlocks, race-conditions, synchronization, load bal-
ancing and communication between the concurrent threads.

Skeletons, introduced by Cole [31], model computation and coordination
patterns that occur frequently in the structured parallel applications and
provide abstraction with a generic sequential high-level interface. As a pre-
defined component derived from higher-order functions, a skeleton can be
parametrized with user computations. Skeletons are composable in a way
that more complex parallel patterns can be modeled by composing existing
possibly simpler skeletons. Thus, a program using skeletons can be built by
decomposing its functionality into common computational patterns which
can be modeled with available skeletons. Writing applications with skele-
tons is advantageous as parallelism and synchronization, as well as leveraging
the target architectural features comes almost for free for skeleton-expressed
computations. However, computations that do not fit any predefined skele-
ton or their combination still have to be written manually. Skeletons can be
broadly categorized into data and task-parallel skeletons:

• Data parallel skeletons: The parallelism in these skeletons comes from
(possibly large amount of) data, e.g., by applying a certain function
f independently on each element in a large data structure. The be-
havior of data parallel skeletons establishes functional correspondences
between data and is usually considered as a type of fine-grained par-
allelism [52].

• Task parallel skeletons: The parallelism in task-parallel skeletons comes
from exploiting independence between different tasks. The behavior
of task parallel skeletons is mainly determined by the interaction be-
tween tasks. The granularity of tasks, either fine or coarse, determines
the granularity of parallelism.

By arbitrary nesting both task and data parallel skeletons, structured hier-
archical parallelism can be built inside a skeleton application. This is often
referred to as mixed-mode parallelism. In the following, we describe how
skeleton programming, in general, addresses the programmability, portabil-
ity and the performance problem:

• Programmability: Skeletons provide a sequential interface to the
outside world as parallelism is implicitly modeled based on the al-
gorithmic structure that a skeleton implements. So, an application
programmer can use a skeleton just like a sequential component. This
allows building a parallel application using skeletons analogously to

4 Chapter 1. Introduction

the way in which one constructs a structured sequential program. This
also means that the low-level concurrency issues such as communica-
tion, synchronization, and the load-balancing are taken care of by a
skeleton implementation. This frees an application programmer from
managing parallelism issues and helps him/her focus on implementing
the actual logic of the application.

• Portability: A skeleton interface models the description of the algo-
rithmic structure in a platform-independent manner which can subse-
quently be realized by multiple implementations of that skeleton in-
terface, for one or more platforms. This allows an application written
using skeletons to be portable across different platforms for which the
skeleton implementation(s) exist. This decoupling between a skeleton
description, exposed via a skeleton interface to the application pro-
grammer and actual implementations of that skeleton is a key tenet of
many modern skeleton programming frameworks [52].

• Performance: Although having a generic interface, a skeleton imple-
mentation can be optimized internally by exploiting knowledge about
communication, synchronization and parallelism that is inherent in the
skeleton definition. A skeleton invocation can easily be expanded or
bound to an equivalent expert-written efficient implementation for a
platform that encapsulates all low-level platform-specific details such
as managing parallelism, load balancing, communication, utilization
of vector instructions, memory coalescing etc.

1.3 Problem formulation
In this thesis, we consider the skeleton programming approach to address
the portability, performance and programmability issues for the GPU-based
systems. We consider the following questions:

• How can skeleton programming be used to program GPU-based sys-
tems while achieving performance comparable to hand written code?

• A skeleton can have multiple implementations, even for a single plat-
form. On a given platform, what can be done to make a selection
between different skeleton implementations for a particular skeleton
call?

• How can performance be retained (at least to a certain extent) while
porting an application from one architecture to another?

• How does dynamic scheduling compare with the static scheduling for
a skeleton program execution on GPU-based systems?

• Can we simultaneously use different computing devices (CPUs, GPUs)
present in the system, even for a single skeleton call?

1.4. Contributions 5

1.4 Contributions

Most important contributions of the work presented in this thesis are:

1. The existing skeleton programming framework for GPU-based sys-
tems (SkePU) is extended to support two-dimensional data type and
skeleton operations. Various applications are implemented afterwards
based on this support for two-dimensional skeleton operations (Chap-
ter 3).

2. The concept of an execution plan is introduced to support algorithmic
selection between multiple skeleton implementations. Furthermore, an
auto-tuning framework using an off-line, machine learning approach is
proposed for automatic generation of these execution plans for a target
platform (Chapter 4).

3. A case-study is presented for optimizing 2D convolution operations
on GPUs using skeleton programming. We introduce two metrics for
resource maximization on GPUs and show how to calculate them auto-
matically. We evaluate their performance implications and show how
can we use these metrics to attain performance portability between
different generations of GPUs (Chapter 5).

4. Dynamic scheduling support is implemented for the SkePU skeleton
library. Impact of dynamic and static scheduling strategies is evaluated
with different benchmark applications. Furthermore, the first task-
parallel skeleton (farm) for the SkePU library is implemented with
dynamic load-balancing and performance aware scheduling support.
The farm implementation supports data-parallel skeletons as tasks,
enabling hierarchical mixed-mode parallel executions (Chapter 6).

5. Support for simultaneous use of multiple kinds of resources for a single
skeleton call (known as hybrid execution) is implemented for SkePU
skeletons. Experiments show significant speedups by hybrid execution
over traditional CPU- or GPU-based execution (Chapter 6).

1.5 List of publications

The main body of this thesis is based on the following publications:

1. Johan Enmyren, Usman Dastgeer, and Christoph W. Kessler. To-
wards A Tunable Multi-Backend Skeleton Programming Framework
for Multi-GPU Systems. MCC’10: Proceedings of the 3rd Swedish
Workshop on Multicore Computing. Gothenburg, Sweden, Nov. 2010.

2. Usman Dastgeer, Johan Enmyren, and Christoph W. Kessler. Auto-
tuning SkePU: A Multi-Backend Skeleton Programming Framework

6 Chapter 1. Introduction

for Multi-GPU Systems. IWMSE’11: In Proceeding of the 4th in-
ternational workshop on Multicore software engineering. ACM, New
York, USA, 2011.

3. Usman Dastgeer, Christoph W. Kessler and Samuel Thibault. Flexible
runtime support for efficient skeleton programming on hybrid systems.
Accepted for presentation: ParCo’11: International Conference on
Parallel Computing. Ghent, Belgium, 2011.

4. Usman Dastgeer and Christoph W. Kessler. A performance-portable
generic component for 2D convolution on GPU-based systems. Sub-
mitted: MCC’11: Fourth Swedish Workshop on Multicore Computing.
Linköping, Sweden, 2011.

5. Christoph W. Kessler, Sergei Gorlatch, Johan Enmyren, Usman Dast-
geer, Michel Steuwer, and Philipp Kegel. Skeleton Programming for
Portable Many-Core Computing. In: S. Pllana and F. Xhafa, eds.,
Programming Multi-Core and Many-Core Computing Systems, Wiley-
Blackwell, New York, USA, 2011 (to appear).

The mapping between the preceding publication list and thesis chapters is
as follows: Publication 1 and 2 maps to text in Chapter 4; Publication 3
and 4 maps to text in Chapter 6 and Chapter 5 respectively. Publication 5
maps to most of the text in Chapter 3.

1.6 Thesis outline
The rest of the thesis is organized as follows:

• Chapter 2 introduces technical background concepts that are impor-
tant for understanding the remainder of the thesis.

• Chapter 3 presents the SkePU skeleton programming framework for
GPU-based systems.

• Chapter 4 presents our work on auto-tuning the algorithmic choice
between different skeleton implementations in SkePU.

• Chapter 5 contains a case-study that shows usage of parametric ma-
chine models to achieve limited performance portability for 2D convo-
lution operations.

• Chapter 6 describes our work on achieving dynamic scheduling and hy-
brid execution support for SkePU. It also explains our implementation
of the farm skeleton with dynamic scheduling support.

• Chapter 7 discusses related work.

• Chapter 8 lists some future work.

• Chapter 9 concludes the thesis.

Chapter 2

Background

This chapter contains a brief description of CUDA and OpenCL program-
ming with NVIDIA GPUs.

2.1 Programming NVIDIA GPUs

Traditionally, GPUs were designed and used for graphics and image process-
ing applications only. This is because of their highly specialized hardware
pipeline which suited graphics and similar applications, made it difficult to
use them for general-purpose computing. However, with the introduction of
programmable shaders and high-level programming models such as CUDA,
more and more applications are being implemented with GPUs [67]. One of
the big differences between a traditional CPU and a GPU is the difference
between how they use the chip-area. A CPU, as a multi-tasking general-
purpose processing device, uses lot of its chip area for other circuitry than
arithmetic computations, such as caching, speculation and flow control. This
helps it in performing a variety of different tasks at a high speed and also in
reducing latency of sequential computations. The GPU, on the other hand,
devotes much more space on the chip for pure floating-point calculations
since it focuses on achieving high throughput by doing massively parallel
computations. This makes the GPU very powerful on certain kinds of prob-
lems, especially those that have a data-parallel nature, preferably with much
more computation than memory transfers [6].

In GPU computing, performance comes from creating a large number
of GPU threads, possibly one thread for computing a single value. GPU
threads are quite light-weight entities with zero context-switching overhead.
This is quite different to CPU threads which are more coarse-grained entities
and are usually quite few in numbers.

7

8 Chapter 2. Background

2.1.1 CUDA

In 2006, NVIDIA released the first version of CUDA [67], a general purpose
parallel computing architecture based on ANSI C, whose purpose was to
simplify the application development for NVIDIA GPUs. CUDA versions
3.0 or higher support a big subset of C++ including templates, classes and
inheritance which makes CUDA programming relatively easier in compari-
son to OpenCL which is a low level alternative to program heterogeneous
architectures.

In CUDA, the program consists of host and device code, potentially
mixed in a single file that can be compiled by the NVIDIA compiler nvcc,
which internally uses a conventional C/C++ compiler like GCC for com-
piling the host code. A CUDA program execution starts on a CPU (host
thread); afterwards the host thread can invoke the device kernel code while
managing movement of application data between host and device memory.

Threads in a CUDA kernel are organized in a 2-level hierarchy. At the
top level, a kernel consists of a 1D/2D grid of thread-blocks where each
thread block internally contains multiple threads organized in either 1, 2 or
3 dimensions [67]. The maximum number of threads inside a single thread
block ranges from 512 to 1024 depending upon the compute capability of
a GPU. One or more thread blocks can be executed by a single compute
unit called SM (Streaming Multiprocessor). The SMs do all the thread
management and are able to switch threads with no scheduling overhead.
Furthermore, threads inside a thread block can synchronize as they execute
inside the same SM. The multiprocessor executes threads in groups of 32,
called warps, but each thread executes with its own instruction address and
register state, which allows for separate branching. It is, however, most effi-
cient if all threads in one warp take the same execution path, otherwise the
execution in the warp is sequentialized [6]. To measure effective utilization
of computational resources of a SM, NVIDIA defined the warp occupancy
metric. The warp occupancy is the ratio of active warps per SM to the
maximum number of active warps supported for a SM on a GPU.

A CUDA program can use different types of memory. Global device
memory is large but high latency memory that is normally used for copying
input and output data to and from the main memory. Multiple accesses to
this global memory from different threads in a thread block can be coalesced
into a single larger memory access. However, the requirements for coalescing
differ between different GPU architectures [6]. Besides global memory, each
SM has an on-chip read/write shared memory whose size ranges from 16KB
to 64KB between different generation of GPUs. It can be allocated at thread
block level and can be accessed by multiple threads in a thread block, in
parallel unless there is a bank conflict [6]. In the Fermi architecture, a part
of the shared memory is used as L1 cache (configurable, either 16KB/48KB
or 48KB/16KB L1/shared-memory). Constant memory is a small read-only
hardware-managed cache, supporting low latency, high speed access when all
threads in a thread block access the same memory location. Moreover, each

2.1. Programming NVIDIA GPUs 9

SM has 8,192 to 32,768 32-bit general purpose registers depending upon the
GPU architecture [6]. The register and shared memory usage by a CUDA
kernel can be analyzed by compiling CUDA code using the nvcc compiler
with the --ptxas-options -v option.

2.1.2 OpenCL
OpenCL (Open Computing Language) is an open low-level standard by
the Khronos group [82] that offers a unified computing platform for modern
heterogeneous systems. Vendors such as NVIDIA, AMD, Apple and Intel are
members of the Khronos group and have released OpenCL implementations,
mainly targeting their own compute architectures.

The OpenCL implementation by NVIDIA runs on all NVIDIA GPUs
that support the CUDA architecture. Conceptually, the OpenCL program-
ming style is very similar to CUDA when programming on NVIDIA GPUs
as most differences only exist in naming of different concepts [68]. Using
OpenCL, developers write compute kernels using a C-like programming lan-
guage. However, unlike CUDA, the OpenCL code is compiled dynamically
by calling the OpenCL API functions. At the first invocation, the OpenCL
code is automatically uploaded to the OpenCL device memory. In prin-
ciple, the code written in OpenCL should be portable (executable) on all
OpenCL platforms (e.g. x86 CPUs, AMD and NVIDIA GPUs). However,
in reality, certain modifications in the program code may be required while
switching between different OpenCL implementations [41]. Furthermore,
device-specific optimizations applied to an OpenCL code may negatively
impact performance when porting the code to a different kind of OpenCL
device [63, 41].

Chapter 3

SkePU

In this chapter, we introduce SkePU - a skeleton programming framework for
multicore CPU and multi-GPU systems which provides six data-parallel and
one task-parallel skeletons, two container types, and support for execution
on multi-GPU systems both with CUDA and OpenCL.

The first version of the SkePU library was designed and developed by En-
myren and Kessler [44], with support for one-dimensional data-parallel skele-
tons only. Since then, we have extended the implementation in many ways
including support for a two-dimensional data-type and operations. Here, we
present a unified view of the SkePU library based on its current development
status.

In Section 3.1, we describe the SkePU library while in Section 3.2, we
evaluate SkePU with two benchmark applications.

3.1 SkePU library

SkePU is a C++ template library that provides a simple and unified interface
for specifying data- and task-parallel computations with the help of skeletons
on GPUs using CUDA and OpenCL. The interface is also general enough to
support other architectures, and SkePU implements both a sequential CPU
and a parallel OpenMP backend.

3.1.1 User functions

In order to provide a simple way of defining functions that can be used
with the skeletons regardless of the target architecture, SkePU provides
a macro language where preprocessor macros expand, depending on the
target selection, to the right kind of structure that constitutes the function.
The SkePU user functions generated from a macro based specification are
basically a struct with member functions for CUDA and CPU, and strings

10

3.1. SkePU library 11

BINARY_FUNC(plus_f, double, a, b,
return a+b;

)

// EXPANDS TO: ====>

struct plus_f
{

skepu::FuncType funcType;
std::string func_CL;
std::string funcName_CL;
std::string datatype_CL;
plus_f()
{

funcType = skepu::BINARY;
funcName_CL.append("plus_f");
datatype_CL.append("double");
func_CL.append(
"double plus_f(double a, double b)\n"
"{\n"
" return a+b;\n"
"}\n");

}
double CPU(double a, double b)
{

return a+b;
}
__device__ double CU(double a, double b)
{

return a+b;
}

};

Figure 3.1: User function, macro expansion.

for OpenCL. Figure 3.1 shows one of the macros and its expansion, and
Listing 3.1 lists all macros available in the current version of SkePU.

3.1.2 Containers
To support skeleton operations, SkePU includes an implementation for the
Vector and Matrix containers. The containers are defined in the skepu
namespace.

1D Vector data type

The Vector container represents a vector/array type, designed after the
STL container vector. Its implementation uses the STL vector internally,
and its interface is mostly compatible with the STL vector. For instance,

skepu::Vector<double> input(100,10);

creates a vector of size 100 with all elements initialized to 10.

2D Matrix data type

The Matrix container represents a 2D array type and internally uses con-
tiguous memory to store its data in a row-major order. Its interface and

12 Chapter 3. SkePU

1 UNARY_FUNC(name , type1 , param1 , func)
2 UNARY_FUNC_CONSTANT(name , type1 , param1 , const1 , func)
3 BINARY_FUNC(name , type1 , param1 , param2 , func)
4 BINARY_FUNC_CONSTANT(name , type1 , param1 , param2 , \
5 const1 , func)
6 TERNARY_FUNC(name , type1 , param1 , param2 , param3 , func)
7 TERNARY_FUNC_CONSTANT(name , type1 , param1 , param2 , \
8 param3 , const1 , func)
9 OVERLAP_FUNC(name , type1 , over , param1 , func)

10 OVERLAP_FUNC_STR(name , type1 , over , param1 , stride , func)
11 OVERLAP_DEF_FUNC(name , type1)
12 ARRAY_FUNC(name , type1 , param1 , param2 , func)
13 ARRAY_FUNC_MATR(name , type1 , param1 , param2 , func)
14 ARRAY_FUNC_MATR_CONST(name , type1 , param1 , param2 , const1 ,

const2 , func)

Listing 3.1: Available macros.

behavior is similar to the SkePU Vector but with some additions and vari-
ations. It provides methods to access elements by row and column index.
Furthermore, it provides an iterator for row-wise access, while for column-
wise access, it uses matrix transpose to provide read only access. A 50x50
matrix with all elements initialized to value 10 can be created as follows:

skepu::Matrix<double> input(50,50,10);

It also provides operations to resize a matrix and split the matrix into sub-
matrices.

3.1.3 Skeletons

SkePU provides Map, Reduce, MapReduce, MapOverlap, MapArray and Scan
skeletons with sequential CPU, OpenMP, CUDA and OpenCL implementa-
tions. The task-parallel skeleton (Farm) is currently implemented with the
support of the StarPU runtime system (see Chapter 6). A program using
SkePU needs to include the SkePU header file(s) for skeleton(s) and con-
tainer(s) used in the program that are defined under the namespace skepu.

In the object-oriented spirit of C++, the skeleton functions in SkePU
are represented by objects. By overloading operator() they can be made
to behave in a way similar to regular functions. All of the skeletons con-
tain member functions representing each of the different implementations,
CUDA, OpenCL, OpenMP and CPU. The member functions are called CU,
CL, OMP and CPU respectively. If the skeleton is called with operator(),
the library decides which one to use depending on the execution plan used
(see Section 4.2). In the OpenCL case, the skeleton objects also contain the
necessary code generation and compilation procedures. When a skeleton is
instantiated, it creates an environment to execute in, containing all available

3.1. SkePU library 13

OpenCL or CUDA devices in the system. This environment is created as a
singleton so that it is shared among all skeletons in the program.

The skeletons can be called with whole containers as arguments, doing
the operation on all elements of the container. Another way to call them
is with iterators, where a start iterator and an end iterator are provided
instead, which makes it possible to only apply the skeleton on parts of a
container.

As an example, the following code excerpt

skepu::Reduce<plus_f> globalSum(new plus_f);

shows how a skeleton instance called globalSum is created by instantiating
the Reduce skeleton with the user function plus_f (as described in Listing
3.3) as a parameter. In the current version of SkePU it needs to be provided
both as a template parameter and as a pointer to an instantiated version of
the user function (remember that the user functions are in fact structs).
Below is a short description of each of the skeletons.

1 #include <iostream >
2

3 #include "skepu/matrix.h"
4 #include "skepu/map.h"
5

6 UNARY_FUNC(square_f , int , a,
7 return a*a;
8)
9

10 int main()
11 {
12 skepu ::Map <square_f > square(new square_f);
13

14 skepu ::Matrix <int > m(5, 5, 3);
15 skepu ::Matrix <int > r(5, 5);
16

17 square(m,r);
18

19 std::cout <<"Result: " << r <<"\n";
20

21 return 0;
22 }
23

24 // Output
25 // Result:
26 9 9 9 9 9
27 9 9 9 9 9
28 9 9 9 9 9
29 9 9 9 9 9
30 9 9 9 9 9

Listing 3.2: A Map example.

14 Chapter 3. SkePU

Map

Map is a well-known data-parallel skeleton, defined as follows:

• For vector operands, every element in the result vector r is a function
f of the corresponding elements in one or more input vectors v1 . . . vk.
The vectors have length N . A more formal way to describe this oper-
ation is:

r[i] = f(v1[i], . . . , vk[i]) ∀i ∈ {1, . . . , N}

• For matrix operands, every element in the result matrix r is a func-
tion f of the corresponding elements in one or more input matrices
m1 . . .mk. For matrix operands of size R × C, where R and C are
the number of rows and the number of columns respectively, Map is
formally defined as:

r[i, j] = f(m1[i, j], . . . ,mk[i, j]) ∀i ∈ {1, . . . , R}, j ∈ {1, . . . , C}.

In SkePU, the number of input operands k is limited to a maximum of
three (k ≤ 3). An example of Map, which calculates a result matrix as the
element-wise square of one input matrix, is shown in Listing 3.2. The output
is shown as a comment at the end. A Map skeleton with the name square
and the user function square_f is instantiated and is then applied to input
matrix m with result in matrix r.

1 #include <iostream >
2

3 #include "skepu/matrix.h"
4 #include "skepu/reduce.h"
5

6 BINARY_FUNC(plus_f , float , a, b,
7 return a+b;
8)
9

10 int main()
11 {
12 skepu ::Reduce <plus_f > globalSum(new plus_f);
13

14 skepu ::Matrix <float > m(25, 40, (float)3.5);
15

16 float r= globalSum(m);
17

18 std::cout <<"Result: " <<r <<"\n";
19

20 return 0;
21 }
22 // Output
23 // Result: 3500

Listing 3.3: An example of a reduction with + as operator.

3.1. SkePU library 15

Reduce

Reduction is another common data-parallel skeleton:

• For a vector operand, a scalar result r is computed by applying a
commutative associative binary operator ⊕ between each element in
the vector v. Formally:

r = v[1]⊕ v[2]⊕ . . .⊕ v[N].

• For a matrix operand, the reduction is currently implemented for com-
puting a scalar result r by applying a commutative associative binary
operator ⊕ between each element in the matrix m. Formally:

r = m[1, 1]⊕m[1, 2]⊕ . . .⊕m[R,C − 1]⊕m[R,C].

The future work includes implementation of reduction for a R × C
matrix where an output vector of size R and C is produced instead of
a scalar value for row-wise and column-wise reduction respectively.

1 #include <iostream >
2

3 #include "skepu/vector.h"
4 #include "skepu/mapreduce.h"
5

6 BINARY_FUNC(plus_f , double , a, b,
7 return a+b;
8)
9

10 BINARY_FUNC(mult_f , double , a, b,
11 return a*b;
12)
13

14 int main()
15 {
16 skepu ::MapReduce <mult_f , plus_f > dotProduct(new mult_f ,
17 new plus_f);
18

19 skepu ::Vector <double > v1(500 ,4);
20 skepu ::Vector <double > v2(500 ,2);
21

22 double r = dotProduct(v1,v2);
23

24 std::cout <<"Result: " <<r <<"\n";
25

26 return 0;
27 }
28

29 // Output
30 // Result: 3000

Listing 3.4: A MapReduce example that computes the dot product.

16 Chapter 3. SkePU

Listing 3.3 shows the global sum computation of an input matrix using the
Reduce skeleton where reduction is applied using + as operator. The syntax
of skeleton instantiation is the same as before but note that when calling
the Reduce skeleton in the line float r = globalSum(m) the scalar result
is returned by the function rather than returned in a parameter.

MapReduce

MapReduce is basically just a combination of the two above: It produces
the same result as if one would first Map one or more operands to a result
operand, then do a reduction on that result. The operands can be either
vector (v1 . . . vk) or matrix (m1 . . .mk) objects, where k ≤ 3 as described
above. Formally:
For vectors:

r = f(v1[1], . . . , vk[1])⊕ . . .⊕ f(v1[N], . . . , vk[N])

For matrices:

r = f(m1[1, 1], . . . ,mk[1, 1])⊕ . . .⊕ f(m1[R,C], . . . ,mk[R,C])

The r is output, a scalar value in this case. MapReduce is provided since it
combines the mapping and reduction in the same computation kernel and
therefore speeds up the calculation by avoiding some synchronization that
is needed in case of applying Map and Reduce separately.

The MapReduce skeleton is instantiated in a way similar to the Map
and Reduce skeletons, but it takes two user functions as parameters, one for
mapping and one for reduction. Listing 3.4 shows computation of the dot
product using the MapReduce skeleton for vector operands. A MapReduce
skeleton instance with the name dotProduct is created which maps two in-
put vectors with mult_f and then reduces the result with plus_f, producing
a scalar value which is the dot product of the two input vectors.

MapOverlap

The higher order function MapOverlap is a variation of the Map skeleton:

• For vector operands, each element r[i] of the result vector r is a function
of several adjacent elements of one input vector v that reside within a
certain constant maximum distance d from i in the input vector. The
number of these elements is controlled by the parameter overlap(d).
Formally:

r[i] = f(v[i− d], v[i− d+ 1], . . . , v[i+ d]) ∀i ∈ {1, . . . , N}.

The edge policy, how MapOverlap behaves when a read outside the
array bounds is performed, can be either cyclic or constant. When
cyclic, the value is taken from the other side of the array within dis-
tance d, and when constant, a user-defined constant is used. When
nothing is specified, the default behavior is constant with 0 as value.

3.1. SkePU library 17

row-wise column-wise

2D MapOverlap with
separable overlap

2D MapOverlap with
non-separable overlap

Figure 3.2: Difference between 2D MapOverlap with separable and non-
separable overlap.

• For matrix operands, MapOverlap (a.k.a. 2D MapOverlap) can be
used to apply two-dimensional filters. To understand the 2DMapOver-
lap implementation, we first need to know about two-dimensional fil-
ters and their types.

Two-dimensional filters: In image processing [42, 51], a two-dimen-
sional filter is specified as a matrix (also known as two-dimensional
filter matrix) and can be either separable or non-separable. A two-
dimensional filter matrix F is called separable if it can be expressed as
the outer product of two vectors, i.e. one row and one column vector
(H and V respectively), as follows:

F = H × V

The separability of a two-dimensional filter matrix can be determined
by calculating the rank of the filter matrix, as a separable matrix should
have a rank equal to 1. If not separable (i.e. the rank of the filter
matrix is not equal to 1), the filter is called non-separable and is applied
for each element in the filter matrix.

Determining separability of a filter matrix can be important as a sep-
arable matrix may require much less computations (i.e. multiply and
add operations) to perform while yielding the same result. With a
filter matrix F of size R×C, the computational advantage of applying
separable filter versus non-separable filter is:

18 Chapter 3. SkePU

RC/(R+ C)

For instance, for a 15 × 15 filter, a separable filter can result in 7.5
times less computations than a non-separable filter. For a detailed
description of separable filters and how to calculate the two outer
product vectors, we refer to [42, 51].

To support implementation of both separable and non-separable filters,
we have designed two variations of the 2D MapOverlap skeleton.

2D MapOverlap with separable overlap: It can be used to apply
two-dimensional separable filters by dividing the operation into two
one-dimensional MapOverlap operations, i.e. row-wise and column-
wise overlap. In row-wise overlap, each element r[i, j] of the result
matrix r is a function of several row adjacent elements (i.e. in the
same row) of one input matrix m that reside at a certain constant
maximum distance from j in the input matrix. The number of these
elements is controlled by the parameter overlap(d). Formally:

r[i, j] = f(m[i, j − d],m[i, j − d+ 1], . . . ,m[i, j + d]) ∀i ∈ {1, . . . , R}, j ∈
{1, . . . , C}.

In column-wise overlap, each element r[i, j] of the result matrix r is a
function of several column adjacent elements (i.e. in the same column)
of one input matrix m that reside at a certain constant maximum
distance from i in the input matrix1. The number of these elements is
controlled by the parameter overlap(d). Formally:

r[i, j] = f(m[i− d, j],m[i− d+ 1, j], . . . ,m[i+ d, j]) ∀i ∈ {1, . . . , R}, j ∈
{1, . . . , C}.

There exists several application of this type of overlap, including Sobel
kernel and two-dimensional Gaussian filter [51].

The edge policy can be cyclic or constant. In case of cyclic edge policy,
for a row-wise (or column-wise) overlap, when a read outside the row
(or column) bounds is performed, the value is taken from the other
side of that row (or column) within distance d. In case of constant
edge policy, a user-defined constant is used which is also the default
option with 0 as value.

2D MapOverlap with non-separable overlap: It can be used to
apply two-dimensional non-separable filters. The non-separable over-
lap implementation is different in two ways from the separable overlap
implementation, as shown in Figure 3.2. First, the non-separable over-
lap cannot be divided into row-wise or column-wise overlap but rather

1The actual access distance between matrix elements could be different; for example,
if a matrix is stored row-wise but adjacency is defined in terms of columns.

3.1. SkePU library 19

it is applied in a single step. A second and more important difference is
that non-separable overlap defines the overlap in terms of block neigh-
boring elements, which include diagonal neighboring elements besides
row-wise and column-wise neighbors. The overlap is controlled by
the parameters overlap_rows(dR) and overlap_columns(dC). The
overlap can be applied only based on the neighboring elements or
by also providing a weight matrix to the neighboring elements. As
the overlap logic is defined inside the skeleton implementation, the
OVERLAP_DEF_FUNC macro is used which does not require a user func-
tion to be passed as a parameter.

The edge policy is defined by the skeleton programmer, in this case,
by adding extra border elements in the input matrix m. These border
elements can be calculated by e.g. constant and cyclic policy as defined
above. For an output matrix of size R × C and 2D overlap of size
dR × dC , the input matrix m is of size (R+2dR)× (C +2dC). Hence,
each element r[i, j] of a result matrix r is calculated as follows:

r[i, j] = f(m[i, j],m[i, j + 1], . . . ,m[i+ 2dR, j + 2dC]) ∀i ∈ {1, . . . , R}, j ∈
{1, . . . , C}.

1 #include <iostream >
2

3 #include "skepu/vector.h"
4 #include "skepu/mapoverlap.h"
5

6 OVERLAP_FUNC(over_f , float , 2, a,
7 return a[-2]*0.4f + a[-1]*0.2f + a[0]*0.1f +
8 a[1]*0.2f + a[2]*0.4f;
9)

10

11 int main()
12 {
13 skepu :: MapOverlap <over_f > conv(new over_f);
14

15 skepu ::Vector <float > v(15 ,10);
16 skepu ::Vector <float > r;
17

18 conv(v, r, skepu::CONSTANT , (float)1);
19

20 std::cout <<"Result: " <<r <<"\n";
21

22 return 0;
23 }
24

25 // Output
26 // Result: 7.6 9.4 13 13 13 13 13 13 13 13 13 13 13 9.4 7.6

Listing 3.5: A MapOverlap example.

20 Chapter 3. SkePU

There exists several application of this type of overlap, including 2D
convolution and stencil computations [51].

In the current implementation of SkePU, when using any of the GPU
variants of MapOverlap, the maximum overlap that can be used is limited by
the shared memory available to the GPU, and also by the maximum number
of threads per block. An example program that does a one-dimensional
convolution with the help of MapOverlap for vector operands is shown in
Listing 3.5. Note that the indexing is relative to the element calculated,
0 ± overlap. A MapOverlap skeleton is instantiated with over_f as user
function and is then called with an input vector v and a result vector r.
The constant edge policy is specified using the skepu::CONSTANT parameter
with value (float)1.

1 #include <iostream >
2

3 #include "skepu/vector.h"
4 #include "skepu/maparray.h"
5

6 ARRAY_FUNC(arr_f , double , a, b,
7 int index = (int)b;
8 return a[index];
9)

10

11 int main()
12 {
13 skepu ::MapArray <arr_f > reverse(new arr_f);
14

15 skepu ::Vector <double > v1(10);
16 skepu ::Vector <double > v2(10);
17 skepu ::Vector <double > r;
18

19 //Sets v1 = 1 2 3 4...
20 // v2 = 9 8 7 6...
21 for(int i = 0; i < 10; ++i)
22 {
23 v1[i] = i+1;
24 v2[i] = 10-i-1;
25 }
26 reverse(v1 , v2 , r);
27

28 std::cout <<"Result: " <<r <<"\n";
29

30 return 0;
31 }
32

33 // Output
34 // Result: 10 9 8 7 6 5 4 3 2 1

Listing 3.6: A MapArray example that reverses a vector

3.1. SkePU library 21

MapArray

MapArray is yet another variation of the Map skeleton:

• For two input vectors, it produces an output vector r where each ele-
ment of the result, r[i], is a function of the corresponding element of
one of the input vectors, v2[i] and any number of elements from the
other input vector v1. This means that at each call to the user defined
function f , which is done for each element in v2, all elements from v1
can be accessed. The notation for accessing an element in v1 is the
same as for arrays in C, v1[i] where i is a number from 0 to K − 1
where K is the length of v1. Formally:

r[i] = f(v1, v2[i]) ∀i ∈ {1, . . . , N}.

• For one input vector and one input matrix, a result matrix r is pro-
duced such that r[i, j] is a function of the corresponding element of
input matrix m[i, j] and any number of elements from the input vector
v. This means that at each call to the user defined function f , which
is done for each element in the matrix m, all elements from vector v
can be accessed. Formally:

r[i, j] = f(v,m[i, j]) ∀i ∈ {1, . . . , N}, j ∈ {1, . . . ,M}.

1 #include <iostream >
2

3 #include "skepu/matrix.h"
4 #include "skepu/scan.h"
5

6 BINARY_FUNC(plus_f , int , a, b,
7 return a+b;
8)
9

10 int main()
11 {
12 skepu ::Scan <plus_f > prefixSum(new plus_f);
13

14 skepu ::Vector <int > v(10, 1);
15 skepu ::Vector <int > r;
16

17 prefixSum(v, r, skepu :: INCLUSIVE);
18

19 std::cout <<"Result: " <<r <<"\n";
20

21 return 0;
22 }
23

24 // Output
25 // Result: 1 2 3 4 5 6 7 8 9 10

Listing 3.7: A Scan example that computes prefix sum of a vector

22 Chapter 3. SkePU

Listing 3.6 shows an example of the MapArray skeleton that reverses a
vector by using v2[i] as index to v1. A MapArray skeleton is instantiated and
called with v1 and v2 as inputs and r as output. v1 will be corresponding
to parameter a in the user function arr_f and v2 to b. Therefore, when
the skeleton is applied, each element in v2 can be mapped to any number
of elements in v1. In Listing 3.6, v2 contains indexes to v1 of the form 9,
8, 7..., therefore, as the user function arr_f specifies, the first element in r
will be v1[9] the next v1[8] etc, resulting in a reverse of v1.

Scan

Scan (also known as Prefix Sum) is a kernel operation, widely used in many
applications such as sorting, list ranking and Gray codes [71]. In Scan
skeleton:

• For a given input vector v with elements v[1], v[2], · · · v[N], we com-
pute each of the v[1]⊕ v[2]⊕ · · · ⊕ v[k] for either 1 ≤ k ≤ N (inclusive
scan) or 0 ≤ k < N(exclusive scan) where ⊕ is a commutative asso-
ciative binary operator. For exclusive scan, an initial value needs to
be provided.

• For a matrix operand, scan is currently supported row-wise by con-
sidering each row in the matrix as a vector scan operation as defined
above. A column-wise scan operation is a topic for future work.

Listing 3.3 shows a prefix sum computation using + as operator on an
input vector v. A Scan skeleton with the name prefixSum is instantiated
with a binary user function plus_f and is then applied to an input vector
v with result stored in vector r. The scan type is inclusive, specified using
the skepu::INCLUSIVE parameter.

Farm skeleton

Farm is a task-parallel skeleton which allows the concurrent execution of mul-
tiple independent tasks, possibly on different workers. It consists of farmer
(also called master) and worker threads. The farmer accepts multiple in-
coming tasks and submits them to different workers available for execution.
The overhead of submitting tasks to different workers should be negligible,
otherwise the farmer can become the bottleneck. The farmer is also re-
sponsible for synchronization (if needed) and for returning the control (and
possibly results) back to the caller when all tasks finished their execution.
The workers actually execute the assigned task(s) and notify the farmer
when a task finishes the execution. A task is an invocation of a piece of
functionality with implementations for different types of workers available
in the system2. Moreover, a task could itself be internally parallel (e.g., a

2In our farm implementation, a task could define implementations for a subset of
worker types (e.g., a task capable of running only on CPU workers).

3.1. SkePU library 23

t1 t2 tK

....

Figure 3.3: A Farm skeleton.

data parallel skeleton) or could be another task-parallel skeleton (e.g., an-
other farm), allowing hierarchical parallel executions. For tasks t1, t2, . . . tK ,
where K is the total number of tasks, farm could be defined formally as:

farm(t1, t2, . . . tK)

It is also shown in Figure 3.3. The farm implementation for SkePU with a
code example is discussed in Chapter 6.

3.1.4 Lazy memory copying
Both SkePU Vector and Matrix containers hide GPU memory manage-
ment and internally use lazy memory copying to avoid unnecessary memory
transfer operations between main memory and device memory. A SkePU
container keeps track of which parts of it are currently allocated and up-
loaded to the GPU. If a computation is done, modifying the elements in a
container in the GPU memory, these are not immediately transferred back
to the host memory. Instead, the container waits until an element is ac-
cessed on the host side before any copying is done (for example through
the [] operator for Vector). This lazy memory copying is of great use if
several skeletons are called one after the other, with no modifications of the
container data by the host in between. In that case, the payload data of the
container is kept on the device (GPU) through all the computations, which
significantly improves performance. Most of the memory copying is done
implicitly but the containers also contain a flush operation which updates
a container from the device and deallocates its memory.

3.1.5 Multi-GPU support
SkePU has support for carrying out computations with the help of several
GPUs by dividing the work among them. By default, SkePU will utilize as
many GPUs as it can find in the system; however, this can be controlled by
defining SKEPU_NUMGPU. Setting it to 0 makes it use its default behavior i.e.
using all available GPUs in the system. Any other number represents the
number of GPUs it should use in case the actual number of GPUs present

24 Chapter 3. SkePU

in the system are equal or more than the number specified. In SkePU,
memory transfers between device memories of different GPUs is currently
implemented via CPU main memory. With CUDA 4.0, multi-GPUs memory
transfers could be done more efficiently with the release of GPU direct 2.0.
However, it only works with modern Fermi-based Tesla GPUs.

3.1.6 Dependencies
SkePU is based on C++ and can be compiled with any modern C++ com-
piler (e.g. GCC). The library does not use any third party libraries except
for CUDA and OpenCL. To use either CUDA or OpenCL, their correspond-
ing environments must be present. CUDA programs need to be compiled
with Nvidia compiler (NVCC) since CUDA support is provided with the
CUDA runtime API. As SkePU is a C++ template library, it can be used
by including the appropriate header files, i.e., there is no need to separately
compile and link to the library.

3.2 Application examples
In this section, we present two example applications implemented with
SkePU. The first example is a Gaussian blur filter that highlights the per-
formance implications of data communication for GPU execution and how
lazy memory copying helps in optimizing it. The second application is for
a Runge-Kutta ODE solver where we compare an implementation written
using SkePU skeletons with respect to other existing implementations and
also with respect to a hand-written application.

The following evaluations were performed on a dual-quadcore Intel(R)
Xeon (R) E5520 server clocked at 2.27 GHz with 2 NVIDIA GT200 (Tesla
C1060) GPUs.

3.2.1 Gaussian blur filter
The Gaussian blur filter is a common operation in computer graphics that
convolves an input image with a Gaussian function, producing a new smoother
and blurred image. The method calculates the new value of each pixel based
on its own and its surrounding pixels’ values.

It can be done either in two dimensions, for each pixel accessing a square
halo of neighbor pixels around it, or in one dimension by running two passes
over the image, one row-wise and one column-wise. For simplicity, we use
here the second approach, which allows to use Vector as container for the
image data3. When calculating a pixel value, the surrounding pixels are
needed but only within a limited neighbourhood. This fits well into the
calculation pattern of the MapOverlap skeleton. MapArray (a variant of

3The same example is also implemented using the first approach, shown later in Section
6.5.

3.2. Application examples 25

1 OVERLAP_FUNC(blur_kernel , int , 19, a,
2 return (a[-9] + 18*a[-8] + 153*a[-7] + 816*a[-6] + 3060*a

[-5]
3 + 8568*a[-4] + 18564*a[-3] + 31824*a[-2] + 43758*a

[-1]
4 + 48620*a[0] + 43758*a[1] + 31824*a[2] + 18564*a[3]
5 + 8568*a[4] + 3060*a[5] + 816*a[6] + 153*a[7]
6 + 18*a[8] + a[9]) >>18;
7)

Listing 3.8: User function used by MapOverlap when blurring an image.

MapOverlap without the restriction to a constant-sized overlap) was also
used to restructure the array from row-wise to column-wise data layout.
The blurring calculation then becomes: a MapOverlap to blur horizontally,
then a MapArray to restructure the image, and another MapOverlap to blur
vertically. The image was first loaded into a vector with padding between
rows.

Timing was only done on the actual blur computation, not including the
loading of images and creation of vectors. For CUDA and OpenCL, the
time for transferring the image to the GPU and copying the result back is
included. The filtering was done with two passes of a 19-value filter kernel
which can be seen in Listing 3.8. For simplicity, only grayscale images of
quadratic sizes were used in the benchmark.

The result can be seen in Figure 3.4 where part 3.4a shows the time when
applying the filter kernel once to the image, and part 3.4b when applying it
nine times in sequence, resulting in heavier blur. We see that, while faster
than the CPU variant, CUDA and OpenCL versions are slower than the one
using OpenMP on 8 CPU cores for one filtering. This is due to the memory
transfer time being much larger than the actual calculation. In Figure 3.4b,
however, filtering is done nine times which means more computations and
less memory I/O due to the lazy memory copying of the vector. Then the
two single GPU variants outperform even the OpenMP version.

Since there is a data dependency in the MapOverlap skeleton when run-
ning on multiple-GPUs, we also see that running this configuration loses a
lot of performance when applying MapOverlap several times in a row be-
cause it needs to transfer data between the GPUs, via the host.

3.2.2 ODE solver

A sequential Runge-Kutta ODE solver was ported to GPU using the SkePU
library. The original code used for the porting is part of LibSolve, a li-
brary of various Runge-Kutta solvers for ODEs by Korch and Rauber [69].
LibSolve contains several Runge-Kutta implementations, iterated and em-
bedded ones, as well as implementations for parallel machines using shared
or distributed memory. The simplest default sequential implementation was

26 Chapter 3. SkePU

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 500 1000 1500 2000 2500 3000

Ti
m

e
(S

ec
)

Image Size (Pixels)

Gaussian Blur: one filtering

CPU
OpenMP

OpenCL single
OpenCL multi

CUDA

(a) Average time of blurring quadratic greyscale images of different sizes. The Gaussian
kernel is applied once to the image.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 500 1000 1500 2000 2500 3000

Ti
m

e
(S

ec
)

Image Size (Pixels)

Gaussian Blur: nine filterings

CPU
OpenMP

OpenCL single
OpenCL multi

CUDA

(b) Average time of blurring quadratic greyscale images of different sizes. The Gaussian
kernel is applied nine times to the image.

Figure 3.4: Average time of blurring images of different sizes. Average of
100 runs.

3.2. Application examples 27

used for the port to SkePU, however other solver variants were used unmod-
ified for comparison.

The LibSolve package contains two ODE test sets. One, called BRUSS2D,
is based on the two-dimensional brusselator equation. The other one is called
MEDAKZO, the medical Akzo Nobel problem [69]. BRUSS2D consists of
two variants depending on the ordering of grid points, BRUSS2D-MIX and
BRUSS2D-ROW. For evaluation of SkePU only BRUSS2D-MIX was con-
sidered. Four different grid sizes (problem size) were evaluated, 250, 500,
750 and 1000.

The porting was fairly straightforward since the default sequential solver
in LibSolve is a conventional Runge-Kutta solver consisting of several loops
over arrays sized according to the problem size. These loops were replaced
by calls to the Map, Reduce and MapReduce skeletons. The right hand side
evaluation function was implemented with the MapArray skeleton.

As mentioned earlier, the benchmarking was done using the BRUSS2D-
MIX problem with four different problem sizes (N=250, N=500, N=750 and
N=1000). In all tests the integration interval was 0-4 (H=4) and time was
measured with LibSolves internal timer functions, which on UNIX systems
uses gettimeofday(). The different solver variants used in the testing were
the following:

ls-seq-def: The default sequential implementation in LibSolve.

ls-seq-A: A slightly optimized variant of ls-seq-def.

ls-shm-def: The default shared memory implementation in LibSolve. It uses
pthreads and was run with 8 threads, one for each core of the benchmarking
computer.

ls-shm-A: A slightly optimized variant of ls-shm-def, using pthreads and run
with 8 threads.

skepu-CL: SkePU port of ls-seq-def using OpenCL as backend and running on
one Tesla C1060 GPU.

skepu-CL-multi: SkePU port of ls-seq-def using OpenCL as backend and run-
ning on two Tesla C1060 GPUs.

skepu-CU: SkePU port of ls-seq-def using CUDA as backend and running on one
Tesla C1060 GPU.

skepu-OMP: SkePU port of ls-seq-def using OpenMP as backend, using 8 threads.

skepu-CPU: SkePU port of ls-seq-def using the default CPU backend.

CU-hand: A “hand”-implemented CUDA variant. It is similar to the SkePU
ports but no SkePU code was utilized. Instead, CUBLAS [3] functions were
used where applicable, and some hand-made kernels.

The result can be seen in Figure 3.5. The two slowest ones are the se-
quential variants (ls-seq-def and ls-seq-A), with ls-seq-A of course performing
slightly better due to the optimizations. LibSolves shared memory solvers
(ls-shm-def and ls-shm-A) show a great performance increase compared to
the sequential variants with almost five times faster running time for the
largest problem size (N=1000).

28 Chapter 3. SkePU

 0

 50

 100

 150

 200

 250

 300

 350

 400

ls-seq-def

ls-seq-A

ls-shm
-def

ls-shm
-A

skepu-C
PU

skepu-O
M

P

skepu-C
L

skepu-C
L-m

ulti

skepu-C
U

C
U
-hand

E
x
e
c
u
ti
o
n
 T

im
e
 (

S
e
c
)

ODE solver

Figure 3.5: Execution-times for running different LibSolve solvers, averaged
over four different problem sizes (250,500,750 and 1000) with the BRUSS2D-
MIX problem.

We also see that the SkePU CPU solver is comparable to the default
LibSolve sequential implementation and the OpenMP variant is similar to
the shared memory solvers. The SkePU OpenCL and CUDA ported solvers
are however almost 10 times faster than the sequential solvers for the largest
problem size. The reason for this is that all the calculations of the core loop
in the ODE solver can be run on the GPU, without any memory transfers
except once in the beginning and once at the end. This is done implic-
itly in SkePU since it is using lazy memory copying. However, the SkePU
multi-GPU solver does not perform as well; the reason here also lies in the
memory copying. Since the evaluation function needs access to more of
one vector than what it has stored in GPU memory (in multi-GPU mode,
SkePU divides the vectors evenly among the GPUs), some memory transfers
are needed: First from one GPU to host, then from host to the other GPU;
this slows down the calculations considerably.

Comparing the “hand”-implemented CUDA variant, we see that it is
similar in performance to skepu-CU with CU-hand being slightly faster (ap-
proximately 10%). This is both due to the extra overhead when using SkePU
functions and some implementation differences.

There is also a start-up time for the OpenCL implementations during
which they compile and create the skeleton kernels. This time (≈5-10 sec-
onds) is not included in the times presented here since it is considered an
initialization which only needs to be done once when the application starts
executing.

